
A Component-Based Infrastructure for
Pervasive User Interaction

Peter Rigole1, Chris Vandervelpen2, Kris Luyten2, Karin Coninx2, Yolande
Berbers1, and Yves Vandewoude1

1 K.U.Leuven, Department of Computer Science
Celestijnenlaan 200A

B-3001 Leuven, Belgium
{peter.rigole, yolande.berbers, yves.vandewoude}@cs.kuleuven.ac.be

2 Limburgs Universitair Centrum
Expertise Centre for Digital Media

Universitaire Campus
B-3590 Diepenbeek, Belgium

{chris.vandervelpen, kris.luyten, karin.coninx}@luc.ac.be
http://www.edm.luc.ac.be

Abstract. Since a growing number of different mobile computing de-
vices are used in pervasive and ubiquitous environments, the need to
adopt new approaches for designing and implementing pervasive inter-
active software with minor effort is emerging. In this paper we present a
process that facilitates the design of next-generation interactive software
for pervasive environments. We created a distributed runtime infrastruc-
ture that enables the distribution of software components on heteroge-
neous, networked and embedded hardware systems. Some of these com-
ponents or compositions of components will require interaction by human
users from a large range of different devices. To make the deployment
of consistent and functional User Interfaces in these pervasive environ-
ments easier, Interaction Components are introduced into the runtime
infrastructure which enable the presentation of component and service
behavior to human users.

1 Introduction

According to Mark Weiser a ubiquitous computing environment is an environ-
ment consisting of heterogeneous systems that interact with each other and
with human users in a transparent way [29]. The dynamic nature of this kind of
environments raises the need for more flexible methods to construct and design
interactive applications. We propose a Component-Based Software Development
(CBSD) [22] approach that supports dynamic human interfacing capabilities for
exposing component functionality towards the user.

One of the major problems for the design of interactive applications in perva-
sive computing environments is the diversity of the available interfacing hardware
and the constraints imposed by this hardware. These systems differ in interaction

possibilities such as screen size, availability of audio, keyboard or stylus input,
etc.. It is important to take these constraints into account when designing and
implementing components for this type of constrained devices.

Our solution proposes an indirect exposure of a component’s interfacing needs
through Interaction Components (ICs). This way, interfacing needs can be de-
scribed in an abstract way at the level of a component, and transformed into con-
crete interfacing widgets at runtime by the ICs. In addition, this approach also
tackles the problem of runtime user interface mobility between devices offering
heterogeneous interfacing capabilities. During a relocation of software compo-
nents from one host to another, the concrete user interface is regenerated using
the abstract interface representation and the limitations of the new host.

Dynamic mobility of application functionality between heterogeneous devices
is supported by the middleware layer that incorporates our component frame-
work. Our component architecture has been designed for use in environments
where flexible component mobility is often needed. It is therefore extremely
suited to be deployed in conjunction with Interaction Components.

The main goal of our approach is twofold and can be summarized as follows:

– Provide a component runtime infrastructure which enables the easy creation
of distributed, interactive applications for heterogeneous computing environ-
ments;

– Provide an easier way to manage consistent user interaction in heterogeneous
environments;

In section 2 we give an overview of related work in this research domain.
Section 3 introduces the middleware we created to support our main goals. We
continue by pointing out the process we use to provide pervasive user interaction
in section 4. Section 5 shows how the infrastructure gets the work done in real
life situations by discussing a case study we worked out to verify our approach.
We elaborate on problems we would like to tackle in the near future in section 6
and conclusions are given in section 7.

2 Related Work

Ponnekanti et al. ([17, 18]) describe a service framework for ubiquitous computing
called ICrafter. Its main goal is to provide flexible interaction with services that
are present in an interactive workspace. To enable this, ICrafter makes use of an
infrastructure centric Interface Manager (IM) from which user appliances in the
interactive workspace can request UIs for registered services or compositions of
services. Such a request results in the selection of a generator for that service(s).
This selected generator then sends UI markup needed for interacting with a
particular service back to the user appliance. This approach is different from
ours in which a HLUID (High Level User Interface Description) of the UI is
directly attached to the interactive components without the use of a central
Interface Manager.

Hodes et al. [10] describe the notion of universal interaction. This concept
allows a device (the universal interactor) to adapt its functionality to use newly
discovered services when the user moves to new environments. It embodies trans-
duction protocols: these protocols map functionality to a UI suitable for repre-
senting it and it takes into account the portable device that is used as “remote
control”.

The Jini [15] framework is a service architecture that provides service dis-
covery mechanisms in order for services to be able to locate each other. The Jini
API enables one to easily create and deploy new services and clients that can
use these services. The usual way of adding user interfaces to Jini services is by
adding attributes bearing UI-code that can be instantiated on other hosts. The
ServiceUI [21] project, however, has defined a standard approach for attaching
UIs to Jini services.

OSGi [2] is an open services platform similar to the Jini framework, although
OSGi wants to be more generic by offering bridging functionality between dif-
ferent kind of devices (such as Jini devices, UPnP devices, HAVi devices, etc.).
OSGi often uses the concept of a component, also called a bundle, which pro-
vides one or more services. These components can discover and query each other
for finding their required functionalities. They have no notion of connectors for
indirect communication like in other component based systems (such as Frac-
tal [4] and the Seescoa1 component system), but they directly address each
other’s interfaces and know exactly which other components they communicate
with. Unfortunately, as Jini, OSGi offers no specific support for a presentation
layer.

3 Supporting Middleware

From the ISTAG2 AmI requirements [9], we may conclude that ambient intelli-
gence middleware is bound to become flexible in nature for several reasons. First,
the applications it supports demand a robust platform that allows for dynamic
adaptability and extensibility. The shape of an AmI application is not static
but is more or less amoebic, meaning that it can adapt to the environment and
move around among interconnected systems. The advantages of reflective mid-
dleware [7] to enhance this advanced adaptive behavior are definitely required.
Second, the middleware must be available on a broad spectrum of hardware. Be
it ultra-small embedded devices or high-end embedded devices, the middleware
must always be present to support its applications.

The previous requirements lead to a micro kernel [20] structure as the basis
for AmI middleware. The core of the architecture is very small and only includes
the basic functionality to support the most primitive applications. Additional
features such as distribution, mobility, contracting and monitoring can be added
to the runtime system’s core. Such micro kernel structure permits to compose the

1 described further in this paper
2 The European Information Society Technologies Advisory Group

runtime environment according to the needs and the abilities of the underlying
hardware.

According to the ISTAG report, approaches for integrating both parts of the
AmI view need a fluent integration of user interfacing with distributed computing
systems. Natural interaction has to be grafted onto the domain layer, maintain-
ing properties such as heterogeneity, mobility and distribution. The symbiosis
between a flexible interaction infrastructure and a powerful middleware layer
leads to pervasive user interaction. In this section, we further elaborate on how
the Draco component framework supports the Seescoa component methodol-
ogy.

3.1 The Seescoa Methodology

The Seescoa methodology is a component-based software development method-
ology that aims at developing robust applications for high-end embedded sys-
tems. Concepts as component, port, contract and connector are the first-class
entities that are used for building applications. Components define the level of
granularity and are strictly delineated and reusable functional entities of which
the applications are composed, Ports define the interfaces towards a component
that can accept asynchronous messages from other ports, Connectors are used
for setting up a communication link between two ports and Contracts define
the specification of a component or a port on four levels: a syntactical level, a
semantical level, a synchronization level and a Quality of Service (QoS) level.
The synchronization level specifies the order in which messages are allowed to
be sent between ports and the QoS level defines several Quality aspects that
are related to the component or the port. Examples are message timing issues,
memory usage, bandwidth usage, etc.. Seescoa has three types of ports: Single
Port, Multiport and Multicast Port. Connected components are represented in
this paper as in figure 1. Further references to the Seescoa methodology can
be found in [24–26, 19, 28].

The Seescoa methodology is appropriate for deployment of distributed com-
ponents for two major reasons. First, event-driven operation by allowing only
asynchronous messages is efficient in distributed environments where communi-
cation delays are realistic. Remote synchronous communication means a thread
is waiting for a reply before continuing its task, which implies inefficient distrib-
uted cooperation. Second, the inherent granularity of a component composition
makes a component an ideal migration unit. Relocating mobile components when
required by environmental conditions is essential to provide the flexibility needed
by AmI.

3.2 The Draco Runtime Environment

Draco is a Java-based micro kernel runtime environment for pervasive com-
puting applications that has been developed as a proof of concept and testbed
environment. The core of the Draco system only supports the basics of the
Seescoa component-based software architecture. All additional functionality

(a) Single Port (b) Multi Port (c) Multicast Port

Fig. 1. Seescoa Ports

must be added through extension modules that can be hooked onto the Draco
core. Figure 2 represents the high-level design of the Draco system. The left
part represents the core, the right part the optional modules and the circles at
the left the shell(s) that give external access to the system.

Fig. 2. High-level design of the Draco runtime system

Each of the core modules implement a strict interface, which allows them
to cooperate in a predefined manner. At startup, the core is dynamically con-
structed based on an XML configuration file describing which implementation
to use for each of the core modules. The ability to customize the core modules
makes Draco an appropriate platform for various kinds of research (e.g. exper-
iments with new scheduling algorithms by replacing the default scheduler). The
core system, however, can not be dynamically reconfigured once instantiated.
The Draco core modules are:

Component Manager This module is responsible for instantiating compo-
nents and their ports. It keeps track of them and allows looking them up.

Connector Manager This manager is responsible for creating and maintain-
ing connectors between component ports. Each connector has associated

message handlers for guiding the message delivery. Handlers can be added
by other modules to monitor or to alter the message flow.

Scheduler The scheduler is responsible for scheduling the messages for delivery.
It ensures that the order of the messages is preserved for each port. It is also
the task of the scheduler to make sure that no more than one execution
thread accesses a component at any point in time.

Message Manager The message manager guides the messages sent by a spe-
cific port towards the connector that is associated with that port.

Module Manager This core module allows to add extension modules to the
core system dynamically at execution time. These extension modules add any
kind of functionality to the core. This property makes the system extremely
flexible. Modules can access all core modules directly and can subscribe to
each core module for numerous events, which allows them to interfere with
the normal functional flow inside the core system.

The applications supported by this middleware are composed of intercon-
nected components that send asynchronous messages to each other via their
ports. When a message is sent, it first travels through a chain of send mes-
sage handlers which, in the end, deliver the message at the scheduler where it
is queued for execution. As soon as the scheduler is ready to process the mes-
sage, it assigns one of its threads to forward the message through a chain of
receive message handlers that deliver the message to the receiving port. After
this, the message is processed by the component’s implementation that matches
the message type. Finally the thread is released to the scheduler again.

The optional modules can subscribe to numerous events at each of the core
modules, e.g. when the scheduler starts to process a new message, when the
connector manager establishes or removes a connector, when the component
manager loads a new component, etc.. They can also add their own send and
receive message handlers to connectors for interacting or monitoring the message
flow between ports. In many ways optional modules can hook up to the system.
This is essential for flexible functional and non-functional extensions.

Draco components are created in .component files using a slightly altered
Java syntax that are first compiled to normal Java source files. Secondly, the
component’s Java source files are compiled to Java class files and bundled into a
jar file. The ccom tool [26] can help us to develop components and to compose
applications by connecting component instances. It was a prerequisite of the
Seescoa methodology that components are simple entities that are suitable for
creating applications that fit on embedded platforms. Realized test applications,
such as the camera surveillance case (see section 5), prove the feasibility of the
Seescoa approach.

3.3 The Draco Distribution Module

Supporting distributed systems has always been one of the most important goals
for designing middleware [3]. Although the Draco core system on its own does

not support distributed applications, an extra module can be loaded to enable
this important additional functionality.

The Distribution extension module (DM) adds distribution functionality to
the core platform in a complete transparent way. Therefore it introduces the
notion of proxy components, similar to the proxy pattern defined in [8]. These
proxy components are very light-weight components that represent remote com-
ponents. They offer the same ports and exactly the same semantic information.
From a black-box point of view, a component and its proxy are exactly the same.
However, the proxy is able to forward the messages it receives to the distribution
module.

Figure 3 illustrates how the journey of a message between remote components
looks like by using proxy components. When Foo sends a message to Bar proxy,
the message is automatically forwarded by the distribution module on Host X
to the distribution module on Host Y. This distribution module then orders the
Foo proxy component to resend this message through the same port as it was
originally sent, which finally delivers the message at component Bar. One of the
consequences is that the message has been scheduled twice, once on both hosts.

The distribution module has several responsibilities. Firstly, it is responsi-
ble for setting up and tearing down connections between remote Draco sys-
tems. In the design of the DM, a connection is an abstract concept that can be
implemented by any kind of physical wired or wireless connection. Only some
predefined interfaces have to be implemented to create a new connection type.
Secondly, the distribution module is responsible for managing proxy components
and generating them based on real components. No stubs or other design-time
entities are required for making components communicate in a distributed way,
which incorporates a considerable advantage over traditional approaches that
need additional constructs (e.g. the stubs and skeletons used by Java RMI3).
Furthermore, the DM is responsible for handling the connector setup whenever
a local connector is created between the ports of any component and a proxy
component.

Fig. 3. Proxy Components

3 Remote Method Invocation

From an external point of view, distributed communication in Draco is
handled as follows. The distribution module is accessed through a Draco shell
for setting up a new connection. Once the connection type and the connection
parameters have been provided, the distribution module automatically loads the
connection manager associated with the given connection type and initializes it.
As soon as a connection is set up, the DM can be accessed through the shell
to query the remote system for certain components and proxy components can
be requested. Once a proxy component is available, a regular connector can be
established between the port of the proxy component and a port of any other
component.

When such connector is created, the distribution module, which is hooked up
to the core system, gets notified and commands the remote distribution module
to create a proxy component reflecting the local component whose port was con-
nected with one of the proxy component’s ports. This means that if in figure 3
only Foo, Bar proxy4 and Bar were available, Foo proxy automatically gets cre-
ated when a connector is established between Foo’s port and Bar proxy’s port.
The connector between Foo proxy and Bar is then also automatically created.

An advantage of this approach is that it is also possible to request proxy
components from existing proxy components, which allows for routing messages
between components over several hosts transparently.

4 Providing Pervasive User Interaction

The characteristics of a pervasive computing environment also imply great chal-
lenges for providing the user with a consistent and transparent interaction mech-
anism for accessing the functionalities of particular services and compositions of
services. These challenges originate from the immense diversity of possible user
appliances and the distribution of components in the environment. Every de-
vice has its own characteristics: small/large/no screen, stylus/mouse/keyboard-
/touch/speech interaction, etc.. It is clear that classical UI design techniques are
not sufficient in such a heterogeneous and dynamic environment.

The main problem of these approaches is that the UI is hard-coded for each
particular device. For this reason, porting an existing UI to a different device
implies the redesign and the re-implementation of the complete UI to match
the new device constraints. Because the UIs are hard-coded they also do not
offer support for adaptability and migration. Adaptability is the property of
a UI to adapt to changes in the environment while UI migration enables the
transportation of UIs from one device to the other.

The aforementioned problems imply that a more general solution for user in-
teraction handling is necessary. To enable this we introduce the use of Interaction
Components (ICs). An IC is a user interface rendering component that serves as
a router between users and components. ICs are typically located on one of the
user’s personal mobile devices where they provide a doorway for human users to
the services of components that are available in the user’s computing space.
4 Bar proxy could have been requested and initialized earlier by the user.

The Interaction Component ensures that the user interfaces of all components
the user is interacting with are shown on the personal device. This interface is
generated based on the high-level user interface descriptions (HLUID) provided
by these components. In the following sections we elaborate on our choice for
using high-level UI descriptions, the structure of the HLUID and the process of
generating effective UIs from the HLUID used by the ICs.

4.1 High-Level User Interface Descriptions

Based on the argumentation provided in [12] we use the eXtensible Markup
Language (XML) [5] to describe UIs on a sufficiently high level. Many other
initiatives confirm that using XML for describing UIs is a feasible choice [1, 6, 16].
Furthermore, when talking about the design of abstract models for describing
UIs, important related work can be found from Thevenin and Coutaz [23] in
which they introduce the plasticity property of UIs.

In our approach we attach XML-based HLUIDs to interactive Draco com-
ponents running in the runtime. These descriptions provide information about
the hierarchical structure of the interface, without relying on a particular kind
of device. More specific, the UI is described in terms of Abstract Interaction
Objects (AIOs) [27]. These AIOs are device and system independent and will be
mapped on device and system dependent Concrete Interaction Object (CIOs)
during a UI rendering process. The used mapping depends on the device on
which the UI is instantiated (rendered). For example, a range is a type of AIO
that can be mapped on a Scrollbar when using Java AWT, a JSlider when using
Java Swing or a Gauge when using a Java MIDP enabled device. An extension
of this approach toward multi-modal UIs is that AIOs can have a correspond-
ing representation in speech. At this moment we have implemented support for
Text-To-Speech where a text representation of a AIO is spoken as a response to
an action of the user.

Although mapping AIOs to CIOs related to a particular device is not a
straightforward process, this approach proves to be suitable [14]. It allows the
interface to be transformed into a concrete interface taking advantage of the
available input/output facilities of the device.

Figure 4 shows how one HLUID can be rendered for different devices. This
happens without any manual intervention: the abstract interface is transformed
automatically to a concrete interface which is suitable for the target device.
This example describes a power manager one can use to configure the power
settings of the device. When a laptop computer is available, the user sees all the
possible settings on one screen (a). The concrete interface can change according
to new constraints, e.g.: the small screen of the mobile phone implies that only
a part of the available controls can be showed to the user (b+c). An abstract
UI consists of one root group containing subgroups, which on their turn can
contain other subgroups themselves (figure 5,[14]). At the leaves of this tree
we find the particular AIOs that construct the UI. Some of these AIOs can
trigger a particular operation upon the system when they are manipulated by
the user. This characteristic is reflected by the presence of action elements in

(a) Swing on laptop (b) Mobile Phone 1 (c) Mobile Phone 2

Fig. 4. One description, many concrete User Interfaces

the HLUID (figure 5). For this work we extended the action element with the
component port through which the message should be sent. In case the apply-
button is pressed, a message applyPowerConfig is sent through the Event port
of the IC that is responsible for this concrete UI. This means the IC that has
rendered a UI will handle events triggered by the UI and distribute these to
the application components it is working for. The parameters passed with the
message are extracted from the cpuspeed, screen, turnoffscreen, batterycritical
and whatcritical widgets that are defined in the HLUID (not shown in the figure).

4.2 Operation of the Interaction Component

As mentioned in the previous sections we use ICs which are a special type of
Draco components. An IC typically resides on a user appliance and is part of
a running Draco component system. The IC on the user appliance provides a
presentation of the behavior of selected components to the user. Eventually the
presentation will be adapted to the constraints of the particular type of device.

In our approach we defined two sorts of ICs. The first type is a general im-
plementation that supports the generation of UIs using Java AWT, Java Swing,
Java MIDP or HTML. The second one can be implemented for a particular de-
vice. This means every manufacturer of a device can implement a Draco IC for
that device which will generate the UI in the device dependent widget set.

In section 4.1, we showed that each loaded interactive component can be
annotated with a HLUID. When a user wants to interact with a particular

<?xml version="1.0" encoding="utf-8"?>

<ui>

<title>Power Manager</title>

.....

<group name="submit">

<interactor>

<button name="applybutton">

<info>Apply</info>

<action>

<func>applyPowerConfig</func>

<param>cpuspeed</param>

<param>screen</param>

........

<port>Event</port>

</action>

</button>

</interactor>

</group>

</group>

</ui>

Fig. 5. A piece of the abstract UI description for the interface in figure 4

component or composition of components, the IC on his device sends a Get-
UiDescription message to the destination. This message is sent through the
UiDescription port (figure 7). The receiving component responds to this request
by sending the HLUID to the IC which interprets the HLUID and renders an
appropriate UI on the user appliance. Because we use XML for the HLUIDs
they are easy exchangeable. Another advantage is that HLUIDs from different
components can be composed very easy by the IC by attaching one XML tree to
the other. The resulting HLUID is then rendered. Figure 6 shows the interface
resulting from a merge process between the HLUID of a camera component and
the HLUID of the motiondetector.

4.3 Adaptability to Device Constraints

Draco supports the deployment of new services at runtime; this results in dy-
namic systems where services appear and disappear while the system is running.
Because of the dynamic nature of pervasive systems there is no certainty of
the target devices that are used to interact with the service at design-time. We
use the following mechanism to cope with rendering the UI for a heterogeneous
environment: an IC can be deployed on a per-device basis. This means the IC
knows the constraints of the device it has to use to render the HLUID it receives
from other components. Besides custom mappings from AIOs to CIOs based
on the available widget set on the device, an IC also has an automatic layout

Fig. 6. Camera component UI (left) and motion detection component UI (right)
merged into one interface.

manager to render the interface adapted to the screen constraints of the device.
A simple constraint-based layout management algorithm is used for calculating
an appropriate UI structure from a set of spatial-constraints [13]. Unlike most
other layout managers, the one used in the ICs can automatically decide to split
the UI into different coherent parts and present this to the user as a stack of
cards that can be browsed (the different parts are put on top of each other).
Figure 4 shows how all controls are shown when there is enough screen space,
and only a part of the controls is shown when the screen space is limited. The
other controls are also available through navigation.

It is also possible to distribute the UI over a set of devices. When a service or
a group of services can be visualized on a set of different cooperating devices, no
change is necessary in the infrastructure described in the previous sections. Each
of the devices has its own IC, taking a part of the XML-document for rendering.
Splitting up the complete XML-document into appropriate“sub”-documents is
supported by the layout management algorithm. The biggest disadvantage of this
kind of adaptability is the unpredictable usability of the concrete UI that will be
rendered. For now, there is no support for the designer to enforce guidelines for
ensuring that the UIs that will interact directly with the human user are usable.

5 Case Study

We evaluated the Draco platform and the Seescoa design methodology in
a test case in which we have built a camera surveillance system. This camera
surveillance system can be used for security related purposes such as physical
intrusion detection and registration of activity in home and office buildings.
An embedded device5 connected to a digital camera6 serves as our observation
station. It is interconnected through a TCP/IP network to a desktop PC which
5 We used a PC/104 system, see http://www.controlled.com/pc104/
6 A DFW-VL500 firewire camera

Fig. 7. Overview of the Camera Surveillance Case

is deployed as storage and control station. The embedded device has a processor
working at 233 Mhz, 32 MB memory, a 16 MB flash disk holding the operating
system, a Java virtual machine, our component system and the test case code.

Figure 7 gives an overview of the component compositions in the surveillance
case. Each box indicates that the components are deployed on different devices.
The central Camera component continuously grabs images from the camera at
a predefined rate and multicasts them towards the Motion Detector and the
Switch component. The motion detector analyzes the images and produces an
alarm-start output message when motion is detected. The switch, receiving the
message from the motion detector, forwards the video stream towards its output
port until the alarm-stop message is received, meaning that the motion has
ceased. The suspicious images are sent to the Storage Controller component,
which is located on another host (the logging server). Proxy components are
introduced for handling the remote communication transparently. The Storage
component, which encapsulates database access, finally stores the images.

In addition to the core application, two graphical user interfaces are rendered
onto the devices: the UI for the motion detector on the embedded device on a
small LCD display and the one for the camera remotely on the logging server.
Again, two proxy components were introduced for supporting the remote inter-
action between the Camera Interaction Component and the Camera component.
An alternative user interface could have been generated as depicted in figure 6.
In this figure, both the user interface of the camera and the motion detector

are combined and merged into one single interface. This is realized by simply
connecting only one Interaction Component to both the Motion Detector and
the Camera component.

6 Future Work

In the near future we would like to extend our approach to satisfy even more
needs for the design of interactive systems that are deployable in AmI envi-
ronments. This work will be embodied by the CoDAMoS project. CoDAMoS
stands for Context-Driven Adaptation for Mobile Services. This project will
elaborate on context-aware services and UIs, Quality of Service (QoS) aware-
ness, service management techniques and code mobility. The definition of context
awareness we will use covers several aspects such as user preferences, location
awareness (the physical location) and device resources. Each of these aspects
need advanced discovery, monitoring and querying techniques to realize them,
but the advantage is a computing environment with powerful support for ser-
vice cooperation and context-aware, adaptable and multi-modal UIs. A context
aware infrastructure also enables QoS awareness both on device level (through
device resources such as memory, bandwidth and CPU power) as on inter-service
level (cooperation quality such as reliability, timing and correctness). Therefore,
the Draco runtime environment will be thoroughly extended with application
adaptation engines that can relocate, compose and decompose applications ac-
cordingly to the user’s needs and the available resources. Furthermore, service
management is needed to handle service deployment that controls on which de-
vice services are deployed based on QoS information.

7 Conclusions

In this paper we presented a component runtime infrastructure for pervasive
environments, Draco, that enables the easy creation of distributed, interactive
applications while providing a mechanism for consistent user interaction in perva-
sive environments. The Draco middleware supports the Seescoa component-
oriented design methodology. This means that a clear distinction is made be-
tween the concepts components, ports, connectors and contracts.

The ccom tool provides the means for designers to help them in building
distributed applications for Draco while the approach taken for managing user
interaction enables the construction of device and platform independent UIs.
This results in an integrated environment for building and deploying pervasive
systems.

The case was developed as a proof-of-concept for the methodology and tools
developed and introduced in this paper. Several software component developers
cooperated to create a camera surveillance system; while there was no devel-
oper with any prior experience in UI design, annotating their components with
abstract UI descriptions did not raise any problems. This proves the practical

relevance of our approach for attaching high-level user interface descriptions to
components.

8 Acknowledgments

Part of the research at EDM is funded by EFRO (European Fund for Regional
Development), the Flemish Government and the Flemish Interdisciplinary in-
stitute for Broadband technology (IBBT). The Seescoa (Software Engineering
for Embedded Systems using a Component-Oriented Approach) project IWT
980374 and CoDAMoS (Context-Driven Adaptation of Mobile Services) project
IWT 030320 are directly funded by the IWT (Flemish subsidy organization).

References

1. Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.
Williams, and Jonathan E. Shuster. UIML: An Appliance-Independent XML
User Interface Language. World Wide Web, http://www8.org/w8-papers/

5b-hypertext-media/uiml/uiml.html, 1998.
2. The OSGI Alliance. Osgi. Internet. http://www.osgi.org.
3. David E. Bakken. Encyclopedia of distributed computing. Kluwer Academic Press,

2001.
4. ObjectWeb Consortium. Fractal component model. http://fractal.objectweb.

org/.
5. World Wide Web consortium. Extensible Markup Language (XML). World Wide

Web, http://www.w3.org/XML/, 2001.
6. Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying Model-Based

Techniques to the Development of UIs for Mobile Computers. In IUI 2001 Inter-
national Conference on Intelligent User Interfaces, pages 69–76, 2001.

7. Gordon S. Blair et al. The design of a resource-aware reflective middleware archi-
tecture. LNCS in Meta-Level Architectures and Reflection (Reflection’99), pages
115–134, 1999.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, Massachusetts,
1994.

9. IST Advisory Group. Ambient intelligence: from vision to reality. ISTAG Reports.
http://www.cordis.lu/ist/istag-reports.htm.

10. T.D. Hodes, R.H. Karz, E. Servan-Schreiber, and L.A. Rowe. Composable Ad-hoc
Mobile Services for Universal Interaction. Proceedings of The Third ACM/IEEE
International Conference on Mobile Computing (MobiCom ’97), pages 1–12, 1997.

11. Chris Johnson, editor. Interactive Systems: Design, Specification, and Verification,
8th International Workshop, DSV-IS 2001, Glasgow, Scotland, UK, June 13-15,
2001, Revised Papers, volume 2220 of Lecture Notes in Computer Science. Springer,
2001.

12. Kris Luyten and Karin Coninx. An XML-based runtime user interface description
language for mobile computing devices. In Johnson [11], pages 17–29.

13. Kris Luyten, Bert Creemers, and Karin Coninx. Multi-device Layout Management
for Mobile Computing Devices. Technical Report TR-LUC-EDM-0301, Limburgs
Universitair Centrum – Expertise Centre for Digital Media, September 2003. Avail-
able at http://www.edm.luc.ac.be/english/research/publications/139.html.

14. Kris Luyten, Chris Vandervelpen, and Karin Coninx. Migratable User Interface
Descriptions in Component-Based Development. In Peter Forbrig, Quentin Lim-
bourg, Bodo Urban, and Jean Vanderdonckt, editors, Interactive Systems: Design,
Specification, and Verification, volume 2221 of Lecture Notes in Computer Science,
pages 62–76. Springer, 2002.

15. Sun Microsystems. Jini network technology. http://wwws.sun.com/software/

jini/.
16. Andreas Mülller, Peter Forbrig, and Clemens Cap. Model-Based User Interface

Design Using Markup Concepts. In Johnson [11], pages 30–39.
17. Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry Wino-

grad. ICrafter: A service framework for ubiquitous computing environments. Lec-
ture Notes in Computer Science, 2201:56–??, 2001.

18. Shankar R. Ponnekanti, Luis Alberto Robles, and Armando Fox. User Interfaces
for Network Services: What, from Where, and How. Fourth IEEE Workshop on
Mobile Computing Systems and Applications , pages 138–??, 2002.

19. Peter Rigole, Yolande Berbers, and Tom Holvoet. Bluetooth enabled interaction
in a distributed camera surveillance system. In To appear in proceedings of The
Wireless Personal Area Networks Minitrack at HICSS 2004, Big Island, Hawaii,
January 2004.

20. Abraham Silberschatz and Peter B. Galvin. Operating System Concepts. Addison-
Wesley, fifth edition edition, 1998.

21. Artima Software. The serviceui project. http://www.artima.com/jini/

serviceui/.
22. Clemens Szyperski. Component Software - Beyond Object-Oriented Programming.

Addison-Wesley / ACM Press, 1998. ISBN 0-201-17888-5.
23. David Thevenin and Joëlle Coutaz. Adaptation and Plasticity of User Interfaces. In

Workshop on Adaptive Design of Interactive Multimedia Presentations for Mobile
Users, 1999.

24. David Urting, Stefan Van Baelen, and Yolande Berbers. Embedded software using
components and contracts. In Proceedings of ECOOP 2001, SIVOES workshop,
Budapest, Hungary, June 2001.

25. David Urting, Stefan Van Baelen, Tom Holvoet, and Yolande Berbers. Embedded
software development: Components and contracts. In Proceedings of the IASTED
International Conference Parallel and Distributed Computing and Systems, pages
685–690. ACTA Press, 2001.

26. David Urting, Yolande Berbers, Stefan Van Baelen, Tom Holvoet, Yves Vande-
woude, and Peter Rigole. A tool for component based design of embedded software.
In Proceedings of TOOLS Pacific 2002, Sydney, Australia, February 2002.

27. J. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent automatic
interaction objects selection. In ACM Conference on Human Aspects in Computing
Systems InterCHI’93, pages 424–429. Addison Wesley, 1993.

28. Yves Vandewoude, David Urting, and Yolande Berbers. Supporting evolution in
seescoa. In Workshop on Transdiscipliary Software Engineering at Seventh World
Conference on Integrated Design & Process Technology, 2003.

29. Mark Weiser. The Computer for the 21st Century. In Scientific American, 1991.

