
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Exploiting Proxy-Based Transcoding to Increase the User Quality of

Experience in Networked Applications

Non Peer-reviewed author version

WIJNANTS, Maarten; MONSIEURS, Patrick; QUAX, Peter & LAMOTTE, Wim (2005)

Exploiting Proxy-Based Transcoding to Increase the User Quality of Experience in

Networked Applications. In: Bartolini, N & Cherkasova, L & Colajanni, M (Ed.) FIRST

INTERNATIONAL WORKSHOP ON ADVANCED ARCHITECTURES AND

ALGORITHMS FOR INTERNET DELIVERY AND APPLICATIONS,

PROCEEDINGS. p. 73-80..

DOI: 10.1109/AAA-IDEA.2005.6

Handle: http://hdl.handle.net/1942/7931



Exploiting Proxy-Based Transcoding to Increase the User Quality of Experience
in Networked Applications

Maarten Wijnants Patrick Monsieurs Peter Quax Wim Lamotte
Expertise Centre for Digital Media

Limburgs Universitair Centrum
Universitaire Campus, B-3590 Diepenbeek, Belgium

{maarten.wijnants, patrick.monsieurs, peter.quax, wim.lamotte}@luc.ac.be

Abstract

In this work we describe how we extended the function-
ality of our previously introduced application and network
aware proxy system with transcoding capabilities. Based
on their compound awareness, our proxies devise a strat-
egy for every connected client that intelligently distributes
the client’s available bandwidth over the different applica-
tion data streams. The proxies subsequently put each com-
puted bandwidth allocation strategy into effect by manag-
ing and transcoding data streams inside the network before
they reach the client. We also present results from the in-
tegration of our work into an existing Networked Virtual
Environment. These results clearly indicate that our intel-
ligent proxy, enhanced with its novel transcoding function-
ality, can increase the user Quality of Experience consider-
ably in networked applications.

1. Introduction

The last few years, we are witnessing an ever increas-
ing heterogeneity in the end-user device space. As a result,
users can nowadays choose from a multitude of devices,
each with their own specific capabilities and constraints, to
connect to the Internet. Examples include desktop PCs, lap-
tops, Personal Digital Assistants (PDAs) and smartphones.
While there are many advantages associated with this in-
creased client diversity, it also complicates multimedia con-
tent delivery. After all, multimedia content suitable for pre-
sentation on a desktop PC often cannot be displayed effi-
ciently on a mobile device.

This problem can be resolved in two different ways.
The first solution consists of supplying multiple versions
of the same content and providing users with the version
that best suits the capabilities of their client device and net-
work connection. For example, content providers could pro-

vide both low and high resolution versions of a video frag-
ment. Whenever a wireless PDA user requests this video
fragment, he should be served the low resolution version
due to the form factor of his device and the low through-
put of his network link. On the other hand, whenever a PC
user with a broadband Internet connection requests this par-
ticular video fragment, he should be served the high qual-
ity version. The main drawback of this approach is its lack
of flexibility. If a new device is released which has capabil-
ities unlike any of the devices already on the market, this
device cannot be served an optimal version of the content
unless a new version is explicitly supplied by the content
provider. Furthermore, this approach makes content man-
agement difficult and error-prone since multiple versions of
the same content reside on the origin server.

A second, more dynamic solution consists of transcod-
ing the content on-the-fly to a convenient format before it
reaches the end-user. A transcoder can take the constraints
of both the transportation network and the receiving end-
user device into account when transforming content on be-
half of a client. As a result, there is no need to store multiple
versions of the same content on the origin server. Further-
more, this approach is also flexible in the sense that content
can be adapted in real-time to optimally match the capabil-
ities and constraints ofany device. On the other hand, an
important disadvantage of transcoding is its computational
complexity. Transcoding is a very processor intensive task,
which can result in scalability issues in case large num-
bers of simultaneous users need to be supported. Despite
this drawback, we believe transcoding to be a very power-
ful technique whose usability is not confined to content de-
livery scenarios.

In [21], we discussed the implementation of an exten-
sible software proxy that is bothapplicationandnetwork
aware. This means the proxy on the one hand has high-
level knowledge of the application it is serving. In case of a
Networked Virtual Environment (NVE) or Massively Mul-
tiplayer Online Game (MMOG), this application related



knowledge could for instance include information about the
positions and orientations of users in the virtual world. On
the other hand, the intelligent proxy periodically probes the
underlying transportation network to obtain network related
information such as the current throughput and packet loss
rate of individual network links. In the original version of
the proxy, this compound awareness was exploited by a
rather basic quality selection plug-in to intelligently man-
age and control data streams destined for connected clients
[21]. This plug-in had a very coarse granularity, since it was
only capable of turning data streams on and off.

In this paper, we describe the implementation of a much
more flexible plug-in that adds transcoding functionality to
our intelligent proxy. Based on its compound awareness,
the proxy is now capable of intelligently transcoding data
streams to lower quality versions as they become needed
by connected clients. Furthermore, we investigate whether
our transcoding-enabled proxy could positively affect the
user Quality of Experience (QoE) in networked applications
such as NVEs and MMOGs. QoE is a subjective measure
that relates to the experience people have when they use an
application or a product.

The remainder of this paper is organized as fol-
lows. In section 2 we review related work on the distrib-
uted proxy network architecture and on content-based
transcoding (with an emphasis on video transcoding). Sec-
tion 3 describes the implementation of our intelligent
proxy and its video transcoding plug-in. The NVE frame-
work we integrated our work in is introduced briefly in sec-
tion 4. In section 5 we present some experimental results
which clearly demonstrate that our intelligent proxy, en-
hanced with transcoding functionality, can increase the
user QoE considerably in networked applications. This sec-
tion also describes the approach we employed to maximize
the proxy’s scalability. Finally, we pose our conclu-
sions and suggest possible future research directions in
section 6.

2. Related work

In comparison with the client/server and peer-to-peer ar-
chitectures, the distributed proxy architecture is a relatively
new network topology. In this architecture, a number of in-
terconnected proxies are placed at the edge of the network,
and clients only communicate with the proxy nearest to
them. This is illustrated in figure 1. The main advantages of
the distributed proxy architecture are increased system ro-
bustness (there is no single point-of-failure in the system)
and reduced packet delay (proxies can cache data locally,
this way decreasing the amount of time needed for data
to reach requesting clients) [2][10]. Furthermore, proxies
can perform valuable services such as packet filtering and
packet aggregation inside the network, thereby making the

Figure 1. The distributed proxy network archi-
tecture.

network more intelligent. In [3], the results of porting a pop-
ular multi-player FPS game to the distributed proxy archi-
tecture are described. Nguyen et al. discuss in [12] how the
distributed proxy architecture can be employed to provide
immersive audio communication to users of online games.
Finally, a flexible and highly modular proxy platform called
AMPSis introduced in [22]. The platform supports an ex-
tensible set of streaming services and has been specifically
designed with scalability in mind. However, in contrast to
our intelligent proxy, the AMPS proxies at the moment still
lack transcoding functionality.

On-the-fly transcoding of content to a convenient for-
mat is steadily receiving more and more attention from
the research community. This is largely due to the pop-
ularization of mobile devices. In [17], an early content-
based image transcoder is described which takes the capa-
bilities of the receiving client device and the type and pur-
pose of the image into account. The authors demonstrate
clear improvements in both image delivery speed and im-
age accessibility. A transcoding and caching intermediary
for web content calledTranSquidis discussed in [9]. Tran-
Squid tries to increase the user satisfaction by servicing
client requests from its cache as much as possible, hereby
transcoding the cached content to an appropriate format if
necessary. Knutsson et al. introduce in [6] the concept of
server-directed transcoding, apply it to web content, and
show how it can be integrated into the HTTP protocol. In
the server-directed transcoding approach, the origin server
guides the transcoder to make sure the content does not lose
its semantics when it is being adapted to match the capabil-
ities and preferences of the requesting client. Finally, a con-
tent transcoding middleware that aims at enabling univer-
sal access to military geospatial information (such as maps)
is presented in [8]. The middleware represents the geospa-
tial data as Scalable Vector Graphics, an XML-based W3C
standard, and uses Java plug-ins and XSL stylesheets to



transcode these SVG files to a format that suits the capa-
bilities and preferences of the requesting client.

The advent of broadband access networks has led to
a serious increase in the number of video files accessible
through the Internet. This in turn boosted video transcod-
ing research. Vetro et al. give in [20] an excellent overview
of video transcoding architectures and techniques for block-
based video coding schemes. Bit-rate reduction, spatial and
temporal resolution reduction and error-resilience transcod-
ing of video streams are discussed. In [1], a video gateway
is presented that addresses the problem of heterogeneous
client environments by intelligently transcoding and rate-
controlling video streams. Another video transcoding gate-
way is described in [7]. The specific focus here is to enable
video access on mobile devices. Finally, Shen et al. discuss
in [15] and [16] theirTranscoding-enabled Caching proxy
(TeC proxy). The TeC proxy performs transcoding as well
as caching to improve the efficiency of video delivery to het-
erogeneous end-users with various network conditions and
device capabilities. Furthermore, the authors also introduce
three novel caching algorithms which take the transcoding
functionality of the proxy into account. The presented re-
sults demonstrate that these new algorithms are capable of
seriously outperforming traditional caching strategies.

There is a large resemblance between the work
we present in this paper and the systems described in
[1],[7],[15],[16]. Some of these systems are even more so-
phisticated in terms of transcoding functionality and
transcoding performance. However, the main difference be-
tween our work and the referred systems is that the lat-
ter focus solely on content delivery. While our intelligent
proxy architecture can also be used in content delivery sce-
narios, it can just as well be integrated in more complex
networked applications such as NVEs and videoconfer-
encing programs. This is mainly due to the fact that our
proxy, in contrast to the other systems referred in this sec-
tion, also leverages application related information when
making routing and transcoding decisions. We believe ap-
plication awareness is crucial to provide users of networked
applications with a maximal QoE, and we will demon-
strate this in section 5.

3. Implementation

3.1. Intelligent proxy implementation

As described in [21], our proxy system is both applica-
tion and network aware. In order to gain application aware-
ness, we proposed to insert anetwork intelligence layer
(NI layer) between the transport layer and the application
layer of the client software. The main responsibility of the
NI layer consists of continuously querying the application’s
awareness management model in order to obtain informa-

Figure 2. IPv4 packet traversal diagram.

tion regarding the relative importance of the different data
streams present in the system. This information is subse-
quently transmitted to the proxy this client is connected to.
For example, in case of an NVE, the awareness manage-
ment model could specify that data streams belonging to ob-
jects which are located close to the local user in the virtual
world have a higher significance than streams belonging to
more distant objects. Since the NI layer is highly reusable,
it should be possible to integrate our proxy architecture in
nearly any networked application with minimal effort. Net-
work awareness on the other hand is gained by periodically
measuring the latency, throughput and packet loss rate of the
network links going to the clients currently connected to the
proxy. Furthermore, each proxy records the bandwidth us-
age of every data stream that passes through it.

Our proxies continuously combine their applica-
tion and network awareness to devise a strategy for
every connected client that intelligently distributes the
client’s available bandwidth over the different streams
present in the system. For example, when a client’s avail-
able downstream bandwidth no longer suffices to receive
all streams at maximum quality, the proxy will deter-
mine which streams should be reduced in quality or even
completely blocked. This decision will be based on the rel-
ative importance of the streams as well as their bandwidth
requirements. As a result, whenever possible, less impor-
tant streams will be transcoded or dropped by the proxy
before more significant streams are altered, this way max-
imizing the user QoE. The algorithm used to compute the
bandwidth allocation strategies is described in [11].

To implement the proxy’s packet filtering, routing and
mangling functionality, we used the netfilter/iptables frame-
work [19] which is part of the Linux kernel since version
2.4. Netfilter defines a set ofhooksfor a number of net-
work stacks (for example, the five hooks defined for IPv4
are illustrated in figure 2) and allows kernel modules to reg-
ister callback functions for these hooks. Whenever a packet
arrives at a hook, netfilter checks if anyone has registered
a callback function for it. If this is the case, the packet is
transferred from the network stack to this callback function,
which can then examine the packet and subsequently decide
on its fate. Iptables on the other hand enables packet selec-
tion in userspace. More specifically, iptables allows users to



Figure 3. High-level overview of the operation
of our application and network aware proxy.

insert and delete rules from the kernel’s packet filtering ta-
ble for any of the hooks defined by netfilter. A rule specifies
what should be done with a packet if its header matches the
conditions specified in the rule. Possible verdicts a rule can
issue for a packet include ACCEPT (let the packet pass),
DROP (discard the packet) and QUEUE (hand the packet
over to a userspace application which can then decide what
should be done with the packet). If a packet does not match
the conditions of the current rule, the next rule for that hook
is consulted.

Iptables is used by our proxies to do some trivial packet
filtering directly (e.g. always issue an ACCEPT verdict for
network probes), and to QUEUE packets belonging to data
streams of the served application to a userspace program
[21]. Possible data streams in networked multi-user appli-
cations include audio, video, geometry, and position and
orientation updates. The userspace application subsequently
consults the computed bandwidth allocation strategy for the
client this stream applies to, and leverages this informa-
tion to decide if the packet should be accepted, dropped
or transcoded. This means both the proxy’s application and
network awareness is exploited when managing and con-
trolling application data streams. This approach leads to
an improved QoE for application users, as will be demon-
strated in section 5. A schematic overview of the general
mode of operation of our proxies is shown in figure 3.

3.2. Video transcoding plug-in

To achieve maximal usability, we have tried to keep our
proxies as generic as possible. As a result, the proxy can
by default execute only a limited number of basic opera-
tions on data streams. For example, the standard version of

the proxy is capable of performing Network Address Trans-
lation (NAT), but has otherwise no additional packet man-
gling functionality. However, we have equipped our prox-
ies with a plug-in mechanism which can be used to extend
their performance and capabilities. Application designers
can write their own plug-in that exploits specific knowledge
of their application and suits their specific needs, and in-
stall it in the proxy. This approach ensures that our proxies
can be integrated in nearly all networked applications and
attain a high level of performance in all these situations.

The plug-in we used in [21] to validate our work was
a simple quality selection plug-in capable of turning data
streams on and off. Even though this plug-in worked fine,
we felt there was a need for a more fine-grained stream
management plug-in. Therefore, we have developed a new
plug-in capable of transcoding video streams in real-time.
We used FFMPEG’s codec library libavcodec [18] to imple-
ment this functionality. Libavcodec contains encoders and
decoders for nearly all prevailing video standards, like for
example H.263 [5] and MPEG-4 [4]. The developed plug-
in dynamically spawns and destroys transcoders for any of
the video streams present in the application as they become
needed/obsolete. Since transcoding performance was not
one of our main objectives, we opted to implement these
transcoders using the cascaded pixel-domain approach. In
this approach, a video stream is transcoded by first decod-
ing it and subsequently completely re-encoding it with dif-
ferent quality parameters. While this approach is hardly ef-
ficient, it produces the best results in terms of image quality
of all existing video transcoding architectures [20].

4. Sample NVE application

We tested our work by integrating it into our in-house de-
veloped multi-user NVE framework which was first intro-
duced in [14]. The primary objective of this framework is to
attain scalability, both in terms of number of simultaneous
users as well as spatial extent of the offered virtual environ-
ment. The framework tries to achieve this goal by maximiz-
ing client responsibilities and relying extensively on direct
client-to-client multicast communication. In a later stage,
the framework was extended with support forvideo-based
avatars, a technique in which the face of a user is contin-
uously captured with a webcam and subsequently textured
on his avatar [13]. The objective here was to increase the
immersive experience for connected users. Figure 4 shows
two screenshots of the NVE framework running on desk-
top PCs.

The standard version of the framework divides the virtual
environment into square regions which each have a unique
multicast address associated with them. Whenever some-
thing happens in the virtual world, information about the
event is sent only to the multicast address of the region from



Figure 4. Two screenshots of our in-house
developed multi-user NVE framework sup-
porting video-based avatars.

High Medium Low
Quality (HQ) Quality (MQ) Quality (LQ)

Codec H263 H263 H263
Resolution CIF (352x288) CIF (352x288) CIF (352x288)

FPS 25 15 15
Bitrate (bps) 200.000 100.000 50.000

Table 1. Quality settings of the three video
streams video-based clients send out.

which the event originated. Each client has an Area of In-
terest (AoI) manager that is responsible for constantly de-
termining the regions this user should be aware of. As the
user moves around the world, the multicast groups associ-
ated with the regions selected by the AoI manager are dy-
namically joined and left, this way limiting the amount of
information clients need to receive and process. However,
the framework also divides the world into video regions.
Each user represented by a video-based avatar in the vir-
tual world sends out three distinct qualities (high, medium
and low) of his video stream, one to each of the three mul-
ticast addresses associated with the video region he is cur-
rently located in. Table 1 shows the different quality para-
meters the framework utilizes to encode the three versions
of a user’s video stream. Like the AoI manager, the Video
Area of Interest (VAoI) manager decides which video mul-

ticast addresses the client should subscribe to. One strategy
could be to subscribe to the high quality multicast group of
the video region the user currently is in, and to the medium
or even low quality groups of adjacent video regions.

5. Experimental results

A detailed discussion of the integration of our proxy sys-
tem into the multi-user framework described in the previous
section can be found in [21]. However, the results presented
in that paper were obtained by using a simple video qual-
ity selection plug-in for our proxies. This plug-in exploited
the proxy’s application and network awareness to improve
the QoE for connected users by determining which quality
(if any) they should receive from every video-based avatar
in the virtual world. Based on the decisions taken by the
plug-in, the proxy subsequently dropped certain video qual-
ities before they reached the user. Note that since we posi-
tion our intelligent proxies close to end-users, the complex-
ity of stream management is moved to the edge of the net-
work where the number of streams is relatively low.

Although the quality selection plug-in worked fine, users
represented by video-based avatars were still required to
send out three distinct qualities of their video stream. This
requirement places an extra load on the processor of the
client device, since the user’s video stream needs to be
encoded three separate times. More importantly however,
this approach also requires a large amount of client up-
stream bandwidth. Most Internet Service Providers (ISPs)
provide asymmetric Internet subscriptions in which the up-
stream capacity is merely a fraction of the offered down-
stream bandwidth (typically 128 or 192 Kbps). As a re-
sult, forcing clients to send out three different qualities of
the same video stream is something commercial applica-
tions just cannot afford at the moment. By equipping our
proxy system with transcoding functionality, we can relieve
framework clients from this burden. After slightly modify-
ing the general transcoding plug-in described in section 3,
we obtained the plug-in shown in figure 5. This plug-in in-
tercepts high quality encoded video streams (which are now
the only video streams clients need to send out), transcodes
them to medium and low quality versions if at least one of
the proxy’s connected clients is interested in that quality,
and subsequently serves every client the appropriate ver-
sion.

To assess the value our new plug-in adds to the frame-
work, we performed an experiment which involved four
clients running the unmodified version of the framework
(clients C1 to C4 in figure 6(a)) and two clients connected
through our transcoding-enabled proxy (clients PA and PB
in figure 6(a)). Only clients C1, C2 and C3 were represented
as video-based avatars. During the experiment, we artifi-
cially varied the available downstream bandwidth of clients



Figure 5. High-level operation of the video
transcoding plug-in.

PA and PB over time, while all other clients remained sta-
tionary in the virtual world. Notice that since in this exper-
iment the virtual world was inhabited by both standard as
well as proxy-enhanced clients, the video-based clients still
needed to send out three distinct video qualities. If how-
ever the world would have been populated solely by clients
connected through our intelligent proxy (which is actually
the scenario we envision), it would have sufficed for video-
based clients to only send out the high quality encoded ver-
sion of their video stream.

At the beginning of the experiment, we set the bandwidth
of clients PA and PB to 320 Kbps. Due to its network aware-
ness, the proxy noticed this bandwidth did not suffice for PA
and PB to receive the high quality video streams of all three
video-based avatars. As a result, our proxy exploited its ap-
plication awareness to transcode certain video streams to
medium or low quality, and subsequently transmitted these
transcoded versions to its clients instead of their high qual-
ity counterparts. After 30 seconds, we limited PA’s and PB’s
bandwidth to 250 Kbps, and after 60 seconds we further de-
creased their bandwidth to 170 Kbps. Finally, after 90 sec-
onds, we increased the downstream bandwidth of PA and
PB back to 400 Kbps.

Figures 6(b) and 6(c) show all video network traffic re-
ceived by respectively client PA and client PB. A first im-
portant observation is that PA and PB both roughly stayed
within their bandwidth limitations for the entire dura-
tion of the experiment. Secondly, these network traces
also clearly indicate how our proxy exploits its applica-
tion awareness to intelligently decide which video streams
should be transcoded to a lower quality in case of insuf-
ficient client bandwidth. For example, since the distance
between PA and C1 was much larger than the distance be-
tween PA and C2 and C3, the proxy allocated most of PA’s
available bandwidth to the video streams sent out by C2 and
C3 (see figure 6(b)). On the other hand, since PB was lo-
cated very close to C1 in the virtual world, the major-
ity of PB’s downstream bandwidth was allocated to C1’s

(a) Client positioning in the virtual world.

(b) Video packets received by client PA.

(c) Video packets received by client PB.

(d) Video packets received by client C4.

Figure 6. Network traces (stacked graphs) of
an experiment in which we artificially var-
ied the downstream bandwidth clients had at
their disposal over time.



Figure 7. The transcoding plug-in is equipped
with an intelligent scaling mechanism to
maximize the number of clients our proxies
can handle simultaneously.

video stream (see figure 6(c)). In contrast, figure 6(d) illus-
trates all video packets received by client C4. Since this
client was not connected through a transcoding-enabled
proxy, its VAoI manager was responsible for perform-
ing video quality selection. Unlike our proxy however,
the VAoI manager lacks network awareness. As a re-
sult, client C4 received the same set of video streams dur-
ing the entire experiment. If this client would have been
subject to the same bandwidth fluctuations as clients PA
and PB, its bandwidth would have been exceeded numer-
ous times since no attempts would have been made to
adjust the bandwidth usage of individual video streams. Ex-
ceeded client downstream bandwidth results in increased
packet loss and higher video packet delay, which seri-
ously deteriorates the video playback and consequently
also the user’s immersive experience.

By comparing the network traces in figures 6(b) and 6(c)
with the one in figure 6(d), the added value of our work be-
comes clear. Our transcoding-enabled proxy at all times ex-
ploits all available client bandwidth without ever exceeding
it, and intelligently and dynamically distributes this band-
width over all involved network streams in order to opti-
mize the user QoE. Unsurprisingly, these results are almost
identical to those presented in [21]. However, as stated be-
fore, scarce upstream bandwidth is no longer wasted since
clients normally no longer need to send out different qual-
ities of the same video stream. Furthermore, these results
also illustrate the flexibility of our proxy system. By sim-
ply installing a new plug-in, the functionality of our proxy
system was extended with transcoding capabilities.

A drawback of the new plug-in is its computational com-
plexity. As stated before, video transcoding is very proces-
sor intensive, with the cascaded pixel-domain approach be-
ing the least efficient of all transcoding architectures. As a
result, the transcoding plug-in is much less scalable than the
previously developed quality selection plug-in. Although

transcoding performance was not one of our main objec-
tives, we nonetheless wanted the number of clients our
proxy could support simultaneously to be as high as possi-
ble. We therefore incorporated an intelligent scaling mecha-
nism in the transcoding plug-in. If over a short time interval
the proxy’s average processor usage exceeds a predefined
threshold, medium quality transcoding is disabled for all
video streams and clients are served the low quality version
instead. This has two advantages. First of all, low quality
encoding is slightly less processor intensive than medium
quality encoding. Secondly, by disabling medium quality
encoding, transcode results can be reused to a higher degree.
For example, suppose two clients are connected to the same
proxy, with one client being interested in the medium qual-
ity of a certain video stream while the other is interested in
the low quality version. If the proxy has sufficient processor
time available, it transcodes the high quality video stream
to medium as well as low quality and serves both clients the
quality they prefer. However, if the proxy’s threshold is ex-
ceeded, only low quality transcoding is enabled and both
clients will consequently receive the low quality version of
the video stream, resulting in a decrease in processor load
by a factor of two approximately. This is illustrated in figure
7. Here, the threshold was set to an unusually low 20 per-
cent processor usage for testing purposes only. Normally,
the threshold value would be much higher, like for instance
80 or 90 percent processor load.

6. Conclusions and future work

In this paper, we have described the implementation of
a video transcoding plug-in for our generic proxy system.
Furthermore, we have also presented results from integrat-
ing our transcoding-enabled proxies in an existing NVE
framework. These results are very similar to those achieved
by a previously developed quality selection plug-in. More
specifically, both plug-ins can equally improve the user
QoE in networked multimedia applications. However, the
transcoding plug-in relieves client machines from having to
send multiple versions of the same video stream. We be-
lieve this to be an interesting advantage due to the asym-
metric nature of most current Internet subscriptions. On the
other hand, since transcoding is computationally expensive,
the transcoding plug-in is less scalable than the quality se-
lection plug-in. We have therefore equipped the transcod-
ing plug-in with an intelligent scaling mechanism to push
the number of clients our proxies can handle simultaneously
to the limit. Finally, the results presented in this paper also
clearly illustrate the flexibility of our generic proxy system.
By simply installing a new plug-in, transcoding function-
ality was added to our proxies. By implementing and in-
stalling other novel plug-ins, their capabilities and range of
application could easily be extended even further.



In the future we would like to improve our work in sev-
eral ways. First and foremost, our intelligent proxy system
at the moment still lacks device awareness. We envision the
proxy gathering information regarding the capabilities of
the receiving client device and combining this knowledge
with its application and network awareness to take more
complex transcoding decisions and to distribute the band-
width of clients even more efficiently. Secondly, we would
like to perform some more elaborate experiments, for in-
stance by including mobile devices. Finally, we will keep
looking at ways to increase the performance and scalabil-
ity of our transcoding plug-in.

Acknowledgments

Part of this research was funded by the IBBT (Interdisci-
plinary institute for BroadBand Technology) and the Flem-
ish Government. We also wish to thank ANDROME NV for
the use of their video codec software.

References

[1] E. Amir, S. McCanne, and H. Zhang. An Application Level
Video Gateway. InProc. 3rd ACM International Conference
on Multimedia, pages 255–265, San Francisco, California,
November 1995.

[2] D. Bauer, S. Rooney, and P. Scotton. Network Infrastruc-
ture for Massively Distributed Games. InProc. 1st Workshop
on Network and System Support for Games (NetGames’02),
pages 36–43, Bruanschweig, Germany, 2002. ACM Press.

[3] E. Cronin, B. Filstrup, and A. Kurc. A Distributed Mul-
tiplayer Game Server System. UM Course Project Report
EECS589, Electrical Engineering and Computer Science De-
partment, University of Michigan, May 2001.

[4] ISO/IEC 14496 (MPEG-4). Coding of Audio-Visual Ob-
jects. ISO/IEC JTC1, 2001.

[5] ITU-T Recommendation H.263. Video Coding for Low Bit
Rate Communication. 1998.

[6] B. Knutsson, H. Lu, J. Mogul, and B. Hopkins. Architec-
ture and Performance of Server-Directed Transcoding.ACM
Transactions on Internet Technology, 3(4):392–424, 2003.

[7] Z. Lei and N. Georganas. Video Transcoding Gateway for
Wireless Video Access. InProc. IEEE Canadian Conference
on Electrical and Computing Engineering (CCECE’03),
Montreal, May 2003.

[8] C.-Y. Lin, A. Natsev, B. Tseng, M. Hill, and J. Smith. Per-
vasive Transcoding Middleware for Geospatial Intelligence
Access. InProc. IEEE International Conference on Multi-
media & Expo (ICME’04), Taipei, Taiwan, June 2004.

[9] A. Maheshwari, A. Sharma, K. Ramamritham, and
P. Shenoy. TranSquid: Transcoding and Caching Proxy for
Heterogenous E-Commerce Environments. InProc. 12th
IEEE International Workshop on Research Issues in Data
Engineering (RIDE’02), pages 50–59, San Jose, California,
February 2002.

[10] M. Mauve, S. Fischer, and J. Widmer. A Generic Proxy Sys-
tem for Networked Computer Games. InProc. 1st Workshop
on Network and System Support for Games (NetGames’02),
pages 25–28, Bruanschweig, Germany, 2002. ACM Press.

[11] P. Monsieurs, M. Wijnants, and W. Lamotte. Client-
controlled QoS Management in Networked Virtual Environ-
ments. InProc. 4th International Conference on Networking
(ICN’05), pages 268–276, Reunion Island, April 2005.

[12] C. D. Nguyen, F. Safaei, and P. Boustead. A Distrib-
uted Proxy System for Provisioning Immersive Audio Com-
munication to Massively Multi-Player Games. InProc.
3rd Workshop on Network and System Support for Games
(NetGames’04), page 166, Portland, Oregon, USA, Septem-
ber 2004. ACM Press.

[13] P. Quax, C. Flerackers, T. Jehaes, and W. Lamotte. Scal-
able Transmission of Avatar Video Streams in Virtual Envi-
ronments. InProc. IEEE International Conference on Mul-
timedia & Expo (ICME’04), Taipei, Taiwan, June 2004.

[14] P. Quax, T. Jehaes, P. Jorissen, and W. Lamotte. A Multi-
User Framework Supporting Video-Based Avatars. InProc.
2nd workshop on Network and System Support for Games
(NetGames’03), pages 137–147, Redwood City, California,
May 2003. ACM Press.

[15] B. Shen, S.-J. Lee, and S. Basu. Performance Evaluation of
Transcoding-enabled Streaming Media Caching System. In
Proc. 4th International Conference on Mobile Data Manage-
ment, pages 363–368, Melbourne, Australia, January 2003.

[16] B. Shen, S.-J. Lee, and S. Basu. Caching Strategies in
Transcoding-enabled Proxy Systems for Streaming Media
Distribution Networks. IEEE Transactions on Multime-
dia, Special Issue on Streaming Media, 6(2):375–386, April
2004.

[17] J. Smith, R. Mohan, and C.-S. Li. Content-Based Transcod-
ing of Images in the Internet. InProc. IEEE International
Conference on Image Processing (ICIP’98), volume 3, pages
7–11, Chicago, Illinois, 1998.

[18] The FFMPEG Homepage. World Wide Web,http://
www.ffmpeg.org .

[19] The Netfilter/IPTables Project Homepage. World Wide Web,
http://www.netfilter.org .

[20] A. Vetro, C. Christopoulos, and H. Sun. Video Transcoding
Architectures and Techniques: An Overview.IEEE Signal
Processing Magazine, 20(2):18–29, March 2003.

[21] M. Wijnants, P. Monsieurs, and W. Lamotte. Im-
proving the User Quality of Experience by Incorporat-
ing Intelligent Proxies in the Network. Technical Re-
port TR-LUC-EDM-0605, Expertise Centre for Digital Me-
dia (EDM), April 2005,http://research.edm.luc.
ac.be/ ∼mwijnants/pdf/wijnantsTRMSAN.pdf .

[22] X. Zhang, M. Bradshaw, Y. Guo, B. Wang, J. Kurose,
P. Shenoy, and D. Towsley. AMPS: A Flexible, Scalable
Proxy Testbed for Implementing Streaming Services. In
Proc. 14th International Workshop on Network and Oper-
ating System Support for Digital Audio and Video (NOSS-
DAV’04), pages 116–121, Kinsale, Ireland, June 2004. ACM
Press.


