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Abstract-coding of the ISBN and ISSN is studied, and possible alternatives, not all equivalent 
to the official ones, are formulated. A minimum requirement for a useful code is that all single errors 
ss well as all permutations of two symbols must be detectable. The strength of alternative codes, 
in particular with respect to the detection of double errors, is investigated. We give a complete 
description of the method based on division by 11 (the IS0 norm). In this case, we are also able 
to describe the power of the method with respect to the detection of three or four errors. We show 
that, using division by 11, all coding methods detect the same percentage of errors. In case larger 
prime numbers are used es a divisor, numerical experiments were performed showing that different 
methods have different detection capabilities for double errors. The beat methods are experimentally 
determined. @ 2001 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The ISBN (International Standard Book Number) and ISSN (International Standard Serial Num- 
ber) are well-known codes helping the information professional to identify books or serials [l]. 
They consist, respectively, of ten and eight digits of which the last one isa check digit (0, 1, . . . ,9 
or X). Although their origins are different-publishers and booksellers introduced the ISBN, 
while the ISSN was created by UNISIST (a UNESCO project)-they both are IS0 standards (2,3] 
and serve a similar purpose, namely attaching a unique number to every publication. Here, the 
term ‘publication’ should be understood in its full diversity; e.g., hard and soft cover editions re- 
ceive different ISBNs. Using a number instead of the journal or book title is a significant method 
of compression [4]. Moreover, an additional digit, a so-called check digit, is added ensuring that 

The authors are indebted to B. Rousseau (Fontys Hogeschool, Eindhoven, The Netherlands) for help in program- 
ming error detection calculations. We also thank Dr. J.-M. Debois for informing us about (31. 

0895-7177/01/g - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. Typeset by d@-TEX 
PII: SO895-7177(00)00291-O 



944 L. EGGHE AND R. ROUSSEAU 

certain typing (or printing) errors can be detected. Preventing mistakes of this kind has economic 
implications; in this way, wrong deliveries-and hence, extra administrative costs-are prevented 
(or their numbers are at least considerably reduced). 

The ISBN consists of four parts, usually separated by a hyphen. The first part is a regional 

code (e.g., 0 for the English region), the second part is a publisher code (e.g., 444 indicates an 
Elsevier book), the third part uniquely determines the work, and the last part is a check digit. 
Classically, the calculation of the check digit’ for an ISBN is performed as follows: multiply the 
first number by 10, the second one by 9, and so on, until finally the ninth number is multiplied 

by 2. Then, these numbers are added and divided by 11. The check digit is then eleven minus 
the remainder (after division by 11). Note that ‘10’ is written as X. In case the rest is 0, the 
check digit is also 0 (which, by the way, is equal to 11 mod 11, i.e., the rest of 11 after a division 

by 11). 
It was shown by Egghe [5] (based on a note by McMurdo [6] and a letter by MacCormack [7]) 

that this coding method is equivalent to the following one. Multiply the first number by 1, the 
second one by 2, and so on, until the ninth one is multiplied by 9. Add these numbers and divide 
the sum by 11. The check digit is then equal to the rest (where again 10 is written as X). Note 
that this formulation, which can also be found in [8], is slightly easier than the official one. 

We will now rewrite these algorithms as mathematical formulae. Let X = (31,. . . , zg) denote 
the ISBN without the check digit. Then, the first method boils down to calculating 

&1 - kb’&, (1) 
k=l 

taking the rest after a division by 11 and, if this rest is not zero, using 11 minus this rest as a 
check digit. The rest of a number, say n, after division by another number, say d, is denoted as 
n mod d. So, the check digit, following the official method, is 

(ll- ($11 -h).k) modli) modll, (2) 

The second method calculates the simpler form 

(3) 

As an example, the reader may verify that both methods yield 4 as the check digit for 056603515. 
It is well known that this check digit detects all single errors, as well as all permutations of two 
different symbols. We will prove this result in a more general setting (see next section). 

The official method to calculate the check digit of the ISSN is very similar to that for the ISBN: 
multiply the first number by 8, the second one by 7, and so on, until the last one (the seventh) 
is multiplied by 2. Then, all these numbers are added and divided by 11. Again, the check digit 
is 11 minus the rest after a division by 11, where 10 is written as X, and if the rest was 0, the 
check digit is again 0. Also, here a simpler method can be used. Mathematically, the official 
method of calculating a check digit for an ISSN boils down to the calculation of 

k(ll - (k + 2))xk 
k=l 

mod 11, (4 

where X = (xi,... ,x7) denotes an ISSN without check digit. The alternative method attains 
the same result by performing the simpler calculation (5) (a proof is given in Appendix A), 

(g(k+2)xk) modll. 
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So, the first advice we want to give is that it is probably preferable to teach formulae (3) and (5) 
in LIS-schools, because they are simpler to explain than the official versions. 

It is now not surprising that we consider, in analogy of (3), the expression 

(6) 

and wonder if it also yields a good (perhaps even better) method of determining a check digit 
for an ISSN. Although (6) is also capable of detecting all single errors and all permutations 
of different symbols (see next section), it is not equivalent to (4) or (5). Indeed, the ISSN of 
Mathematical and Computer Modelling is 08957177, while (6) would give 10, i.e., X, as the check 
digit. 

More generally, one could consider formulae such as 

mod 11, (7) 

with ok E Ms, and with 9 as upper limit of the index instead of 7 for an ISBN. Even more 

generally, one could study 

In the next section, we will study (7) and give a proof that this method is (almost) always 
capable of detecting single errors and permutations of two different symbols. This result will be 

valid under fairly general conditions, including the cases mentioned earlier, and for other divisors 

than 11. 

In the third section, we will consider the natural question: which of these methods is best? 

Indeed, since we have so many nonequivalent methods of calculating a check digit, all capable of 
detecting single errors and the permutation of two different symbols, which method detects the 
most double errors? Note that no method can find all double errors if we include the check digit. 
Indeed, a single error in one of the first seven symbols can always be ‘corrected’ by a compensating 
error in the check digit. This kind of double error can never be detected. Yet, many double errors 
in the first seven symbols can never be detected by one single method (examples follow) although 
different methods may fail to detect other double errors. Hence, it is interesting to investigate 
this more deeply. This is done in the third section with 11 as the divisor. Here, we prove that 
although different methods generally detect different double errors, the same number of double 
errors stays undetected. It is indeed shown that exactly 10% of all double errors stay undetected. 
Some consequences for the case of three or four mistakes are drawn. 

Section 4 investigates the same issues but now in the case of other divisors. We introduce the 

important case of division by 13 (here one can use 0,l , . . . (9, X, Y, 2 as check digits). We show, 
by computer calculations, that now different methods may perform differently. This contrasts 
sharply with the standard case of division by 11. Extensive computer calculations give hints for 
the best methods. This is important in case one wants to have a higher detection rate. These 
investigations may also be useful when in time the number of digits in the ISBN or the ISSN 
must increase, as for instance when using DOIs (digital object identifiers) [9]. 

The paper closes with a fifth section in which we study high values of d (the divisor) in order 
to find bounds, i.e., minimum values for the number of undetected double errors. We end this 
section by proposing a number of open questions for further research. 
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2. GENERAL MULTILINEAR 
FRAMEWORK FOR DETECTING SINGLE 

ERRORS AND PERMUTATIONS 
OF TWO DIFFERENT SYMBOLS 

In this section, ~1, . . . , zn denote not necessarily different numbers taken from the set (0, 1, 

.“, 9). The symbols crk denote different numbers from the set (1,. . . ,p - 2}, where p is a given 
prime number larger than or equal to 11. The check digit y for the code X = (51, . . . , 2,) is then 
obtained as follows: 

mod p. (9) 

We will further represent y by one symbol: a one-digit number or a letter. This means that an 
n-digit code is finally represented as an (n + l)-digit sequence. 

We can say that this (n + l)-digit code is acceptable if 

with (un+l = -1. 

We prove the following result for the procedure outlined above. 

THEOREM 1. Let n be a natural number, xi E (0, 1, . . . ,9} for i = 1,. . . , n, and let p be a prime 
number, larger than or equal to 11. Assume further, that cri E (1,. . . ,p - 2}, i = 1,. . . , IL If 

all cui are different, then the check digit xn+i for the code characterized by X = (xi,. . . ,x,) 

and calculated as in equation (9) is capable of detecting single errors as well as permutations of 
different symbols. 

PROOF. Given in Appendix B. 

NOTE. By the term ‘single error’, we mean a replacement of zi, i = 1,. . . , n + 1, by another digit 
from the set {O,l,. . . ,9}. We assume this also in the proof of the theorem (Appendix B). Yet, 
zn+i can also be X. If, however, the check digit must be X and it is not, this is immediately 
detected by the algorithm. Also, if the check digit is X and it is interchanged with another digit 
(that can never be X), this is also immediately detected as X cannot occur among the first n 
symbols. 

EXAMPLE 1. Classical ISBN. Here, n = 9, CQ = i, for i = 1 , . . . (9 (in the alternative formulation), 

cris = -1, p = 11. 

EXAMPLE 2. Classical ISSN. Here, n = 7, ai = i + 2, for i = 1,. . . ,7 (in the alternative 
formulation), os = -1, p = 11. 

EXAMPLE 3. Nonequivalent variant for ISSN. Take n = 7, CQ = i, for i = 1,. . . ,7, CQ = -1, 
p = 11, cf. (6). 

EXAMPLE 4. ISBN-like code using p = 13. Take n = 9, cri = i, for i = 1,. . . ,9, arc = -1, 
p = 13. The check digit for 056603515 b ecomes 2 here (it was 4 for the official method). As the 
remainder can now be 11 or 12, we will use Y if x ia = 11 and 2 if x10 = 12. In this way, we 

obtain the acceptable code: 0566235152. 

EXAMPLE 5. ISSN-like code using p = 13. Take n = 7, cri = i + 2, for i = 1,. . . ,7, as = -1, 
p = 13. The check digit for Mathematical and Computer Modelling would now be 6. 

EXAMPLE 6. ISSN-like code using 13, another nonequivalent variant. Here, we take n = 7, 
LYE = i, for i = l,..., 7, cys = -1, p = 13. The check digit for Mathematical and Computer 
ModeEling would now be X (the remainder is 10). 

Note that from p larger than 11 on, the numbers CQ can be larger than 10. Note further that 
we do not require the aa to be monotone (increasing or decreasing). Theorem 1 stays valid as 
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long a~ the pi are different, not equal to zero, and smaller than p - 1. This leads to an enormous 
potential for ISBN- and ISSN-like codes. It would now be interesting if we could detect those 
codes that detect the least amount of double errors. The next, section is devoted to this for 
p = 11. The general case is studied in the fourth section. 

3. DETECTING DOUBLE ERRORS: THE CASE p = 11 

As in Section 2, we assume that the algorithm verifies if equation (10) holds, here, with p = 11. 

Theai,i=l,..., n, are different numbers taken from the set, (1,. . . ,9), an+1 = -1. Note that 
this includes the official ISBN and ISSN algorithms. 

Suppose we have a double error, say for i and j, i # j, i,j E (1,. . . , n + 1). So, instead of (lo), 

we check if 

( 

n+l 

c CQZ~ + Criyi + OljlJj 

1 

mod 11 = 0, (11) 
k=l 

k#G 

where zi # yi and xj # 9.j. Now, (11) is satisfied if and only if 

(CQ(Z~ - pi) + aj(xj - yj)) mod 11 = 0. (12) 

How many of all double errors stay undetected? One could argue that there are (nil) possible 

combinations of two places out of n + 1, and that in each place there are nine possible errors 
leading to 9.9(“:‘) double errors. (This would give 2268 cases for the ISSN (n = 7) and 3645 
cases for the ISBN). Yet, this reasoning is not, correct. Indeed, criterion (12), which is the only 
necessary and sufficient condition for nondetection of a double error, is dependent on the values 
of i and j (via CQ and aj) and on the IF&ES xi, pi, Sj, and yj. Of course, only the differences 

Xi - yi and xj - yj matter, but these occur with different frequencies, and hence, should be 
weighted differently. These weights are given in Table 1. 

Table 1. Weights for differences q - z/i or zj - yj. 

Difference Weight 

f9 

f8 

f7 

f6 

f5 

f4 

f3 

f2 

fl 

Indeed, xi - yi = 9 can only come from xi = 9 and yi = 0, while, e.g., xi - y$ = -7 is obtained 
if xi = 0 and yi = 7, or xi = 1 and yi = 8, or if xi = 2 and yi = 9. The other weights are 
similarly obtained. All this leads to the following lemma. 

LEMMA 1. There are 81OOn(n + 1) possible double errors. 

PROOF. We have four parameters in (12): i,j E (1,. . . ,721, xi-yi, xj-yj E (-9,. . . , -l,l,. . . ,9} 
with weights as described above. Hence, this gives a total of 

(n + l)n.22 2 kl = 8100n(n + 1) cases. 
k,l=l 

(13) I 
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This amounts to 729,000 cases for the study of ISBNs (n = 9) and 453,600 cases for the study 

of ISSNs (n = 7). 

We will next answer the question of how many double errors stay undetected. First, we need 

another lemma. 

LEMMA 2. For any a E {-l,l,. . . ,9}, fixed, the function 

v + (czv) mod 11, (14) 

with 21 E (-9,. . . , -1, 1, . . . ,9} weighted as in Table 1, is surjective with range (0,. . . , lo}, 
attaining each value exactly nine times. 

PROOF. The proof proceeds by considering all cases. First, we take (Y = -1. Then, we have the 

following values (with weights between accolades): 9(l), 8{2}, 7{3}, 6{4}, 5{5}, 4{6}, 3{7}, 2{8}, 
l(9), -1 = lOmod11{9}, -2 = 9mod11{8), -3 = 8mod11{7}, -4 = 7mod11{6}, -5 = 

6mod11{5}, -6 = 5mod11{4), -7 = 4mod11{3}, -8 = 3mod11{2}, -9 = 2modll{l}. This 

proves that working mod 11 yields every possible result, each exactly nine times. 

We will next check formula (14) for a: = 9. Again, we write weights between brackets. All 
calculations are modll. This gives the following results: 9*(-9) = 7(l), 9*(-8) = 5{2}, 

9*(-7) = 3{3}, 9*(-6) = l(4), 9*(-5) = 10{5}, 9*(-4) = 8{6}, 9*(-3) = 6{7}, 9*(-2) = 4{8}, 

9*(-l) = 2{9}, 9*1 = 9{9}, 9*2 = 7{8}, 9*3 = 5{7}, 9*4 = 3{6}, 9*5 = l(5), 9*G = 10{4}, 

9*7 = 8{3}, 9*8 = G(2), and finally 9*9 = 4(l). This proves (14) for CY = 9. We leave the other 

cases to the reader. I 

THEOREM 2. The multilinear error-checking method (10) with p = 11 always detects 90% of all 

double errors. This result is true whatever the precise, but different, values of ai E (1,. . . ,9}, 

i= 1,. . . , n, and with an+1 = -1. Consequently, 810n(n+l) double errors are always undetected. 

PROOF. We use criterion (12) to check when aa(si - pi) + CX~(Z~ - yj) is a multiple of 11. By 

Lemma 2, ai(zc - ~a) leads to nine times the values { 1, . . . , 10). Similarly, CXj(Sj - pj) gives nine 

times each value of { 1, . . . , 10). It is now easy to see that exactly 10% of all sums are a multiple 

of 11. These errors will stay undetected. By Lemma 1, this number is 810n(n + 1). I 

NOTE 1. The above result implies that there is no best method (set of as) amongst the accept- 

able ones (cf. Theorem 1). Consequently, we wonder why the IS0 did not choose the simplest 
method (6) as a standard. 

NOTE 2. It is possible to find codes that detect a smaller percentage of double errors. Indeed, 

take (~1 = 1, a2 = 11 = 0, as = 10, 04 = 9, ~6 = 8, CQ = 7, ~7 = 6, as = -1. Then, we 

have calculated (by computer) that only 34,020 double errors, i.e., 7.5%, stay undetected (for 

the ISSN), while the official method leaves 10% double errors undetected. The reason for this 

surprising result is that, because a2 = 0, double errors for which i = 2 and j # 2 are all detected. 

This decreases the number of undetected double errors. Yet, there is a price to be paid: all single 

errors occurring at the second digit are undetected! We, therefore, do not consider such methods. 

The arguments leading to Lemma 2 and Theorem 2 also yield precise information on the 
number of undetected triple and quadruple errors. 

THEOREM 3. Under the conditions of Theorem 2, 9% of all triple errors are undetected. 

PROOF. By Lemma 2 and the argument of Theorem 2, we see that (12) yields 0 mod 11 in 10% 
of the cases and each other remainder in exactly 9% of the cases. For triple errors, we have to 

check 

G(xi - Y$)+aj(zj -Yj)+ Wc(2k -f/k), (15) 

where Qi,aj,ak E {-1111eeaq9}, %>Yi,~j,yj,~k~Yk E {0,~~~99}~ zi # Yil Xj # Yjv xk # Yk; 

i,j,k E {l,... ,n + 1). If the first two terms form a multiple of 11, we know, by Lemma 2, 
that (15) is never an ll-multiple. In each of the ten cases that the first two terms are not an 
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ll-multiple (90% of the cases), we see that (15) is an ll-multiple in 10% of the cases. Hence, we 
conclude that (15) is an ll-multiple in 9% of the cases. I 

Note that more triple errors than double errors are detected. We can also show that 9.1% of 
all quadruple errors are undetected (see Appendix C). 

4. DETECTING DOUBLE ERRORS: GENERAL CASE 

In this section, we will study the multilinear coding algorithm based on equation (lo), where p is 

any prime larger than or equal to 11. Recall that (~1.. . ,q, E (1,. . . ,p-2), CY~+~ = -1. Suppose 
we have a double error at i # j, i, j E (1,. . . , n + 1). As in the beginning of Section 3, we can 

deduce, via (ll), that (12) is the criterion to know whether a double error is detected, but now 
with 11 replaced by p. This means we have to check when 

(oi(zi - K> + o~j(zj - yj)) modp = 0. (16) 

Equation (16) is a generalization of formula (2.2) in [lo]. Note that the weights of Table 1 also 
apply here (they are independent of the divisor p). Also, Lemma 1 applies here: there still are 
8100n(n + 1) possible double errors. We have shown that if p = 11, there were always (inde- 
pendent, with some mild restrictions, of the choice of the as) lo%, i.e., 810n(n + 1) undetected 
double errors. This result is not any more true in general. To illustrate this behavior, some 

examples suffice. 
We first introduce some notation. We will refer in this section to Methods I-III, by which we 

will mean the following. 

METHOD I. oi = i (i = 1,. .., 7), as = -1 (this is sometimes called a positional check prod- 

uct [lo]). 

METHOD II. ai = i + 2 (i = 1,. . . ,7), (_ys = -1. 

METHOD III. oi = p - 9 + i (i = 1,. . . ,7), os = -1. 

Note that Methods II and III represent the official ISSN in case p = 11. 
Using a PASCAL program, we were able to compute that, for p = 13, Method I does not detect 

37,760 double errors (8.325%), Method II does not detect 37,772 cases (8.327%), and Method III 
does not detect 37,752 double errors (8.323%). Although the percentage differences are small, 
it is remarkable that the absolute numbers are different. Recall that for p = 11, we always had 
exactly 10% of undetected double errors. Anyway, for p = 13, Method III performs best. 

We repeated the computation for p = 17. Here, Method I does not detect 27,936 cases, 
Method II 27,932 cases, and Method III 27,776 cases, i.e., somewhat more than 6%. Here again, 
all methods differ and Method III performs best. However, this is not always the case. For, 
e.g., p = 97 we computed the following number8 of undetected double errors: 8104 for Method I 
(1.787%), 4964 for Method II (1.094%), and 6584 for Method III (1.451%). Here, differences are 
larger and Method II performs best. From our computations, we see that Method III performs 
best up to p = 17, for p = 19 and 23, Methods II and III perform equally well, and from p = 29 

on, Method II is best. The simple Method I is never best (except of course for p = 11, where all 
methods perform equally well). 

Our intuition is that the overall detecting capacity should increase with increasing p. We found 
this true as a general trend, but there were some small deviations from monotonicity (e.g., for 
p = 103). We refer the reader to Appendix D for complete tables of undetected double errors. 
These tables run through all primes larger than or equal to 11 (the fifth prime) up to a certain 
limit beyond which no changes occur anymore (see more on this further on in Section 5). The 
graph8 corresponding to these methods can be found in Figures 1 and 2. 

Based on our observations, we would advise that if, in the future, one would change the 
method to compute ISSNs, Method III is preferred for p = 13. Note that p = 13 is a natural 
extension involving only check digits of the form 0,l . . . ,9,X, Y, 2. There is, moreover, a clear 
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Figure 1. Number of undetected double errors for the three methods, beginning 
with 11 (the fifth prime) and ending with 131 (the 32”d prime). 
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Figure 2. Differences between the number of undetected double errors: Method I- 
Method II and Method I-Method III. 

gain (10% - 8.323% = 1.677%) in detected double errors. This means that an additional 16.77% 

of the undetected double errors (for p = 11) are now detected (p = 13). Of course, other methods, 

besides the three presented here, could be tried (in view of Theorem 1). Appendix E shows some 

results that we have computed for p = 13. It seems (although we cannot prove this) that the 

best value of 37,752 undetected double errors (as in Method III) cannot be improved upon. A 

similar result was found for p = 17 (Appendix E). 

5. BOUNDS FOR UNDETECTED DOUBLE ERRORS 
AND SOME OPEN PROBLEMS 

One might think that if the divisor p is taken high enough, the number of undetected double 

errors can be taken as low as one wishes. This is not so. Indeed, all the cases where 

W(G - Yi) + a&j - yj) = 0, (17) 
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for Cri,olj E (-1, -1,. . . ,9}, Zi,yi,Zj,yj E (0,. . . ,9}, z:i # &, Xj # Yj, i, j E (1,. . . ,n + 1) are 
never detected, whatever the value of p. Note the zero on the right-hand side, not zero mod p. 
Let us examine this for the three methods studied in the previous section (n = 7). In Method I, 
the highest possible value for (17) is 7 x 9 + 6 x 9 = 117. So, from p = 127 on (the first prime 
larger than 117), we have reached the case that (12) can only be a p-multiple if (17) is true. 
Our computations show that there are 8080 undetected double errors for p = 127, so this is the 

absolute minimum of undetected double errors for Method I. Note also that for this argument to 
be true, the divisor does not have to be a prime. Indeed, our computations confirm that from 118 
on, the number of undetected double errors, using Method I, is 8080. Of course, it may happen 
(and it usually does) that this number is already observed for a smaller value of the divisor. 

Similarly, for Method II, we have a maximum value for (17) equal to 9 x 9 + 8 x 9 = 153. 
The minimum number of undetected double errors is here 4776. We cannot perform a similar 
calculation for Method III as p is involved in the value of the coefficients a. We can show, however, 
that the number of undetected errors for Method III is the same as the number of undetected 
errors for (2,3, . . . ,8), i.e., pi = i + 1, i = 1, . . . , 7 (see Appendix F). Hence, the maximum value 
for (17), using Method III, is 8 x 9 + 7 x 9 = 135. Our computer algorithm yields a limiting value 
of 6492 undetected double errors. See also the tables in Appendices D and E. 

A Method to Detect All Double Errors 

From the previous reasoning, it is clear that the multilinear approach with one check digit 
will never detect all double errors. Yet, using two check digits, namely one obtained for p = 11 
and one for p = 13 (with, e.g., Method I), finds all double errors, as is readily seen. Note that 
the method proposed by Chu [lo] is unrealistic. Sarwate [ll], on the other hand, shows that a 
general solution for double error correcting can be obtained using Heed-Solomon codes. 

Finally, we end this section by stating some open problems. 

PROBLEM 1. Formulate a new algorithm, with one check digit (or letter), such that all single 
and double errors are detected (or prove that this is not possible). 

PROBLEM 2. Determine and prove formulae for the number of undetected double errors for p 

larger than 11 (cf. Theorem 2). 

PROBLEM 3. Explain why, for lower p, Method III performs best, while, for larger p, Method II 
is better. 

PROBLEM 4. Explain why the detecting capacity for double errors is not monotone in p. 

PROBLEM 5. Explain the bounds described above. What other ‘minimal’ values (with respect 
to a certain method or group of methods) can be determined? 

PROBLEM 6. Can the observations made in this article be obtained from more general group 
theoretic results? 

6. CONCLUSION 

Coding of the ISBN and ISSN was studied, and alternatives were formulated. A minimum 
requirement for a useful code is that all single errors as well as all permutations of two symbols 
must be detectable. The strength of alternative codes, in particular with respect to the detection 
of double errors, was investigated. We gave a complete description of the method based on 
division by 11 (the IS0 norm). In this case, we were also able to describe the power of the 
method with respect to the detection of three or four errors. We have shown that, using division 
by 11, all coding methods detect the same percentage of errors. In case larger prime numbers are 
used ss a divisor, numerical experiments were performed showing that different methods have 
different detection capabilities for double errors. Best methods were experimentally determined. 
This article illustrates the use of a computer as a heuristic and experimental device in informetrics 
as advocated, e.g., by Leimkuhler [12]. 
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APPENDIX A 

In this appendix, we prove the equivalence of methods (4) and (5) to calculate the check 
digit of the standard ISSN. The official method first computes (4). This expression is equal to 
llz+y = ll(z+l)+(y-ll), whereezlVandyE {O,l,... , 10) is the remainder of the division 
of (4) by 11. The check digit is 11 - y, unless y = 0, in which case the check digit is 0. 

The second method calculates (5). Expression (5) is equal to 11~’ + y’, where x’ E N and 
2J’ E {O,l,. . . , 10) is the remainder of the division of (5) by 11. The check digit is y’. 

Summing (4) and (5) clearly yields a multiple of 11, which is equal to ll(z + 1) + (y - 11) 
+ 11~’ + y’. Consequently, y - 11 + y’ is also a multiple of 11. However, we also know that 

-11 5 y - 11+ y’ < 11. 

Thisimpliesthaty-11+5/‘iseitherequalto-11ortoO. Ify-ll+y’=-ll,theny+y’=O. 
This can only happen if y = y’ = 0, and in both cases, this is the check digit. If y - 11 + y’ = 0, 
then 9’ = 11 - y. Now, y # 0, since y’ # 11. Hence, whatever the value of y E (0, 1, . . . , lo}, 
both methods yield the same check digit. I 

APPENDIX B 

PROOF OF THEOREM 1. It is easy to see that the algorithm used in formula (9) is equivalent to 
checking if 

n+l 

c akxk, (18) 

k=l 

with on+1 = -1, is a multiple of p. Stated otherwise, the algorithm checks if equation (10) holds. 
Note that using (10) implies that we also check the check digit! Assume now that a single error 
has occurred, say at xj, j E (1, . . . , n+ 1). Assume that xj has been replaced by yj. This mistake 
will be detectable if we can prove that 

(19) 

By (lo), this is equivalent to 
oj(xj - yj)modp # 0. (20) 

But oj E {-I,I.,...,p- 2) and xj - yj E { -9, -8, . . . , -1, 1, . . . ,9}. Since p is a prime number 
larger than or equal to 11, o.j(zj - yj) can never be prime. Hence, (20) is satisfied. 

Assume now that two different symbols have been interchanged, say xj and xl, j, 1 E (1,. . . , 
7% + 1). Then, this mistake is detected if we can show that 

n+l 

c okXk -I- OljXl i- CQXj modp # 0. (21) 

/tTj=jtl 

Again, this is equivalent to showing that 

(oj - ol)(xj - ~1) modp # 0. (22) 

Assuming that oj > crl (one of the two must be the largest), we know that aj - al E { 1, . . . , p- 1) 
and xj - ~1 E (-9,. . . , -1, 1, . . . , 9). As p is a prime number larger than or equal to 11, (22) is 
satisfied. This proves the theorem. I 

Note that there is nothing special about primes larger than or equal to 11. A similar result 
can be proved for smaller primes: we only have to restrict xi to values in the set (0, 1, . , . , p - 1). 
Note further that the theoretical background of the above proof is that the finite sets 2, (all 
remainders after division by p) are finite fields if and only if p is prime. The important issue is 
that in fields, the multiplication of two nonzero elements can never be zero ([B, Lemma 3.12 and 
Theorem 3.51). 
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APPENDIX C 

Under the conditions of Theorem 2, 9.1% of all quadruple errors stay undetected. 

PROOF. Now, we have a situation where 

953 

4 

&id (q - &) (23) 
j=l 

must, be checked for ll-multiples. 

We partially repeat the argument for double or triple errors since we have to know exactly how 
many times the numbers 0,. . . , 10 (mod 11) appear. If the first two terms yield 0 (mod 11) (10% 
of the cases), then the first three terms are never a multiple of 11 (Lemma 2). We note here that 
the numbers 1 , . . . ,10 (mod 11) are equally possible. Again using Lemma 2 for the fourth term, 
we see that in 10% of these cases, we have a multiple of 11. 

If the first, two terms yield 1 (mod 11) (in 9% of the cases), we have an ll-multiple in the first 
three terms in 10% of the cases, hence never an ll-multiple for (23), by Lemma 2. In the other 
case, we do not have an ll-multiple (90% of the cases) but all numbers 1,. . . , 10 (mod 11) are 
equally possible. Adding the fourth term, using Lemma 2, yields an ll-multiple in 10% of the 
cases. Exactly the same argument can be given in the case that the first two terms yield 2,. . . , 10 
(mod 11). 

Hence, the overall conclusion is that we have a multiple of 11 in (23) in 0.1 x O.l+ 10 x 0.09 x 0.9 
x 0.1 = 0.091 = 9.1% of the cases. I 

APPENDIX D 

Numbers of undetected double errors with Methods I-III, for p prime and larger than or equal 
to 11, up to a stabilizing values of p. 

Method I 

11 45360 13 37760 17 27936 19 24664 

23 19932 29 15636 31 14640 37 12480 

41 11488 43 11108 47 10400 53 9604 

59 9048 61 8904 67 8552 71 8408 

73 8352 79 8240 83 8196 89 8136 

97 8104 101 8088 103 8100 107 8080 

109 8080 113 8080 127 8080 131 8080 

Method II 

11 45360 13 37772 17 27932 19 24360 

23 19504 29 14772 31 13628 37 11088 

41 9920 43 9424 47 8564 53 7596 

59 6920 61 6684 67 6192 71 5908 

73 5788 79 5480 83 5336 89 5136 

97 4964 101 4940 103 4948 107 4872 

109 4860 113 4832 127 4808 131 4776 

149 4776 151 4776 
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I Method III 

11 45360 

23 19504 

41 10532 

59 7920 

73 7028 

97 6584 

109 6500 

149 6492 

13 

29 

43 

61 

79 

101 

113 

151 

37752 17 27776 19 24360 

14984 31 13968 37 11620 

10088 47 9340 53 8552 

7760 67 7336 71 7124 

6828 83 6748 89 6648 

6512 103 6532 107 6524 

6516 127 6500 131 6492 

6492 

APPENDIX E 

Numbers of undetected double errors for diverse methods (allowable coefficients 
Theorem 1). 

p = 13 

ffl a2 a3 a4 a5 (Ye ff7 # Undetected Double Errors 

The first three cases correspond to Methods I-III. 

p = 17 

1 2 3 4 5 6 7 37760 

3 4 5 6 7 8 9 37772 

5 6 7 8 9 10 11 37752 

4 3 5 6 7 8 9 37772 

4 3 6 5 7 8 9 37772 

4 3 6 5 7 9 8 37776 

6 5 7 8 9 1 2 37764 

6 5 7 8 9 10 11 37752 

6 5 7 8 3 1 2 37772 

4 5 7 8 3 1 2 37752 

4 5 6 7 3 1 2 37760 

4 5 6 7 3 2 1 37760 

2 4 6 7 5 3 1 37760 

2 4 6 9 7 5 3 37752 

2 3 4 5 6 7 8 37752 

9 7 5 3 1 2 4 37752 

12 11 10 9 8 7 6 37760 

best 

best 

best 

best 

best 

a1 ff2 a3 a4 ff5 a3 ff7 # Undetected Double Errors 

1 2 3 4 5 6 7 27936 

3 4 5 6 7 8 9 27932 

9 10 11 12 13 14 15 27776 best 

2 4 6 9 7 5 3 27776 best 

9 7 5 3 1 2 4 27936 

12 11 10 9 8 7 6 28240 

4 5 7 8 3 1 2 27936 

2 3 4 5 6 7 8 27776 best 

according to 
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APPENDIX F 

PROPOSITION. The number of undetected errors using Method III is the same % for the method 
basedonai=i+l,i=1,...,7,crs=-1. 

PROOF. The mapping 

J:{O )..., 9}'-+{0 ,..., 9}':(x1,..., X')"(X',..., Xl) 

is clearly a bijection. Putting Y = (~1,. . . , ~7) = J(X), we will show that for every X = 

(Xl,..., %), xi E {&I, * * * ,919 and every p, prime larger than or equal to 11, 

7 

Cc 
p - 9 + i)Si = kp, 

i=l 

k E Z (the integers), implies 

k( 1 1+j yj =lp, 
j=l 

1 E Z, and vice versa. Indeed, if 

7 7 

C(P - 9 + i)si = kp, then also c(i - 9)si = Pp. 
i=l 

Putting j = 8 - i yields 

i=l 

&(j + 1)x8-j = k”p, 
j=l 

or &(j + l)yj = Zp, 
j=l 

This proves that there are as many undetected (single, double, triple, . . . ) errors for Method III 
as for the method based on Q( = i + 1, i = 1,. . . ,7, as = -1. I 

1. 
2. 

3. 
4. 

5. 
6. 
7. 
8. 
9. 

10. 

11. 

12. 
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