
Made available by Hasselt University Library in https://documentserver.uhasselt.be

The detection of double errors in ISBN- and ISSN-like codes

Non Peer-reviewed author version

EGGHE, Leo & ROUSSEAU, Ronald (2001) The detection of double errors in ISBN-

and ISSN-like codes. In: Mathematical and Computer Modelling, 33(8-9). p. 943-955.

DOI: 10.1016/S0895-7177(00)00291-0

Handle: http://hdl.handle.net/1942/794



On the detection of double errors in ISBN and ISSN-like codes 

Leo Egghe 
LUC, Universitaire Campus, 8-3590 Diepenbeek, Belgium 
and UIA, IBW, Universiteitsplein 1, 8-2610 Wilrijk, Belgium 

and 

Ronald Rousseau 
UIA, IBW, Universiteitsplein 1, B-2610 Wilrijk, Belgium 
and KHBO, Zeedijk 101, B-8400 Oostende, Belgium 

Abstract 

Coding of the ISBN and ISSN is studied, and possible alternatives, not all equivalent 

with the official ones, are formulated. A minimum requirement for a useful code is 

that all single errors as well as all permutations of two symbols must be detectable. 

The strength of alternative codes, in particular with respect to the detection of double 

errors is investigated. We give a complete description of the method based on 

division by 11 (the official one). In this case we are also able to describe the power of 

the method with respect to the detection of three or four errors. We show that, using 

division by 11, all coding methods detect the same percentage of errors. In case 

larger prime numbers are used as divisor numerical experiments were performed 

showing that different methods have different detection capabilities for double errors. 
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Introduction 

The ISBN (International Standard Book Number) and ISSN (International Standard 

Serial Number) are well-known codes helping the information professional to identify 

books or serials [2]. They consist respectively of 10 and 8 digits of which the last one 

is a check digit (0,1, ..., 9 or X). Although their origins are different: publishers and 

booksellers introduced the ISBN, while the ISSN was created by UNlSlST (a 

UNESCO project) they both are IS0 standards [I], [3] and serve a similar purpose, 

namely attaching a unique number to every publication. Here the term 'publication' 

should be understood in its full diversity: e.g. hard and sof? covers editions receive 

different ISBNs. Moreover, an additional digit, a so-called check digit, is added 

ensuring that certain typing (or printing) errors can be detected. Preventing mistakes 

of this kind has economic implications: in this way wrong deliveries - and hence extra 

administrative costs - are prevented (or their numbers are at least considerably 

reduced). 

The ISBN consists of four parts, usually separated by a hyphen. The first part is a 

regional code (e.g. 0 for the English region), the second part is a publisher code (e.g. 

444 indicates an Elsevier book), the third part uniquely determines the work and the 

last part is a check digit. Classically, the calculation of the check digit for an ISBN is 

performed as follows: multiply the first number by 10, the second one by 9, and so 

on, until finally the ninth number is multiplied by 2. Then these numbers are added 

and divided by 11. The check digit is then eleven minus the remainder (afler division 

by 11). Note that '10' is written as X. In case the rest is 0 the check digit is also 0 

(which, by the way, is equal to 11 mod 11, i.e. the rest of 11 afler a division by 11). 



It was shown by Egghe [4] (based on a note by McMurdo [5] and a letter by 

MacCormack [6]) that this coding method is equivalent to the following one. Multiply 

the first number by 1, the second one by 2, and so on until the ninth one is multiplied 

by 9. Add these numbers and divide the sum by 11. The check digit is then equal to 

the rest (where again 10 is written as X). Note that this formulation, which can also by 

found in (71, is slightly easier than the official one. 

We will now rewrite these algorithms as mathematical formulae. Let X = (XI,...,%) 

denote the ISBN without the check digit. Then the first method boils down to 

calculating 

taking the rest afler a division by 11 and, if this rest is not zero, using 11 minus this 

rest as a check digit. The rest of a number, say n, after division by another number, 

say d, is denoted as n mod d. So the check digit, following the official method is: 

The second method calculates the simpler form: 

As an example the reader may verify that both methods yield 4 as the check digit for 

05660351 5. 



It is well known that this check digit detects all single errors, as well as all 

permutations of two different symbols. We will prove this result in a more general 

setting (see next section). 

The official method to calculate the check digit of the ISSN is very similar to 

that for the ISBN: multiply the first number by 8, the second one by 7 and so on until 

the last one (the seventh) is multiplied by 2. Then all these numbers are added and 

divided by 11. Again the check digit is 11 minus the rest after a division by 11, where 

10 is written as X, and if the rest was 0, the check digit is again 0. Also here a simpler 

method can be used. Mathematically, the official method of calculating a check digit 

for an ISSN boils down to the calculation of: 

where X = (xr, ... ,x7) denotes an ISSN without check digit. The alternative method 

attains the same result by performing the simpler calculation (5) (a proof is given in 

Appendix A): 

So, a first advice we want to give is that it is probably preferable to teach formulae (3) 

and (5) in LIS-schools, because they are simpler to explain than the official versions. 

It is now not surprising that we consider, in analogy of (3), the expression 



and wonder if it aiso yields a good (perhaps even better) method of determining a 

check digit for an ISSN. Although (6) is also capable of detecting all single errors and 

all permutations of different symbols (see next section) it is not equivalent to (4) or 

(5). Indeed, the ISSN of the Journal of Information Science is 01655515, while (6) 

would give 3 as check digit. 

More generally, one could consider formulae such as 

with ak E No, and with 9 instead of 7 for an ISBN. Even more generally, one could 

study 

In the next section we will study (7) and give a proof that this method is (almost) 

always capable of detecting single errors and permutations of two different symbols. 

This result will be valid under fairly general conditions, including the cases mentioned 

earlier, and for other divisors than 11. 

In the third section we will consider the natural question: which of these methods is 

best? Indeed, since we have so many, non-equivalent methods of calculating a 

check digit, all capable of detecting single errors and the permutation of two different 

symbols, which method detects the most double errors? Note that no method can 

find all double errors if we include the check digit. Indeed, a single error in one of the 

first seven symbols can always be 'corrected' by a compensating error in the check 

digit. This kind of double error can never be detected. Yet, many double errors in the 



first seven symbols can never be detected by one single method (examples follow) 

although different methods may fail to detect other double errors. Hence, it is 

interesting to investigate this more deeply. This is done in the third section with 11 as 

divisor. Here we prove that, although different methods generally detect different 

double errors, the same number of double errors stays undetected. It is indeed 

shown that exactly 10% of all double errors stay undetected. Some consequences for 

the case of three or four mistakes are drawn. 

Section four investigates the same issues but now in the case of other divisors. We 

introduce the important case of division by 13 (here one can use 0,1,. . . , 9, X, Y, Z as 

check digits). We show, by computer calculations, that now different methods may 

perform differently. This contrasts sharply with the standard case of division by 11. 

Extensive computer calculations give hints for the best methods. This is important in 

case one wants to have a higher detection rate. These investigations may also be 

useful when in time the number of digits in the ISBN or the ISSN must increase, as 

for instance when using DOls (Digital Object Identifiers) [El. 

The paper closes with a fifth section in which we study high values of d (the divisor) 

in order to find bounds, i.e. minimum values for the number of undetected double 

errors. We end this section by proposing a number of open questions for further 

research. 

Notation: the symbol O denotes the end of a proof. 



General multilinear framework for detecting single errors and permutations of 

two different symbols 

In this section x,, ..., xn denote, not necessarily different, numbers taken from 

the set {0,1, ... ,9). The symbols ak denote different numbers from the set { I ,  ...,p- 21, 

where p is a given prime number larger than or equal to 11 .The check digit y for the 

code X = (XI,. . . ,xn) is then obtained as follows: 

y =  x a , x k  modp 1 
We will further represent y by one symbol: a one-digit number or a letter. This means 

that an n-digit code is finally represented as an (n+l)-digit sequence. 

We can say that this (n+l)-digit code is acceptable if 

with a,+~ = -1 

We prove the following result for the procedure outlined above 

Theorem 1 

Let n be a natural number, xi E {0,1, ..., 9) for i = I ,..., n and let p be a prime number, 

larger than or equal to 11. Assume further that ai 6 { I  ,... ,p-21, i = I ,..., n. If all ai are 

different, then the check digit xn+l for the code characterised by X = (XI, ..., x,), and 

calculated as 

is capable of detecting single errors as well as permutations of different symbols. 



Proof: Given in Appendix B 

Note 

By the term 'single error' we mean a replacement of Xi, i= l ,  ..., n+l  by another digit 

from the set {0,1, ..., 9). We assume this also in the proof of the theorem (Appendix 

B). Yet, x,+, can also be X. However if the check digit must be X and it is not, this is 

immediately detected by the algorithm. Also, if the check digit is X and it is 

interchanged with another digit (that can never be X) this is also immediately 

detected as X can not occur among the first n symbols. 

Examples 

1. Classical ISBN 

Here n = 9, at = i , for i = 1 ,... 9 (in the alternative formulation), a10 = -1, p = 11. 

2. Classical ISSN 

Here n = 7, ai = i+2 , for i = 1, ... 7 (in the alternative formulation), a8 = -1, p = 11. 

3. Non-equivalent variant for ISSN 

T a k e n = 7 , a i = i , f o r i = I  ,... 7 ,a8=-1,p=I l ,c f . (6)  

4. ISBN-like code using p = 13 

Taken=9, a i = i , f o r i = I ,  ... 9 ,a lo=- l ,p=13 .  

The check digit for 056603515 becomes 2 here (it was 4 for the official method). 

As the remainder can now be 11 or 12, we will use Y if XIO = 11 and Z if xto = 12. 

In this way we obtain the acceptable code: 0566235152 

5. ISSN-like code using p = 13 

T a k e n = 7 , a i = i + Z , f o r i = I  ,... 7,a8=-1,p=13 



The check digit for the Journal of Information Science would now be 5 (by 

coincidence the same as the official one). So, let us take another journal, say the 

Journal of Documentation. Its official ISSN is 00220418. This alternative would 

yield 0022041Y (the remainder is 11). 

6. ISSN-like code using 13, another non-equivalent variant 

Herewetaken=7,a i= i , fo r i= I  ,... 7 ,a8=-1,p=13.  

The check digit for the Journal of lnformation Science would now be Z (the 

remainder is 12). 

Note that from p larger than 11 on, the numbers a, can be larger than 10. Note 

further that we do not require the a, to be monotone (increasing or decreasing). 

Theorem 1 stays valid as long as the a, are different, not equal to zero and smaller 

than p -1. This leads to an enormous potential for ISBN and ISSN-like codes. It would 

now be interesting if we could detect those codes that detect the least amount of 

double errors. The next section is devoted to this for p = 11. The general case is 

studied in the fourth section. 



Detecting double errors: the case p = 11 

As in section two we assume that the algorithm verifies if 

here with p = 11. The ai, i = 1 ,..., n are different numbers taken from the set { I  ,..., 91, 

an+, = -1. Note that this includes the official ISBN and ISSN algorithms. 

Suppose we have a double error, say for i and j, i # j, i,j 6 { I  ,... ,n+l}. So, instead of 

(1 0) we check if 

where xi it yi and x, # yj. Now (1 1) is satisfied if and only if 

How many of all double errors stay undetected? One could argue that there are 

r; l) possible combinations of two places out of n+l, and that in each place 

there are nine possible errors leading to 99r: I) double errors. (mis would 

give 2268 cases for the ISSN (n=7) and 3645 cases for the ISBN.) Yet, this 

reasoning is not correct. Indeed, criterion (12), which is the only necessary and 

sufficient condition for non-detection of a double error, is dependent on the values of i 

and j (via ai and a,) and on the values xi, yi, xj and yj. Of course, only the differences 

xi-y, and xi-y, matter, but these occur with different frequencies, and hence should be 

weighted differently. These weights are given in Table 1. 



Indeed, xi-yi = 9 can only come from xi = 9 and yi = 0, while e.g. xi-yi = -7 is obtained if 

xi = 0 and yi = 7, or xi = 1 and yi = 8, or if xi = 2 and yi = 9. The other weights are 

cimilarly obtained. All this leads to the following Lemma 1. 

Table 1 Weights for differences xi-yi or xi-yj 

difference weight 

Lemma 1 

There are 8100 n (n+l) possible double errors 

Proof. We have four parameters in (12): i, j E { I ,  ... ,n), Xi - yi, xj - yj E {-9 ,... , -1, 1, 

... ,9) with weights as described above. Hence this gives a total of 

( n + l ) n . 2 Z ~ k l = 8 1 0 0 n ( n + l )  cases. (13) 
k.l=l 

This amounts to 729000 cases for the study of ISBNs (n=9) and 453600 cases for 

the study of lSSNs (n=7). 



We will next answer the question of how many double errors stay undetected. First 

we need another lemma. 

Lemma 2 

For any a E {-I , I  ,... 91, fixed, the function 

,J -- ----- > (av)  mod 11 (14) 

with v E {-9, ... ,-I , I  ,... 9) weighted as in Table 1, is surjective with range (0 ,...,lo), 

attaining each value exactly 9 times. 

Proof. The proof proceeds by considering all cases. First we take a = -1. Then we 

have the following values (with weights between accolades): 9{1},8{2),7{3),6{4}, 

5{5),q6}, 3{7),2{8),1{9),-1 = 10 mod 11 {9), -2 = 9 mod 11 {8), -3 = 8 mod 11 {7}, -4 = 

7 mod 11 {6), -5 = 6 mod 11 (51, -5 = 5 mod 11 {4), -7 = 4 mod 11 {3}, -8 = 3 mod 11 

{2}, -9 = 2 mod 11 {I}. This proves that, working mod 11, yields every possible result, 

each exactly nine times. 

We will next check formula (14) for a = 9. Again we write weights between 

brackets. All calculations are mod 11. This gives the following results: 9*(-9) = 7 {I}, 

9*(-8) = 5 {2}, 9*(-7) = 3 {3}, 9*(-6) = 1 {4}, 9*(-5) = 10 {5}, 9*(-4) = 8 {6}, 9*(-3) = 6 

(71, 9*(-2) = 4 {a}, 9*(-1) = 2 (91, 9*1 = 9 {9}, 9 T  = 7 {a), 9 3  = 5 (71, 9*4 = 3 {6), 9*5 = 

1 {5), 9*6 =I0 (41, 9 7  = 8 {3), 9*8 = 6 {2} and finally 9 9  = 4 {I}. This proves (14) for 

a = 9. We leave the other cases to the reader O. 

Theorem 2 

The multilinear error-checking method (10) with p = 11 always detects 90% of all 

double errors. This result is true whatever the precise, but different, values of ai E 



{ I  ,,..., 91, i = I ,..., n, and with a,+l = -1. Consequently, 810n(n+l) double errors are 

always undetected. 

Proof. We use criterion (12) to check when ai(xi - yi) + q(xj - y,) is a multiple of 11. 

By Lemma 2, ct,(xi - yi) leads to nine times the values {I, ... ,101. Similarly, q(x, - yj) 

gives nine times each value of { I ,  ..., 10). It is now easy to see that exactly 10% of all 

suns is a multiple of 11. These errors will stay undetected. By lemma 1, this number 

is 810 n (n+l) 0. 

Note 1. The above result implies thz ~t there is no best method (s of a's) among5 

the acceptable ones (cf. Theorem 1). Consequently, we wonder why the IS0 did not 

choose the simplest method (6) as a standard. 

Note 2. It is possible to find codes that detect a smaller percentage of double errors. 

Indeed, takew = l , a ; ? = l l  = O , m =  l O , a ~ = 9 , a ~ = 8 , c ( 6 = 7 , a ~ = 6 , c r ~ = - l . T h e n  

we have calculated (by computer) that only 34020 double errors, i.e. 7.5%, stay 

undetected (for the ISSN), while the official method leaves 10% double errors 

undetected. The reason for this surprising result is that, because a 2  = 0, double 

errors for which i = 2 and j t 2 are all detected. This decreases the number of 

undetected double errors. Yet, there is a price to be paid: all single errors occurring at 

the second digit are undetected! We, therefore, do not consider such methods. 

The arguments leading to Lemma 2 and Theorem 2 also yield precise 

information on the number of undetected triple and quadruple errors. 



Theorem 3 

Under the conditions of Theorem 2, 9% of all triple errors are undetected 

Proof. By Lemma 2 and the argument of Theorem 2 we see that (12) yields 0 mod 11 

in 10% of the cases and each other remainder in exactly 9% of the cases. For triple 

errors we have to check 

- Y , )  + a ] ( X ]  - Y ] )  - yk )  0 5, 

where ai,aj,ak E {-I , I  ,... ,9), Xi,Yi,Xj,yj,Xk,Yk E {O ,..., 91, Xi f Yi, X ]  f yj, Xk f Yk; i,j,k E 

{ I ,  ... ,n+l}. If the first two terms form a multiple of 11 we know, by Lemma 2, that (1 5) 

is never an I I-multiple. In each of the ten cases that the first two terms are not an 

I I-multiple (90% of the cases) we see that (15) is an 1 I-multiple in 10% of the cases. 

Hence, we conclude that (15) is an I I-multiple in 9% of the cases 0. 

Note that more triple errors than double errors are detected. We can also 

show that 9.1 % of all quadruple errors are undetected (see Appendix C). 

Detecting double errors: the general case 

In this section we will study the multilinear coding algorithm based on 

where p is any prime larger than or equal to 11. Recall that al, ...,u, E { I ,  ...,p- 21, 

an+? = -1. Suppose we have a double error at i f j, i,j E {I ,... ,n+l). As in the 

beginning of Section 3, we can deduce, via ( I?) ,  that (12) is the criterion to know 



whether a double error is detected, but now with 11 replaced by p. This means we 

have to check when 

Equation (16) is a generalisation of formula (2.2) in [9]. Note that the weights of Table 

1 also apply here (they are independent of the divisor p). Also Lemma 1 applies 

here: there still are 8100n(n+l) possible double errors. We have shown that if p = 11 

there were always (independent - with some mild restrictions- of the choice of the 

a's) lo%, i.e. 810n(n+l) undetected double errors. This result is not anymore true in 

general. To illustrate this behaviour, some examples suffice. 

We first introduce some notation. We will refer in this section to method I,II and Ill, by 

which we will mean the following: 

Method I: ai = i (i = 1, ..., 7), a8 = -1 (this is sometimes called a positional check 

product [9]) 

Method II: a, = i+2 (i = 1 ,..., 7), a 8  = -1 

Method Ill: a, = p-9+i (i = 1 ,... ,7), as  = -1. 

Note that methods II and Ill represent the official ISSN in case p = 11. 

Using a PASCAL program we were able to compute that, for p = 13, method I does 

not detect 37760 double ,errors (8.325%), method II does not detect 37772 cases 

(8.327%) and method Ill does not detect 37752 double errors (8.323%). Although the 

percentage differences are small, it is remarkable that the absolute numbers are 



different. Recall that for p = 11 we always had exactly 10% of undetected double 

errors. Anyway, for p = 13, method Ill performs best. 

We repeated the computation for p = 17. Here method I does not detect 27936 

csses, method 11 27932 cases and method 111 27776 cases, i.e. somewhat more than 

6%. Here again, all methods differ and method Ill performs best. However, this is not 

always the case. For, e.g., p = 97 we computed the following numbers of undetected 

double errors: 8104 for method 1 (1.787 %), 4964 for method 11 (1.094%) and 6584 

for method 111 (1.451 %). Here differences are larger and method II performs best. 

From our computations we see that method Ill performs best up to p = 17, for p = 19 

and 23, methods II and Ill perform equally well, and from p = 29 on, method II is best. 

The simple method I is never best (except of course for p = 11, where all methods 

perform equally well). 

Our intuition is that the overall detecting capacity should increase with 

increasing p. We found this true as a general trend, but there were some small 

deviations from monotonicity (e.g. for p = 103). We refer the reader to Appendix D for 

complete tables of undetected double errors. These tables run through all primes 

larger than or equal to 11 (the fifth prime) up to a certain limit beyond which no 

changes occur anymore (see more on this further on in section five). The graphs 

corresponding to these methods can be found in Figs.1 and 2. 



Number of undetected double errors 

rank order of plime - method I method 11 + method Ill 

Fig.1 Number of undetected double errors for the three methods, beginning with 11 

the fifth prime) and ending with 131 (the 32nd prime) 



Undetected double errors 
diRerences 

-500 l 
rank order of primes - method C method II + meth. I - meth. Ill 

Fig.2 Differences between the number of undetected double errors: 
method I - method II and method I -method Ill 

Based on our observations we would advice that if, in the future, one would change 

the method to compute ISSNs, method Ill is preferred for p = 13. Note that p = 13 is a 

natural extension involving only check digits of the form 0,1, ... ,9,X,Y,Z. There is, 

moreover a clear gain (10% - 8.323% = 1.677%) in detected double errors. This 



0 ,  
/o 

means that an additional 16.77& the undetected double errors (for p = 11) are now 

detected (p = 13). Of course, other methods, besides the three presented here, could 

be tried (in view of Theorem 1). Appendix E shows some results that we have 

computed for p = 13. It seems (although we can not prove this) that the best value of 

37752 undetected double errors (as in method Ill) can not be improved upon. A 

similar result was found for p = 17 (Appendix E). 

Bounds for undetected double errors and some open problems 

One might think that, if the divisor p is taken high enough, the number of undetected 

double errors can be taken as low as one wishes. This is not so. Indeed, all the cases 

where 

for at, aj E {-I ,I ,... ,9}, Xi,yi,xj,yj E (0 ,..., 91, Xi + yi, xj # yj, i,j E {I ,... ,n+l} are never 

detected, whatever the value of p. Note the zero on the right hand side, not zero mod 

p. Let us examine this for the three methods studied in the previous section (n = 7). 

In method I the highest possible value for (17) is 7 9  + 6 9  = 117. So from p = 127 on 

(the first prime large than 117) we have reached the case that (12) can only be a p- 

multiple if (17) is true. Our computations show that there are 8080 undetected double 

errors for p = 127, so this is the absolute minimum of undetected double errors for 

method I. Note also that for this argument to be true the divisor does not have to be a 

prime. Indeed, our computations confirm that from 118 on the number of undetected 

double errors, using method I, is 8080. Of course, it may happen (and it usually does) 

that this number is already observed for a smaller value of the divisor. 



Similarly, for method II, we have a maximum value for (17) equal to 9*9 + 8*9 

= 153. The minimum number of undetected double errors is here 4776. We can not 

perform a similar calculation for method Ill as p is involved in the value of the 

coefficients a. We can show, however, that the number of undetected errors for 

method Ill is the same as the number of undetected errors for (2,3, ..., 8), i.e. ai = i+1, 

i=1, ... ,7 (see appendix F). Hence, the maximum value for (17), using method Ill is 

8*9 + 7*9 = 135. Our computer algorithm yields a limiting value of 6492 undetected 

double errors. See also the tables in Appendices D and E. 

A method to detect all double errors 

From the previous reasoning it is clear that the multilinear approach with one check 

digit will never detect all double errors. Yet, using two check digits, namely one 

obtained for p = 11 and one for p = 13 (with e.g. method I) finds all double errors, as 

is readily seen. Note that the method proposed in [9] is unrealistic. It is shown in [ lo ]  

that a general solution for double error correcting can be obtained using Reed- 

Solomon codes. 

Finally, we end this section by stating some open problems 

PI.  Formulate a new algorithm, with one check digit (or letter), such that all single 

and double errors are detected (or prove that this is not possible). 

P2. Determine and prove formulae for the number of undetected double errors for p 

larger than 11 (cf. Theorem 2). 

P3. Explain why, for lower p, method Ill performs best, while, for larger p, method II is 

better. 

P4. Explain why the detecting capacity for double errors is not monotone in p. 



P5. Explain the bounds described above. What other 'minimal' values (with respect to 

a certain method or group of methods) can be determined? 

P6. Can the observations made in this article be obtained from more general group- 

theoretic results? 

Conclusion 

Coding of the ISBN and ISSN was studied, and alternatives were formulated. A 

minimum requirement for a useful code is that all single errors as well as all 

permutations of two symbols must be detectable. The strength of alternative codes, 

in particular with respect to the detection of double errors was investigated. We gave 

a complete description of the method based on division by 11 (the IS0 norm). In this 

case we were also able to describe the power of the method with respect to the 

detection of three or four errors. We have shown that, using division by 11, all coding 

methods detect the same percentage of errors. In case larger prime numbers are 

used as divisor numerical experiments were performed showing that different 

methods have different detection capabilities for double errors. Best methods were 

experimentally determined. This article illustrates the use of a computer as a heuristic 

and experimental device as advocated e.g. in [ I  I ] .  
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Appendix A 

In this appendix we prove the equivalence of methods (4) and (5) to calculate the 

check digit of the standard ISSN. The official method first computes 

This expression is equal to l l x  + y = I l ( x+ l )  + (y-11), where x EN and y E {0,1, 

. . . ,101 is the remainder of the division of (4) by 11. The check digit is I I -y, unless y = 

0 in which case the check digit is 0. 

The second method calculates 

Expression (5) is equal to I lx '  + y', where x' EN and y' E {O,l, ... ,101 is the remainder 

of the division of (5) by 11. The check digit is y' 

Summing (4) and (5) clearly yields a multiple of 11, which is equal to I l(x+ l )  + (y-I I )  

+ I lx '  + y'. Consequently, y - 11 + y' is also a multiple of 11. However, we also know 

that: 

-11 s y - 1 1  + y l < l l  

This implies that y -I I +y' is either equal to -1 1 or to 0. If y - 11 + y' = -1 1 then y + y' 

= 0. This can only happen if y = y' = 0, and in both cases this is the check digit. If y - 

11 + y' = 0, then y' = 11 - y. Now, y + 0, since y' +I 1. Hence, whatever the value of y 

E {0,1, ..., 101, both methods yield the same check digit. O 



Appendix B 

Theorem 1 

Let n be a natural number, xi E {0,1, ..., 9) for i = I ,..., n and let p be a prime number, 

larger than or equal to 11. Assume further that s E { I  ,..., p-21, i = I ,..., n. If all 04. are 

dizsrent, then the check digit xn+l for the code characterised by X = (xi, ...,x,,), and 

calculated as 

(9) 

is capable of detecting single errors as well as permutations of different symbols. 

Proof. It is easy to see that the algorithm used in formula (9) is equivalent with 

checking if 

with = -1, is a multiple of p. Stated otherwise: the algorithm checks if 

Note that, using (10) implies that we also check the check digit! Assume now that a 

single error has occurred, say at xi, j E { I ,  ..., n+l}. Assume that xj has been replaced 

by jlj This mistake will be detectable if we can prove that 

By (10) this is equivalent with 



aj(xj-  y,)modp#O (19) 

But ai E { - l , l ,  ..., p-2) and xj - y, c {-9,-8 ,... -1,1,... ,9). Since p is a prime number 

larger than or equal to 11, cii (xi - yi) can never be prime. Hence (1 9) is satisfied. 

Assume now that two different symbols have been interchanged, say x, and XI, j,l E 

{ I  ,... ,n+l). Then this mistake is detected if we can show that 

Again this is equivalent with showing that 

x -x, modp#O (a, -all( , l (21) 

Assuming that a, > a, (one of the two must be the largest), we know that a, - al E 

{1, ... ,p -1) and Xi - XI E {-9 ,... ,- 1,1, ... ,9). As p is a prime number larger than or equal 

to 11, (21) is satisfied. This proves the theorem U. 

Note that there is nothing special about primes larger than or equal to 11. A similar 

result can be proved for smaller primes: we only have to restrict xi to values in the set 

{O,l, ... ,p-1). Note further that the theoretical background of the above proof is that 

the finite sets 2, (all remainders after division by p) are finite fields if and only if p is 

prime. The important issue being that in fields the multiplication of two non-zero 

elements can never be zero ([g, Lemma 3.12 and Theorem 3.5). 



Appendix C 

Under the conditions of Theorem 2, 9.1 % of all quadruple errors stay undetected. 

Proof. Now we have a situation where 

must be checked for I I-multiples. 

We partially repeat the argument for double or triple errors since we have to 

know exactly how many times the numbers 0, ..., 10 (mod 11) appear. If the first two 

terms yield 0 (mod 11) (10% of the cases) then the first three terms are never a 

multiple of 11 (Lemma 2). We note here that the numbers 1, ..., 10 (mod 11) are 

equally possible. Using again Lemma 2 for the fourth term, we see that in 10% of 

these cases we have a multiple of 11. 

If the first two terms yield 1 (mod 11) (in 9% of the cases), we have an 11- 

multiple in the first three terms in 10% of the cases, hence never an I I-multiple for 

(22), by Lemma 2. In the other case we have not an I I-multiple (90% of the cases) 

but all numbers 1, ..., 10 (mod 11) are equally possible. Adding the fourth term, using 

Lemma 2, yields an I I-multiple in 10% of the cases. Exactly the same argument can 

be given in the case that the first two terms yield 2, ..., 10 (mod 11). 

Hence, the overall conclusion is: we have a multiple of 11 in (22) in 0.1*0.1 + 

10"0.09*0.9*0.1 = 0.091 = 9.1 % of the cases 0. 



Appendix D 

Numbers of undetected double errors with methods I,II and Ill, for p prime and larger 

than or equal to 11, up to a stabilising value of p. 

Method I 

11 45360 
23 19932 
41 11488 
59 9048 
73 8352 
97 8104 
109 8080 

Method I1 

11 45360 
23 19504 
4'l 9920 
59 6920 
73 5788 
97 4964 
109 4860 
149 4776 

Method Ill 

i l  45360 
23 19504 
41 10532 
59 7920 
73 7028 
97 6584 
109 6500 
149 6492 



Appendix E 

Numbers of undetected double errors for diverse methods (allowable coefficients 

according to Theorem 1) 

at a2 a3 a4 as ~ 1 6  a7 # undetected double errors 

1 2 3 4 5 6 7 37760 
3 4 5 6 7 8 9 37772 
5 6 7 8 9 10 11 37752 best 
4 3 5 6 7 8 9 37772 
4 3 6 5 7 8 9 37772 
I 3 6 5 7 9 8 37776 
6 5 7 8 9 1 2 37764 
6 5 7 8 9 10 11 37752 
6 5 7 8 3 1 2 37772 
4 5 7 8 3 1 2 37752 best 
4 5 6 7 3 1 2 37760 
4 5 6 7 3 2 1 37760 
2 4 6 7 5 3 1 37760 
2 4 6 9 7 5 3 37752 best 
2 3 4 5 6 7 8 37752 best 
9 7 5 3 1 2 4 37752 best 
12 11 10 9 8 7 6 37760 

The first three cases correspond to methods I , I I  and Ill 

p =  17 

a1 a2 a3 a4 a5 a6 a7 #undetected double errors 
1 2 3 4 5 6 7 27936 
3 4 5 6 7 8 9 27932 
9 10 11 12 13 14 15 27776 best 
2 4 6 9 7 5 3 27776 best 
9 7 5 3 1 2 4 27936 
12 11 10 9 8 7 6 28240 
4 5 7 8 3 1 2 27936 
2 3 4 5 6 7 8 27776 best 



Appendix F 

Proposition 

The number of undetected errors using method Ill is the same as for the method 

based on ai = i+ l ,  i=1, ... ,7, a 8  = -1. 

Proof. The mapping 

is clearly a bijection. Putting Y = (yl, ...,y 7) = J(X), we will show that for every X = 

(xl ,... ,x,), xi E {0,1, ... ,9) and every p, prime larger than or equal to 11 

k E Z (the integers), implies 

C ( l + j ) y ,  =@ 
]=I 

I E Z , and vice versa. 

Indeed, if 

7 7 C ( p  - 9 + i)x, = $ then also (I - 9)xi = k'p  
i=l i=l 

Putting j = 8-i yields: 

This proves that there are as many undetected (single, double, triple, ...) errors for 

method Ill as for the method based on ai = i+1, i=1, ... !7, as = -1 O 


