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Abstract

We analyze the arithmetic complexity of the feasibility problem in
linear optimization theory as a quantifier-elimination problem. For the
case of polyhedra defined by 2n halfspaces in Rn we prove that, if dense
representation is used to code polynomials, any quantifier-free formula
expressing the set of parameters describing nonempty polyhedra has size
Ω(4n).

1 Introduction

For real closed fields, modern quantifier-elimination algorithms work in doubly
exponential time in the number of quantifier alternations of the input formula
(see [BPR06]). Davenport and Heintz [DH88] gave a doubly exponential lower
bound for the general quantifier-elimination problem over the reals, for dense
and sparse codification of polynomials. Thus, in order of magnitude, upper and
lower complexity bounds meet for this kind of data structure.

A natural question is whether using boolean arithmetic circuits to codify
first order formulas, a faster algorithm can be implemented for the elimination
of quantifiers. Not much is known about lower bounds for this kind of data struc-
tures (see Heintz-Morgenstern [HM93]) and no algorithm has been designed sub-
stantially improving—in worst-case complexity—the ones using classical data
structures.
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programme, Project n. FP6-14915, GeoPKDD: Geographic Privacy-Aware Knowledge Dis-
covery and Delivery.
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In this paper we analyze the feasibility problem over the reals in linear
optimization theory as a quantifier-elimination problem. We concentrate on the
impact of data structures in quantifier elimination.

The feasibility problem can be informally stated as: given a matrix H ∈
Rm×n and h ∈ Rm decide whether there exists an x ∈ Rn such that H · x ≤ h.

This is a classic example of quantifier-elimination problem. We prove that,
for m = 2n, any quantifier-free formula using dense representation of polynomi-
als and expressing the set {(H|h) ∈ Rm×(n+1) | ∃xH · x ≤ h}, must have size
Ω(4n).

As a corollary we get a quasi-exponential lower bound in the size of the
input formula for the elimination of one quantifier block. The proof is based on
the number of different limiting hypersurfaces of the set to be described; these
hypersurfaces turn to be intrinsic to the set in the sense that any description
of the set must involve the descriptions of its limiting hypersurfaces. Lazard
used a similar technique to prove the optimality of solutions to two classical
quantifier-elimination problems (see [Laz88]).

Although the Ellipsoid algorithm solves the feasibility problem over the ra-
tional numbers in polynomial time in the bit model (see [Kha79]) it is an open
problem whether there exists a boolean arithmetic circuit, of size polynomial
in n and m, codifying such a quantifier-free description. From our results it
follows that, even for this representation, polynomials describing all limiting
hypersurfaces must intervene in the circuit.

This paper is organized as follows: in Section 2 we state the feasibility prob-
lem as a quantifier-elimination problem and define the set I(m,n) ⊆ Rm×(n+1) as
the set of parameters defining m half-spaces in Rn with nonempty intersection.
In Section 3 we define the notions of limiting hypersurface of a semi-algebraic set
and of a polynomial intervening in a formula. Afterwards, we prove Proposition
3.2 stating that if Z is a limiting hypersurface for a set W and Q is a irreducible
polynomial defining Z, then Q intervenes in any quantifier-free description of
W . A section devoted to the study of the geometry of the set I(m,n) is missing
in this extended abstract. Finally, in Section 4 we state the intermediary results
leading to the proofs of the lower bounds.

2 The Parametric Feasibility Problem

The feasibility problem for linear optimization over the reals can be stated as:
Given a matrix H ∈ Rm×n and a column vector h ∈ Rm determine whether

there exists x ∈ Rn such that H · x ≤ h.

2.1 A Quantifier-Elimination Problem

The above decision problem can be stated as a quantifier-elimination problem.
Let us fix the notation. For each n,m ∈ N, m ≥ n+1, we consider the variables
x := (x1, . . . , xn) and call parameters the elements in the matrix
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T :=


t
(1)
1 . . . t

(1)
n b(1)

...
. . .

...
...

t
(m)
1 . . . t

(m)
n b(m)

 .

We further define the formulas

σn
i (x, T ) := t

(i)
1 · x1 + . . .+ t(i)n · xn − b(i) ≤ 0, (i = 1 . . .m),

φ(m,n)(T ) := ∃xσn
1 (x, T ) ∧ . . . ∧ σn

m(x, T ) (2.1)

and call I(m,n) the realization of φ(m,n) in the parameter space. Observe that
I(m,n) ⊆ Rm×(n+1); it is the set of parameters defining m half-spaces in Rn

with nonempty intersection.
Finding quantifier-free formulas ψ(m,n) expressing the sets I(m,n) is a way

to solve the parametric feasibility problem. We will prove that they do not exist
formulas ψ(m,n) expressing the sets I(m,n) with size bounded by a polynomial
function in m and n.

2.2 Statement of the Main Theorem

Theorem 2.1. For m = 2n, the formula φ(m,n) defined in Equation (2.1) has
size O(n2log(n)) and any quantifier-free equivalent formula using dense repre-
sentation of polynomials has size Ω(4n).

In the next pages we prove this theorem; we show that the set I(2n,n), deter-
mined taking m = 2n, has an exponential (in n) number of limiting hypersur-
faces (Corollary 4.3), each of them given by a different irreducible polynomial (a
determinant). All these polynomial (or multiples of them) have to figure in any
quantifier-free formula expressing the set I(2n,n) (Proposition 3.2). From this
and a last immediate result (Proposition 4.4), we get the lower bound for the size
of any quantifier-free formula expressing this set. In that way, we will get the
following quasi-exponential lower bound for the elimination of one existential
quantifier block using dense representation.

Corollary 2.2. If polynomials are codified using the dense representation then
any algorithm for the elimination of one existential block performs Ω(2

√
L) op-

erations in the worst case on inputs of length L.

3 Limiting Hypersurfaces

Let W ⊆ Rk be a semi-algebraic set. We give the definition of limiting hyper-
surface of W and prove that a description of each of these hypersurfaces must
intervene in any quantifier-free description of W . We can say that limiting
hypersurfaces of a set are intrinsic.
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For definitions (from real algebraic geometry) for the notions of semi-algebraic
set, dimension of a set, set of zeros of an ideal, we refer the reader to [BCR98].

We denote by ∂W the set of points in the border of W (not interior nor
interior to the complement). We call Z ⊆ Rk an irreducible hypersurface if
dim(Z) = k − 1 and there exists an irreducible polynomial P ∈ R[x1, . . . , xk]
such that Z = Z(P ) = {(x1, . . . , xk) ∈ Rk | P (x1, . . . , xk) = 0}.

Definition 3.1. Let Z be an irreducible hypersurface in Rk. We call Z a
limiting hypersurface ofW if its intersection with the border ofW has dimension
k − 1 .

We consider first order formulas built from atomic formulas of the form
P = 0, P ≤ 0, where P ∈ R[x1, . . . , xk] is a polynomial with real coefficients.
Let ψ be a first order formula and P ∈ R[x1, . . . , xk]. If ψ contains an atomic
subformula of the form P = 0 or P ≤ 0, we say that P appears in ψ. If a
nonzero polynomial P appears in ψ and Q ∈ R[x1, . . . , xk] is nonconstant and
divides P , then we say that Q intervenes in ψ.

Proposition 3.2. Suppose that W ⊆ Rk is a semi-algebraic set described by
the quantifier-free formula ψ. Let ZQ be a limiting hypersurface for W and let Q
be the (unique) monic irreducible polynomial describing ZQ. Then Q intervenes
in ψ.

Proof. Let us call P1, . . . , Ps the polynomials appearing in ψ and suppose,
without loss of generality, that none of them is the zero polynomial. We call
U = ZQ ∩ ∂W and we remark that, by hypothesis, it is a semi-algebraic subset
of ZQ of dimension k − 1.

First, we remark that since dim(ZQ) = k − 1 and Q is irreducible, a par-
ticular form of the real Nullstellensatz for principal ideas (see Theorem 4.5.1 in
[BPR06]) implies that a polynomial P ∈ R[x1, . . . , xk] vanishes on ZQ = Z(Q)
if and only if Q divides P . Then, it remains to show that at least one Pj

(1 ≤ j ≤ s) vanishes on ZQ.
To prove this, we consider, for any u ∈ U , the sign conditions C(u) ∈

{−1, 0, 1}s satisfied by the polynomials P1, . . . , Ps in this point. It is clear that
the truth value of the formula ψ in a point u depends only on C(u) since the
truth value of atomic formulas depend only on them.

These sign conditions partition the set U is a finite number of disjoint semi-
algebraic components, U1, . . . , Ut, namely the nonempty supports in U of each
possible sign condition. By Proposition 2.8.5 in [BCR98], one of these sets, say
Ui, must have the same dimension as U , namely k − 1.

Now, since the polynomials P1, . . . , Ps have constant signs over Ui, Ui ⊆W
or Ui ⊆W c. Let us suppose, with out loss of generality, Ui ⊆W .

We claim that one of the polynomials P1, . . . , Ps vanishes in Ui. Let u ∈ Ui;
if none of the polynomials is zero in u then there exists and open neighborhood
in Rk of this point with the same sign conditions implying that u is an interior
point of W , contradicting u ∈ ∂W . Hence, there exists j ∈ N, j ≤ s such
that Pj is vanishes on Ui. Now, since Ui ⊆ ZQ, ZQ is irreducible and both set
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have the same dimension, we conclude that the Zariski closure of Ui, Ui = ZQ.
Hence, Pj vanishes on the whole ZQ. Thus, Q intervenes in ψ.

4 Sketch of the proof of Theorem 2.1

4.1 Counting the Limiting Hypersurfaces

In this section we consider T ∈ Rm×(n+1) with m ≥ n+ 1. We will prove that
there exists a limiting hypersurface for I = I(m,n), associated to the first n+ 1
rows of T (among the original m), involving all the (n+1)× (n+1) parameters
in these rows. Afterwards, by a simple symmetry argument, it will follow that
there are at least

(
m

n+1

)
different limiting hypersurfaces for I.

Consider M , the square submatrix of T , consisting of the first n+ 1 rows of
T . Define D(T ) := det(M).

Lemma 4.1. The set ZD = Z(D) = {T ∈ Rm×(n+1) | D(T ) = 0} is an
irreducible hypersurface.

Proof. Since the polynomial D takes positive and negative values in Rm×(n+1),
Proposition 4.5.1 in [BCR98] implies that, dim(ZD) = m(n + 1) − 1. The fact
that ZD is an irreducible hypersurface follows now from the irreducibility of the
determinant.

Proposition 4.2. The irreducible hypersurface in the parameters space ZD

defined by the equation D(T ) = 0 is a limiting hypersurface for the set I.

Sketch of the Proof: We prove the proposition directly from the definition of
limiting hypersurface, i.e., we prove that dim(ZD ∩ ∂I) = m(n+ 1)− 1. To do
so, we construct a nonsingular point T̃ ∈ ZD. We then prove that there exists
ε > 0 such that any T ∈ Bε(T̃ ) ∩ ZD satisfies T ∈ ∂I.

Corollary 4.3. The set I has Ω(
(

m
n+1

)
) different limiting hypersurfaces given

by the (n+ 1)× (n+ 1) minors of the parameters matrix.

Proof. By the previous proposition, the first minor defines a limiting hypersur-
face. Considering any other (n+ 1)× (n+ 1) minor of the parameters matrix T
we can reason analogously getting an irreducible hypersurface. Since there are(

m
n+1

)
such minors and the variables involved in each minor are different there

are at least
(

m
n+1

)
different limiting hypersurfaces.

4.2 Dense Representation

Proposition 4.4. Let ψ be a first order formula with polynomials codified in
dense form. Then, the size of ψ is inferiorly bounded by the sum of the degrees
of the different irreducible polynomials intervening in ψ.
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Proof. Let Q1, . . . , Qs be the non-constant polynomials appearing in ψ, with
factorizations Qi = Pi,1 · · ·Pi,ki

where Pi,j are the irreducible polynomials of
positive degree intervening in ψ. Let di = deg(Qi). Clearly, the dense repre-
sentation of Qi uses at least (di + 1) space units. Then, the size of ψ is lowery
bounded by

∑s
i=1 di. Since di =

∑ki

j=1 deg(Pi,j), the sum of the degrees of the
different irreducible polynomials intervening in ψ is a lower bound for the size
of ψ.

Corollary 4.5. The formula φn
2n, defined in Equation (2.1), has size O(n2log(n))

and any quantifier-free equivalent formula has size Ω(4n).

Proof. A straightforward computation shows that φ(2n,n) uses O(n2) symbols.
Since variable symbols require O(log(n)) bits to be written down, we have
|φ(2n,n)| = O(n2log(n)) bits.

Let ψ be a quantifier-free formula describing the set I(2n,n). The Corollary
4.3 shows that the

(
2n

n+1

)
minors of the parameter matrix T define different

limiting hypersurfaces for I(2n,n). The Proposition 3.2 shows that these minors
intervene in ψ. Since these polynomials have degree n + 1, the Proposition
4.4 implies that the size of a quantifier-free formula describing this set has size
Ω(

(
2n

n+1

)
(n + 1)). The conclusion follows immediately from the application of

Stirling’s formula.

This proves Theorem 2.1 and Corollary 2.2.
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