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Abstract. There is a growing demand for design support to create in-
teractive systems that are deployed in ambient intelligent environments.
Unlike traditional interactive systems, the wide diversity of situations
these type of user interfaces need to work in require tool-support that is
close to the environment of the end-user on the one hand and provide
a smooth integration with the application logic on the other hand. This
paper shows how the Model-Based User Interface Development method-
ology can be applied for ambient intelligent environments; we propose
a task-centered approach towards the design of interactive systems by
means of appropriate visualizations and simulations of different models.
Besides the use of typical user interface models, such as the task- and
presentation-model, we focus on user interfaces supporting situated task
distributions and a visualization of context influences on deployed user
interfaces. To enable this we introduce an environment model describ-
ing the device configuration at particular moment in time. To support
the user interface designer while creating these complex interfaces for
ambient intelligent environments, we discuss tool support using a visual-
ization of the environment together with simulations of the user interface
configurations. We also show how the concepts presented in the paper
can be integrated within Model-Driven Engineering, hereby narrowing
the gap between HCI design and software engineering.

1 Introduction

Modern middleware solutions allow mobile and embedded software components
to communicate with each other while residing on heterogeneous platforms. Mod-
ern middleware also offers automatic discovery mechanisms to locate necessary
software and hardware available in an ubiquitous environment. While this can be
considered as a step toward the ubiquitous computing vision Mark Weiser pre-
dicted [27], there still exists a large gap between the actual tasks a user should
be able to perform and the user interfaces exposed by ubiquitous systems to
support those tasks. This gap is caused mainly by two missing pieces: the lack
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of a task-centered user interface design approach on the one hand and the lack
of support for distributable user interfaces in ambient intelligent environments
on the other hand. In this paper we present our ongoing work on model-based
user interface development techniques to enable the design and deployment of
effective distributable user interfaces for heterogeneous environments.

Distributable user interfaces enable the user to exploit more and new possi-
bilities of an ambient computing environment by allocating tasks to interaction
resources that best support those tasks. We define an interaction resource as
an atomic I/O channel. In this context, atomic means the I/O channel is “one
way” and limited to a single modality. Examples of interaction resources are key-
boards, mice, all sorts of screens, speech synthesizers, force feedback devices,. . . .
Usually, an interaction resources is advertised in an environment through the
computing device it is attached to. This computing device is called an interac-
tion cluster and manages input from or output to interaction resources attached
to it. The aforementioned definitions imply also a multi-modal user interface is
composed of different interaction resources, not necessarily located on the same
interaction cluster.

During the last couple of years many research papers have been published
discussing requirements, frameworks and models for distributed user interfaces
(e.g. [23, 1, 25, 11]), but there is still a lack of tools to allow designers to create
such interfaces. The design of a user interface that can be distributed over several
interaction resources in an ubiquitous computing environment is a tedious task
and has not yet been addressed extensively. Distributed interfaces are typical for
supporting interaction in ambient intelligent environments.

In this paper we present our ongoing work on a task-centered methodology
for the design and the deployment of distributable user interfaces: MoDIE (Mo-
bile Distributable Interface Engineering). In addition, the integration of MoDIE
with UML 2.0 based models is proposed. As such our approach provides the
opportunities of UML-based modeling methodologies and tools whilst bridging
the gap between traditional software engineering models and models from model-
based user interface development. Such an integration can be a first step towards
integration of model-based design within model driven engineering approaches.
This work is part of the CoDAMoS project, a joint project with three other
Flemish universities and several industrial partners aimed at solving a set of key
challenges in the area of Ambient Intelligence (AmI), where personal devices will
form an extension of each user’s environment, running mobile services adapted
to the user and his context.

The approach we present in this paper is based on the Model-Based User
Interface Development (MBUID) methodology. MBUID is already in use to de-
velop multi-device user interfaces [7, 3, 16], and we show it can be extended for
ambient intelligent environments. In MBUID, different abstract models highlight
different aspects of the user interface independent of details of the target devices.
Concrete models will “fill in” more specific details towards the presentation of
the interface. Even for the domain of multi-device interface design there is still
work to be done to visualize the different models and the influence of model
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manipulations on the final user interface. A task-centered approach offers a way
to validate whether the user interface supports the goals of the user. This paper
considers three concepts that are important for a task-centered approach. The
first is situated task allocations: the execution of a task is dependent on different
parameters that are not part of the software itself, such as the location of the
user. The second concept is the distribution of interface presentations among
the available interaction devices (see section 6). The third concept is the visual-
ization of context influences to inform the designer of possible influences of the
environment on the proposed design.

Several concepts are relevant for the design of usable distributed user in-
terfaces. In the remainder of this paper, we focus on two concepts that are
supported by this approach: interface completeness and continuity. The former
can be obtained by ensuring all tasks are represented in the user’s environment
at the required time, the latter is obtained by defining a set of transition rules to
progress from one task to another. The remainder of this paper is structured as
follows: section 2 gives an overview of the related work that defines the under-
lying concepts for the topic of this paper. Next, section 3 discusses the different
aspects that need to be taken into account to support a task-centered approach
to design user interfaces for ambient intelligent environments. Section 4 explains
how context can have a big influence on the task execution and what needs to
be done to anticipate this while modelling. Section 5 presents the design tool
we are developing to support the design process, followed by a discussion of the
opportunities that are available when integrating UML-based modeling. Finally,
section 7 gives a conclusion.

2 Related Work

There is a growing interest in the design of interactive systems that can be de-
ployed for ambient intelligent environments. Most research work in this area is
focused on a particular subtopic. Georgantas and Issarny show a functional ap-
proach towards modelling a situation sensitive user interface in [8]. Just as in
the ICrafter [21] a service framework for user interface services is created. Most
of this work reflects the need for some kind of unified framework to design and
develop the interactive part of a computing system that is deployed in an am-
bient intelligent environment. The service-oriented approach presented in these
papers provide a uniform and location-independent access to the functionality
of the system. Dynamic composition or on-the-fly aggregations of user interface
components are central to these approaches. However, there is no design support
to constrain the dynamic behavior of these systems so the resulting user interface
is usable and still supports the envisioned tasks depending on the situation.

Heider and Kirste propose a goal-driven approach to decide which interac-
tion resources to use in [10]. In their approach a planning algorithm is used for
developing strategies to reach the predefined goals. An execution control com-
ponent can execute a strategy and manages the resources that are necessary for
the selected strategy. This approach is useful to cope with the enormous com-
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plexity of designing a user interface that should work in an ambient intelligent
environment. A task-centered approach could benefit by using a planning algo-
rithm to calculate an optimal strategy for executing the required tasks with the
interaction resources that are available.

Distribution of a user interface among different interaction resources or mul-
tiple surfaces is also gaining importance: unlike traditional desktop computing,
a user interface in an ambient intelligent environment is no longer limited to one
device that is the center of interaction. In [5] an ontology for multisurface inter-
action is proposed by Coutaz et al. This ontology offers an unifying framework
for reasoning about distributed user interfaces. Because of the complexity of the
covered types of problems, these kind of ontologies can only be shown to full
advantage when it is used in a HCI design tool.

Balme et al. presented the CAMELEON-RT Software Architecture Reference
Model for Distributed, Migratable, and Plastic User Interfaces [1]. Some type
of middleware is provided (the Distribution-Migration-Plasticity middleware)
to allow smooth integration of user interfaces that reside on different physical
locations. In [26] we show the feasibility of automatically distributing a highly
interactive website over several interaction resources.

Two requirements should be fulfilled to result in a usable distributable user
interface: completeness and continuity. Completeness of a user interface means
that all interaction tasks necessary to reach a goal at a particular moment are
made accessible to the user regardless of the devices available in the environment
(including the user’s personal devices). This is achieved by using a task-centered
approach. On the other hand, user interface continuity ensures the user can
interpret and evaluate the internal state of the system while using different in-
put/output devices [6]. Even when the distribution of the interface parts among
the different interaction resources changes at run time, this property must hold.
Providing support for the preservation of continuous interaction will pose a dif-
ficult challenge for a design methodology (and tool) that uses tasks, activities
and temporal relations [19, 15].

3 Properties of Ambient Task Modelling

3.1 Task Notation and Dialog Derivation

We use Paternò’s ConcurTaskTrees (CTT) notation [20, 17]; a notation for task
modeling that provides temporal operators between tasks. This notation allows
to extract task sets where each task set contains tasks that should be “active”
during the same period of time in order to reach a (sub)goal. This concept is
called Enabled Task Sets (ETSs) [20]. For a given task model M several of such
enabled task sets can be identified: each set contains tasks that execute within
the time frame defined by the set and do not overlap with other tasks from other
sets. We can describe this process by the function f : M → TS1, TS2, · · · , TSn

that maps a task model M on the enabled task sets TSi,1≤i≤n. Several design
tools exist that provide this ETS extraction functionality by means of the Con-
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curTaskTrees notation and their use is described in existing literature [17, 16,
13, 24].

Each task set TSi,1≤i≤n contains a subset of tasks t1, t2, · · · , tm from the
task model M . A task set requires a distribution configuration for the tasks it
contains: the representation of a task set is distributed among different devices
that are available in the environment. Notice a user interface distribution is
defined in section 1 and specifies the combination of tasks in a dialog with the
available interaction devices. Because of the temporal relations between different
tasks, together with the fact there are no two ETSs that can overlap in time, a
sequence of ETSs can be identified that the user(s) should execute to reach the
goals at hand. Figure 1 depicts an example of such a sequence of enabled task
sets (labeled with TS1, TS2,. . . ).

3.2 Task-set Distributions

The first property we consider in our approach is completeness. User interface
completeness indicates that all interaction tasks needed to reach a goal at a
particular moment are made accessible to the user regardless of the interac-
tion resources available in the environment (including the interaction resources
exposed by the user’s personal devices). The use of ETSs to guide the design
process ensures this property: all tasks of the active ETS need to be allocated to
interaction resources that can handle these tasks. From a given task model the
number of ETSs that can be found is exactly the minimal number of logically
different interfaces (or “presentation units” according to [7]) the designer should
provide to allow the user to access the complete functionality of a system. Figure
1 shows how tasks in an active ETS are distributed over interaction resources in
the environment. Notice ETSs can be ordered in time because of the definition
given above (this ordering is also referred to as the dialog model).

The second property we consider is continuity. User interface continuity
ensures the user can interpret and evaluate the internal state of the system
while using different interaction resources. When the distribution of the inter-
face parts changes at run time, this property must hold. Providing support for
the preservation of continuous interaction will pose a difficult challenge for a
design methodology (and tool) that uses tasks, activities and temporal relations
[19]. In our approach continuity is supported by constraining the possible task-
distribution strategies. For example; a possible constraint to support continuity
is the fixed task constraint which is formalized as follows: if ETSi is enabled
and ∃t ∈ M : t ∈ ETSi ∧ t ∈ ETSj then t will not be re-distributed when a
transition from ETSi to ETSj is executed. In other words: a task that reoccurs
in different ETSs can be restricted to the same device when the transition to
the following ETS is made. In figure 1, task 3 is an example of the application
of such a fixed task constraint for the transition from ETS5 to ETS3.

We can add more specific constraints depending on the properties of the
devices. For t ∈ M , t can be constrained to a set of devices Dc that is a subset
of all available devices D, and ∀d ∈ Dc, πc(d) = 1. πc(d) is a projection of
the property c over the element d; c represents a property of a device d. E.g.:
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Fig. 1. Different Enabled Task Sets on a timeline with their distribution

when distributed, certain tasks can be constrained to devices that have some
kind of network communication available. In this example the property value is
0 if there is no network communication available and 1 otherwise. Of course, a
distribution can also be constrained according to a value of a property such as
the quality of network communication that is available. This can be expressed
as b1 ≤ πb(d) ≤ b2, where b is the attribute of d representing the bandwidth
available at element d, b1 is the lower boundary of the required bandwidth and
b2 the upper boundary.

The properties such as the bandwidth should be made explicit in the design
tool. This allows the designer to use these properties while modelling the interac-
tive system. Section 5 shows how the device model and constraints are combined
in an environment model and used in a tool to support task-modelling for am-
bient intelligent environments. The environment model can also be represented
as a UML deployment diagram that encodes the available interaction resources,
relations between interaction resources and properties of both resources and rela-
tions. Section 6 shows the relation of the environment model and the deployment
diagram.

3.3 Task Migration Paths

The previous section discussed the distribution of tasks of each individual ETS
taking into account continuity and completeness of the user interface. Once an
appropriate set of task-set distributions is found for each ETS, the designer
should be able to constrain the transitions from one ETS to another. A lack of
continuity because of a context switch (other devices that come into play, tasks
that appear and dissapear,. . . ) can have a disastrous effect on task performance.

In traditional MBUID this is represented by a dialog model and the tran-
sitions between different dialogs. These transitions could be invoked by simple
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interactions such as a window manipulation [24]. In an ambient intelligent envi-
ronment things are more complicated however: the physical location of the user
interface parts differs from one dialog to another in contrast with a single-device
system where a dialog is always represented on the same device. The design of
such a system should make sure the cognitive burden of making a transition is
minimized while supporting the tasks and goals of the user. Denis and Karsenty
describe a set of design principles to ensure inter-usability in a multi-device en-
vironment [6]: inter-device consistency, transparency and adaptability of device
usage. In this paper we focus on the first principle to support task set transition
continuity. Inter-device consistency is composed out of four levels: perceptual
(appearance and structure), lexical (labeling), syntactical (operations) and se-
mantic (service functionality) consistency. The former two levels, perceptual and
lexical consistency, are provided by the presentation model that is used. The lat-
ter two levels, syntactical and semantic consistency, can be enforced by defining
a set of constraints in the environment model as shown in the previous section.
The support of these types of consistency levels inside the different models con-
tributes to a better continuity while making the transition from one ETS to
another.

3.4 Task Representations

Each interaction task from the task specification should be presented in the
environment one way or another so the user can interact with it. In particular
the interaction tasks can be annotated by different ways they can be presented
to the user(s). For each task t ∈ M an abstract user interface description x ∈
{X1, X2, ..., Xn} can be retrieved, the set of related user interface descriptions is
referred to as the presentation model. Based on the findings in related research (of
which an overview can be found in [12]), a user interface description is specified
using an XML-based notation. Figure 1 shows how the high-level user interface
descriptions of all tasks available in an ETS are distributed among different
appropriate interaction resources available in the environment while the user
continues her/his interaction with the application, from one active ETS to the
other.

For each ETS there are different possibilities of how the user interface rep-
resenting the set of tasks can be divided. In [26] we showed a method that uses
XHTML as the presentation language and a set of rules and a cost function to
select the “preferred” distribution configuration among all possible configura-
tions. The XHTML document was subdivided according the tasks it supported,
and the different parts were distributed among the available devices in the neigh-
borhood of the user.

4 Contextual Task Constraints

The allocation of a task to a set of interaction resources can also constrain the
execution of the task. For example: a task can only be valid within a certain
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physical range because the interaction resource it is allocated to, has to main-
tain a communication channel with another device that executes a parallel task
exchanging information with the first task. Figure 2 shows this scenario. In [2]
we presented an approach to take these kind of context switches explicitly into
account in the task and the dialog model. A decision task can be inserted in the
task model: this type of task allows a designer to specify a set of rules that can
select an alternative task set to execute according to the context of use. This
approach allows us to insert a decision rule in the task specification that will
select another task set when the device is out of range. How this works and what
the effects on the dialog model are is described into detail in [2]

Fig. 2. Location constraint example for the task specification T1|[]|T2.

To support this kind of reasoning for a task-centered approach we need to
extend the semantics of the task specification with new constraints besides the
temporal constraints and hierarchical structure. More precisely: we need to re-
late the context of use and the task set in terms of constraints over the task
distribution behavior. Elaborating on the example of figure 2, where there are
two tasks that can be executed in parallel and exchange information while per-
forming (T1|[]|T2,) two different constraints can be identified for these two
tasks:

1. both tasks should be observable at the same time by the user
2. both tasks should be able to exchange data using some kind of communica-

tion channel.

The first one depends on the designer’s intentions and should be part of the task
specification, the second one can be derived from the task-device allocations.
With either one (or both) of these constraints there is only one possibility:
the device that represents T2 has to be located in the predefined area of the
device presenting T1. Notice T1 and T2 belong to the same ETS, since they can
be executed during the same period of time. This example is equally valid for
the construction T1|[]|T2|[]| · · · |[]|Tn (T1, · · · , Tn belong to the same task
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set), but the number of constraint checks involved to evaluate a distribution
configuration for all tasks increases to

(
n
2

)
in this situation. If the number of

areas increases to m, the number of constraint checks increases exponentially
since there are now

(
n
m

)
possible combinations. The number of possibilities that

a designer would have to check by hand is not feasible without any tool support.
Our approach allows to visualize these constraints and automatically define valid
task distribution configurations according to the task specification.

The example in the previous paragraph focused on a typical intra-ETS re-
lation: a relation between two tasks in the same ETS. It is sufficient to take
this into account for a distribution configuration for a single ETS. In other cases
however, similar concerns arise. For example, the construction T1 []>> T2 []>>
T3 []>> · · · []>> Tn implies that every task is in a separate ETS, but still
requires each task Ti,1≤i,≤n−1 to exchange information with its successive task
Ti+1,1≤i,≤n−1. These types of relations have to be taken into account for the
possible migration paths between task sets.

5 The MoDIE Platform

The models discussed in the previous section are all integrated by the MoDIE
platform, a platform that supports a user interface design process for ambient
intelligent environments. The central model is the task model, describing the set
of tasks the (ubiquitous) application supports. Other models include the envi-
ronment model that lists all available interaction resources in the environment
of the user, a dialog model containing the ETSs derived from the task model,
a presentation model that can be related to the tasks in the task model and
an interaction model describing the interaction between the user interface and
the application logic. Every view in MoDIE offers direct manipulation of these
different models and visualizes the relations between different models appropri-
ately. Figure 3(c) shows an environment view combined with a task view that
allows to assign tasks to interaction resources.

The environment model in MoDIE can be used in two different manners: stat-
ically and dynamically. The former implies the user interface designer defines a
custom list of interaction resources, the latter implies that this list is created au-
tomatically by using off-the shelf service discovery protocols (currently MoDIE
supports UPnP1). In both approaches the location or range of operation of a
device is included in the environment model. We extended the UPnP discov-
ery mechanism to retrieve this information if possible. With the support for
a realistic environment model in place we can design, test and change a task
specification for different environment models.

Tasks can be related with interaction resources of the environment model in
two ways:

1. Automatically: task can be allocated among the available interaction re-
sources automatically by applying the different constraints.

1 http://www.upnp.org
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(a) View on the Interaction Re-
sources of the environment model

(b) Visualizing a distribution con-
figuration for a task set

(c) Allocating tasks from a task specification to
devices in an ambient intelligent environment

Fig. 3. Different views of the MoDIE tool.

2. Manually: usually, there are a number of solutions that are valid w.r.t. the
constraints defined by the different models. MoDIE supports manual editing
of the task allocations (which actually presents the task-environment inter-
relation): the designer can relate tasks with interaction resources and observe
the effects of these changes.

Constraints on properties of the interaction resources that are available in the
environment model can be checked by using XPath queries, since the environ-
ment model is expressed as an XML document. The XML document is based
on the CoDAMoS ontology [22] and can be constructed and processed by our
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MoDIE tool. A constraint check on a property of an interaction resource can be
translated in an XPath query that is executed on this XML document. Part of
the XPath query is just an implementation of the projection function of section
3.2 which maps an interaction resource property on a value in the domain of
this property. Another part of the XPath query reflects the condition on the
value of this property. Listing 1.1 shows an excerpt of the environment model.
Other properties such as the physical location of an interaction resource in a
room inside a building can also be included in the environment description.

Listing 1.1. An MoDIE environment model description.

<modie:interactionCluster

xmlns:modie="http;//research.edm.luc.ac.be/modie/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:codamos_ont="http://edm.luc.ac.be/codamos#">

<modie:interactionResourcesList>

<modie:interactionResource owlClass="LcdScreen">

<modie:propertyList>

<modie:property type="xsd:string"

name="resourceId" unit="false">

<modie:propertyValue>lcd-002</modie:propertyValue>

</modie:property>

<modie:property type="xsd:int"

name="width" unit="true">

<modie:propertyValue>4</modie:propertyValue>

<modie:propertyUnit>cm</modie:propertyUnit>

</modie:property>

<modie:property type="xsd:int"

name="height" unit="true">

<modie:propertyValue>12</modie:propertyValue>

<modie:propertyUnit>cm</modie:propertyUnit>

</modie:property>

...

</modie:interactionResource>

...

</modie:interactionResourcesList>

...

</modie:interactionCluster>

An important aspect of the MoDIE design tool will be the possibility to
simulate the run-time behavior of the distributed user interface. This simulation
is considered as a view on the different models that are built with the MoDIE
support tool and is integrated with the other views. The simulation creates a 3D
model of the environment model (using the Java3D API2), and uses the list of
interaction resources to dynamically render the user environment. A simulation
module aids in defining the appropriate Task Migration Paths. Figure 3(a) shows
the MoDIE combined view of the environment model and the dialog model
(expressed as a set of task sets). By moving the mobile device away from the

2 http://java.sun.com/products/java-media/3D/
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desktop computer the designer can see what kind of transitions are invoked and
how the design fits in the simulated situation.

Relating tasks with devices through direct manipulation on the 3D view
of the environment model is obviously more intuitive than working only with
diagrammatic notations. Although this model supports direct manipulation, it
is also suitable to visualize existing relations already created between the other
models. This way the designer will have a graphical overview of the user interface
distribution and instantly sees the effect of model manipulations.

6 Integration with UML-based Software Engineering

This section details a mapping of the previously introducted concepts to UML
2.0 [18] and how this mapping can be used to combine the approach with model-
driven engineering. We made the choice to use UML 2.0 in order to have a
rigorous description of the different aspects of interactive software based on a
proven technology. The fact that is has better facilities for model-driven devel-
opment which can bring a boost to design methodologies based on a diverse set
of models is promising.

An integration with the UML modeling languages is important for several
reasons: first of all it makes aids in bridging the gap between the HCI designer
and the software developer. In particular for the complex domain described in
this paper (ambient intelligent environments) there is currently no support to
integrate the design of application logic with the interaction design. Besides the
fact UML is widely accepted, it also offers a more formal way to describe the
functionality of a system and it provides the tools to relate a user interface with
the functionality that is represented by this user interface.

6.1 Mapping to UML 2.0

To represent the architectural aspects of a distributed user interface, we propose
the use of UML 2.0 deployment diagrams. The deployment diagrams can be
used to describe some features in more detail, which cannot be seen easily in the
3D view. One part of the architecture is the communication channels that are
available between the different interaction clusters. Another is the composition of
an interaction cluster; which interaction resources are contained in the cluster.
Traditionally, the deployment diagram is a static diagram, but in the current
setting this diagram depends on the context-of-use. Section 5 introduced the
dynamic discovery of available interaction clusters: the result of such a discovery
can be visualized as a deployment diagram. Since the content of the deployment
diagram depends on the point in time when a discovery is executed, it is possible
to have many deployment diagrams for a single application.

The distribution of a user interface can be specified by allocating parts of the
user interface to specific interaction resources or interaction clusters. There is a
natural mapping from interaction clusters and interaction resources to Devices in
UML 2.0, where the former can contain other Devices (interaction resources) and
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the latter cannot, due to the definition of an interaction resource (see section 1).
A part of a user interface can be allocated to a certain device by specifying the
deployment of an Artifact to a specific node. Specific stereotypes can be used
to define the kind of Artifact that is used. In the early stages of design, these
stereotypes can be used to denote the function of the user interface part (input,
output, or action; triggering of functionality).

In figure 4 the scene and allocations from figure 1 are represented using the
UML deployment diagram. In this diagram, interaction clusters and interaction
resources are represented by Nodes, while the physical representation of the
task, the user interface through which the task can be performed, is depicted
as an Artifact. An integration of this approach into MoDIE allows the designer
to get adapted representations of the deployment diagram for the different pos-
sible situations. The use of stereotypes and the associated tagged values can
allow adapted representations in standard UML modeling tools, should MoDIE
support saving configurations manually or semi-automatically selected by the
designer into XMI [9]. The advantages and disadvantages of both approaches
are currently under investigation.

The earlier mentioned Artifacts can be stereotyped to denote the kind of user
interface parts they represent. Three types of parts are identified: input, output
and action. An input part can also contain labels, drawings or sound that is
necessary or aids in the understanding of what information should be put into
the system. Selection from a non-empty set of options is also considered input.
An output part is a part of the user interface that shows information provided by
the application core, including all relevant labels etc. An action is a part of the
user interface that is responsible for triggering functionality in the application
core. Note that action and input are not mutually exclusive.

Artifacts can optionally be linked to the components or classes that are used
to realize them, using the standard UML 2.0 manifest relationship to define the
implementation of the user interface. We thus propose that the physical (and log-
ical) structure of the user interface is defined using Artifacts, while the structure
of the implementation is defined using the well-known UML structures as class
diagrams or component diagrams. When the user interface is rendered based on
the related presentation specifications, the realisation of the user interface can
be done based on the Artifacts structure.

6.2 Model-driven engineering

Abstract presentations can be derived from the tasks/task sets. These can be
converted to concrete, albeit high-level description based on marks (stereotypes)
made to the abstract models and context information (e.g. user profiles). The re-
sulting concrete representation can be similar to the notation used for Canonical
Abstract Prototypes [4], possibly including an allocation to interaction resources.

The use of abstractions can be useful to derive user interfaces that are con-
sistent and complete, but have different appearances. It would be more difficult
to design a multi-cultural, multi-device user interface that is both consistent and
complete using separate designs. The use of model-driven development starting
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Fig. 4. Deployment diagram describing the task allocation of figure 1

from a high-level (platform independent) model that is refined through one, or
possible multiple, transformations into a concrete user interface to drive or guide
the design of a user interface can offer many benefits.

An example can be the realization of a wizard-based user interface on a
kiosk system for American market versus a single form on a wall-sized screen
operated by his smart phone for the Chinese market when both user interfaces
could be used to perform the same tasks. At the highest level, both interfaces
are represented using the same set of user interface components. Using multiple
transformations, this high-level model is gradually translated into concrete mod-
els. This can be done by applying HCI design patterns or best practices based
upon contextual information.

We envision two possible tool configurations for integration of MoDIE with
model driven engineering to create a complete environment for the design of
distributed user interfaces. In both configurations MoDIE provides the task-
based distribution facilities based upon the discovery of interaction devices and
resources in the neighbourhood and designer input. MoDIE works at the task-
level and relies on the linking of tasks to (declarative) user interface descriptions
(using URI’s) to accomplish effective distribution of user interfaces.

In the first configuration all necessary components to create the user inter-
faces are integrated into one integrated tool, as can be seen in figure 5(a). In this
configuration, the distribution created in the MoDIE tool is passed to a separate
part of the tool that works with UML and starts from a deployment specifi-
cation as discussed in the previous section. Starting from this model, several
transformations will be made that gradually transform the abstract model into
different concrete models, specifying concrete user interface configurations for
certain hardware configurations. These concrete models can then be translated
into XML-based user interface descriptions of which the URI’s can be delivered
back into the MoDIE tool to create an actual deployment.
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The second configuration splits the total functionality over three parts (see
figure 5(b)): MoDIE (1) for task distribution, once this task distribution is cre-
ated, it is delivered in XMI-format to an UML-tool (2) supporting model driven
engineering (MDE). After one or more transformations, the abstract represen-
tation that was given to the UML-tool is translated into one or more concrete
models (of user interfaces) and is delivered to a user interface modeling tool that
provides the look-and-feel to the user interfaces through the use of constraints
and styles.

(a) Integrated environment (b) Separate tools

Fig. 5. MoDIE tool and model driven engineering.

7 Conclusions and Future Work

In this paper we investigated the requirements to support task-centered user
interface design for ambient intelligent environments, where the user interface
suppporting the tasks of the user is distributed among the available devices.
We introduced MoDIE, a system that uses a task-based approach to design
user interfaces for ambient intelligent environments. MoDIE allows a designer to
combine a presentation and task model smoothly with an environment model.
It visualizes task allocations in an environment and supports the design process
by visualization and simulation techniques. User interface completeness (is the
required functionality to reach the user’s goals accessible?) and continuity (can
we create a usable user interface for a dynamic environment) are the two main
properties that are considered here. Both the visualization of the task allocations
in the environment and the simulation of the execution of a task specification
are the primary tools to ensure completeness and continuity.

Although there are several theoretical frameworks for determining the influ-
ence of device switching on the usability of a system, there is no support for
a designer to apply these frameworks while designing a multi-device user inter-
face. Further research is necessary to use these frameworks in tools that can
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visualize the effects of certain design decisions on the usability of the system.
It is clear there are an overwhelming number of aspects that need to be taken
into account to use MBUID for ambient intelligent environments. Traditional
MBUID approaches do not take dynamic environments with different devices
that can be used in parallel into account. This work contributes to a solution for
this problem by investigating the issues that are specific for the design of user
interfaces for these type of environments and structuring them so they can be
incorporated in design tools and user interface generators.
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17. Giulio Mori, Fabio Paternò, and Carmen Santoro. CTTE: support for developing
and analyzing task models for interactive system design. IEEE Trans. Softw. Eng.,
28(8):797–813, 2002.

18. Object Management Group. UML 2.0 Superstructure Specification, October 8 2004.
19. Giorgio P. Faconti and Mieke Massink. Continuity in Human Computer Inter-

action. In CHI 2000 Workshop report. http://www.acm.org/sigchi/bulletin/
2000.4, 2000.
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