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Abstract. In this study we will focus on piecewise linear state space models
for gene-protein interaction networks. We will follow the dynamical systems ap-
proach with special interest for partitioned state spaces. From the observation that
the dynamics in natural systems tends to punctuated equilibria, we will focus on
piecewise linear models and sparse and hierarchic interactions, as, for instance,
described by Glass, Kauffman, and de Jong. Next, the paper is concerned with the
identification (also known as reverse engineering and reconstruction) of dynamic
genetic networks from microarray data. We will describe exact and robust meth-
ods for computing the interaction matrix in the special case of piecewise linear
models with sparse and hierarchic interactions from partial observations. Finally,
we will analyze and evaluate this approach with regard to its performance and
robustness towards intrinsic and extrinsic noise.

Keywords: piecewise linear model, robust identification, hierarchical networks, mi-
croarrays, gene regulatory networks.

1 Introduction and problem statement

This paper is concerned with the identification of dynamic gene-protein interaction net-
works with intrinsic and extrinsic noise from empirical data, such as a set of microarray
time series. Prerequisite for the successful reconstruction of these networks is the way
in which the dynamics of their interactions is modeled. In the past few decades, a num-
ber of different formalisms for modeling the interactions amongst genes and proteins
have been presented. Some authors focus on specific detailed processes such as the
circadian rhythms inDrosophilaandNeurospora[9, 10], or the cell cycle inSchizosac-
charomyces(fission yeast) [12]. Others try to provide a general platform for modeling
the interactions between genes and proteins. For a thorough overview, consult de Jong
in [2], Bower in [1], and others [5, 11]. We will focus on dynamical models, and not
discuss static models where the relations between genes are considered fixed in time. A
dynamical model can be described using continuous time, or discrete events (or time).
Given the discrete nature of the data we have at our disposal to derive the models, a dis-
crete event model seems most appropriate. In discrete event simulation models, the de-
tailed biochemical interactions are studied. Considering a large number of constituents,



the approach aims to derive macroscopic quantities. More information on discrete event
modeling can be found in [1].

2 Modeling dynamic gene-protein interactions as a piecewise
linear system

A frequent approach to modeling the dynamical interactions amongst genes and pro-
teins is to consider them as biochemical reactions, and thus represent them as ‘rate
equations’, i.e. as a set of differential equations, expressing the time derivative of the
concentration of each constituent of the reaction as some rational function of the con-
centrations of all the constituents involved. In case of biochemical interactions between
genes and proteins, the applicability of the concept of rate equations is valid only for
genes with sufficient high transcription rates. This is confirmed by recent experimental
findings by Swain and Elowitz [4, 16, 18, 19]. A practical problem is that the precise
details of most reactions are unknown, and therefore cannot be modeled as rate equa-
tions. This could be compensated by a well-defined parametrized generic form of the
interactions, in which the parameters can be estimated from sufficient empirical data. A
generic form based on rational positive functions is proposed by J. van Schuppen [21].
However, in the few cases where parts of such interaction networks have been described
from experimental analysis, like the circadian rhythms in certain amoeba [9], or the cell
cycle in fission yeast [12], it is clear that such forms have a too extensive syntax to be
of any practical use.

Let us for now ignore these problems, and consider the dynamics of gene-RNA-
protein networks. When we assume a stochastic differential equation as a model for the
dynamics of the interaction network, the relation can be expressed as

ẋ = f (x,u|θ) + ξ(t) (1)

Here, x(t), called the state-vector, denotes theN gene expressions and RNA/protein
densities at timet—possibly involving higher order time derivatives;u(t) denotes theP
controlled inputs to the system, such as the timing and concentrations of toxic agents
administered to the system observed; andξ(t) denotes a stochastic Gaussian white noise
term. This expression involves a parameter vectorθ that contains the coupling constants
between gene expressions and protein densities. We can consider this system as being
represented by the state vectorx(t) that wanders through theN-dimensional space of all
possible configurations. In the formalism of dynamic systems theory,x will eventually
enter an area of attraction, and become subject to the influence of an attractor. An at-
tractor here can be a uniform convergent attractor, a limit cycle, or a ‘strange attractor’.
We can understand the entire space as being partitioned into cells, with each cell having
an attractor or a repeller. Thus, the behavior ofx can be described by motion through
this collection of cells, swiftly moving through cells of repellers, until they enter the
basin of attraction of an attractor. Under the effects of external agents via the vectoru(t)
or by stochastic fluctuations viaξ(t) they can leave this cell, and start wandering again,
thereby repeating the process. Now, a vital assumption is that in each cell the behavior
is governed by its specific (un)stable equilibrium point. In that case, it is possible to



approximate the dynamics of Equation (1) in cell`—for x near thè -th equilibriumx(`)
eq

and smallu—(except the noise term) as:

ẋ(t) ≈
∂ f (x(`)

eq,u)

∂x
(x− x(`)

eq) +
∂ f (x(`)

eq,u)

∂u
u ≡ A`x(t) + B`u(t) + c` (2)

Thus, the qualitative behavioral dynamics of gene-protein interactions is characterized
as predominantly linear behavior near the stable equilibria—called the steady states,
interrupted by abrupt transitions where the system quickly relaxes to a new steady state,
either externally induced or by process noise.

In biology, such behavior is frequently observed, as, for instance, in embryonic
growth where the organism develops by transitions through a number of well-defined
‘checkpoints’. Within each such checkpoint, the system is in relative equilibrium, see
[20]. We will follow the view ofpiecewise linear behavior(PWL). This approach cor-
responds to the piecewise linear models introduced by Glass and Kauffman [8], and the
qualitative piecewise linear models described by de Jong et al. [2, 3].

3 Identification of dynamic networks usingpiecewise linearmodels

Next, we will be concerned with the identification (also known asreverse engineer-
ing) of piecewise linear gene regulatory systems from microarray data. We consider the
case where time series of genome-wide expression data are available. The nature of our
problem—few microarray experiments and lots of genes—implies that we are dealing
with poor data, where the number of measurements isa priori insufficient to identify
all parameters of the system. One standard approach to circumvent this problem is by
dimension reduction through the clustering of related genes. A different perspective is
offered by including some characteristics of the biological problem, such as the hierar-
chy and sparsity of the networks. The case of the identification of asimplelinear sys-
tem with sparse and hierarchic interactions is discussed by Peeters and Westra [14, 23],
and Yeung et al. [24]. In realistic situations, this model is too simple however. As was
pointed out by Øyehaug et al. [13], such systems tend to behave in a switch-like man-
ner, and they determine the switching timepoints using complex biological modeling.
In contrast, we will determine the switching timepoints by identifying sparsepiecewise
linear systems. As a consequence, our focus is on modeling the subsystems between
the switching points rather than on the dynamics of the switching points themselves, as,
e.g., in Plahte et al. [15]. More concretely, our main aim is to obtain the local gene-gene
interaction matricesA`, that directly relate to the graph of the gene regulatory network.
Additionally, the matricesB` provide information on the coupling of genes to specific
inputs.

3.1 General dynamics of switching subsystems

In what follows, let us assume a dynamical input-output systemΣ that switches irregu-
larly betweenK linear time-invariant subsystems{Σ1, Σ2, . . . , ΣK}.

Let S = {s1, s2, . . . , sK−1} denote the set of—unknown—switching times, i.e., the
time instantst = s̀ when the system switches from subsystemΣ`, toΣ`+1. Similarly as



with the simple linear networks, we assume empirical dataX = (x[1], . . . , x[M]), U =
(u[1], . . . ,u[M]), and Ẋ = (ẋ[1], . . . , ẋ[M]) at M sampling timesT = {t1, t2, . . . , tM},
representing full observations of theN states andP inputs, andx[k] ≡ x(tk). The interval
between two sample instants is denoted asτk = tk+1−tk. Here, we assume that the system
is sampled on regular time intervals, i.e., that the sample intervals are equal toτ. Within
one subsystemΣ`, the effect of the inputsu(t) is represented as a state-space system of
first-order differential (for continuous time systems) or difference equations (for discrete
time systems), using an internal vectorx(t) spanning the so-called subspace. In our case,
this represents the observed gene expressions. In the case of continuous time and in the
absence of noise, this system can be written as:

ẋ(t) = A`x(t) + B̃`ũ(t), (3)

with B̃` = (B` | − A`è ), ũT = (uT , 1), whereè indicates the equilibrium point of the
`-th subsystem andA` andB` refer to Equation (2). We will use this linear expression,
and from here on drop thetilde. A general disadvantage is that the time evolution of
the different genes, i.e.,xν(t), ν = 1, . . . ,n, will strongly correlate, thus obscuring their
true relation. This can be avoided by using Equation (3) with time series of triplets
ξ[k] ≡ (x[k],u[k], ẋ[k]) with a sufficient amount of statistically independent and vary-
ing inputsu(tk). Practically, this opens the way to combining distinct empirical sets.
However, a practical disadvantage of Equation 3 is that the derivative ˙x(tk) can only be
approximated from the measurements, such as ˙x[k] ≈ (x[k] − x[k− 1])/(tk − tk−1).

We furthermore assume that the system matrices in these equations are constant
during intervals [s̀ , s̀ +1[, and abruptly change at the transition between the intervals
at t = s̀ +1. We assume that on the time scaleτ, the system has relaxed to its new
state. This means that we do not observemixed states, which would severely complicate
the problem of identification, e.g., see [22]. This is accomplished by definingweights
wk,` as the degree to which observationk belongs to subsystemΣ`. If observationξ[k]
belongs to systemΣ` thenwk` = 1. Non-integer values in [0,1] can be interpreted as the
fuzzy membership of observationk to systemΣ`. Since we assume that the subsystems
{Σ1, Σ2, .., ΣK} act disjointly and subsequently, the result can be improved by matching
the weights to a block function structure; i.e.,wkl = 1 for tk ∈ [sl , sl+1[ and wkl =

0 elsewhere. This may, however, introduce other problems, for instance if the same
subsystem is revisited at different switching intervals. These considerations lead to the
constraintsCMK onw:

CMK(w) :



w1,1 = 1,wM,K = 1,
∀k,`wk,` ∈ [0,1],
∀k
∑

l wk,` = 1,
∀`
∑M−1

k=1 |wk+1,1 − wk,1| = 1,
∀`
∑M−1

k=1 |wk+1,` − wk,` | = 2,
∀`
∑M−1

k=1 |wk+1,K − wk,K | = 1.

(4)

3.2 Combining the system matrices{A, B} with the subsystem weightmatrixW

The assumption that the switching times between the linear subsystems are completely
known suits various experimental conditions, as, for instance, when toxic agents are



administered. In many biological situations, however, the exact timing between subsys-
tems isnot known, as during embryonic growth and in many metabolical processes.

When a sufficiently accurate record of estimates of the state derivativesẊ is avail-
able, we can simply rewrite this problem as a special case of the method described in the
case of a simple linear problem as in [14]. In fact, by exploiting the dataD = {X,U, Ẋ},
the problem can be stated as a linear equation in terms of new matricesH1 andH2 as

Ẋ = H1X + H2U. (5)

In this equation the matricesH1 and H2 relate to the—unknown—system matrices
{A1, B1, . . . ,AK , BK} and ditto unknown weights{wkl} as

vec(H1) =W · vec(A), (6)

vec(H2) =W · vec(B). (7)

The matricesA, B, andW are composed as follows:

A =


A1
...

AK

 , B =


B1
...

BK

 , W = w⊗ IN2 =


w1,1IN2 · · · w1,K IN2

...
...

...
wM,1IN2 · · · wM,K IN2

 , (8)

where⊗ is the Kronecker-product, andIN2 is the N2 × N2 identity matrix. Note that
Equation (5) is not anymore a linear problem, as the unknown matricesA, B, andW
appear in a non-linear way in the equation. This equation is exactly of the type of
simple linear networks as in [14]. Therefore, its solution method is fully applicable, so
that an efficient and accurate algorithm is available for solving this problem in terms of
H1 andH2. However, the problem has now shifted to solving two additional non-linear
equations:

W � A = H1, (9)

W � B = H2. (10)

whereA, B, andW have to be solved from the known—i.e., computed—matricesH1

andH2. The operation� makes the relations in Equations (6) and (7) explicit. This is
an underdetermined set of equations that can only be solved by additional information,
such as assuming sparsity forA, and a block structure forW, as defined in Equation (4).

3.3 Identification of PWL models with unknownswitching and regular sampling
from poorempirical data

We will now focus on the general case, that the genome wide expressionsX, their
derivativesẊ, and the external inputsU are available as empirical dataD. In this case,
the objective of system identification is to compute concurrently the system parameters
A, B, andweightsW (and hence the switching timesS). Equation (5) provides us with
the general state space equations for a PWL system.



In practical experimental conditions, white process and measuring noise adds to the
right-hand side. The fit between the empirical data and the system model can be quan-
tified by the weighted difference between observed and expected expression profiles
expressed as a linearLp-criterion:

Esys(A, B,w|D) =
∑
k,l

wkl‖Al x[k] + Blu[k] − ẋ[k]‖p (11)

Here,(A, B) represent the set of system parameters, andD ≡ {X,U, Ẋ} the observed
data, i.e., the measured genome-wide expressionsX, their fluxesẊ, and the external
inputsU. The criterion furthermore involves the relation between thek-th observation
and thè -th subsystemΣ`; namely theweight wk` and thedistance dk` between observed
and the expected value of observationk relative to subsystem modelΣ`.

In order to handle the underdetermined character of the problem, we furthermore
employ the sparsity and the hierarchy of the underlying biology. This means that the
matricesA` andB` arerow-sparse, but not necessarily collum-sparse, as some genes—
called the master-genes or source-genes—control a large part of the entire genome.
Under a wide range of conditions, this problem is equal to minimization of theL1-norm
of the rows ofA` andB` as argued by J. J. Fuchs [7]. This implies a global minimization
such as

Esparse(A|D) =
∑
`

‖vec(AT
` )‖1 ≡ ‖A‖1 (12)

under the constraints that{X,U, Ẋ} satisfy Equation (5).
The problem of estimating the system parameters can thus formally be defined as the

search for the vectorsA∗, B∗ andw∗ that globally minimizeE. This can be formulated
as a quadratic programming problem, as follows:

QP: given the dataD, compute the system matricesA, B and the weight matrixw:

(A∗, B∗,w∗) = arg min(A,B)∈RN(P+N),w∈RKM E(A, B,w|D)
subject to:
E(A, B|D) = λ1Esys(A, B,w|D) + λ2Esparse(A|D) + λ3Esparse(B|D),
CMK(w).

(13)

for selectedλ’s with: λ1 + λ2 + λ3 = 1, and the constraintsCMK(w) in Equation (4).
This is a regularized (or scalarized) convex quadratic optimization problem that is not
well posed because it has a nonsingular Jacobian at the optimum, and becomes ill-
conditioned as the iterates approach optimality. Instead of this quadratic programming
problem we will therefore study the following two coupled linear programming prob-
lems associated to the original QP:

LP1: given the weight matrix ˜w compute the system matrices (A∗, B∗):

(A∗, B∗) = arg min(A,B)∈RN(P+N) E(A, B, w̃|D)
subject to:
E(A, B|D) = λ1Esys(A, B,w|D) + λ2Esparse(A|D) + λ3Esparse(B|D)

(14)



LP2: given system matrices (Ã`, B̃`) apply theL1-norm d̃kl = ‖ẋ[k] − Ã`x[k] −
B̃`u[k]‖1 to compute the weight matrixw∗:

w∗ = arg minw∈RKM Esys(Ã, B̃,w|D) =
∑M−1

k=1
∑K

l=1 d̃klwkl

subject to:
CMK(w).

(15)

LP1 is a regularized optimization. J. J. Fuchs [6, 7] has described conditions under
which the regularization drives the optimization problem towards the global solution.
Though these conditions do not strictly apply here, we find that this approach succeeds
in numerical simulations. Both LP-problems can be solved efficiently with a partial
dual simplex method as in [14], or by using large-scale or interior-points methods. The
algorithm to estimate the system parameters{A, B} andw consists of iteratively solving
the two optimizations LP1 and LP2 subsequently, until the criterion has sufficiently
converged. Though the solution of the original quadratic programming problem QP in
Equation (13) is also the global solution of the two coupled LP-problems LP1 and LP2,
there can also exist local solutions to the couple{LP1,LP2}, unfortunately.

3.4 Construction and control of the subsystem weightmatrix

For small values of the regularization terms inE in LP1 (Equation (14)), i.e.,λ2, λ3 �

λ1, and a simultaneous, extreme under-determined system, i.e., #Σ` � N, the tandem
{LP1,LP2} proposed above, runs into problems. The problem amounts to the degree
of freedom that formulation LP1 offers to match empirical dataD with systemΣ =
(A, B) in order to minimize the distance to the model spaced(D, Σ). It is well-known
that at leastMmin ∝ log(N) measurements are required for a good reconstruction of
sparse matricesA andB, see for instance [6, 7, 24]. Therefore, when #Σ` � Mmin, the
heavily under-determined system has a high degree of freedom to match the data with
the model. This will cause the tandem{LP1,LP2} to halt as the criteriond(D, Σ) ≈ 0
has been reached.

Avoiding this problem requires (i) the restriction of the maximum number of sub-
systems toK < M/log(N), and (ii) the careful control of the weight matrixw during the
iteration, such that each subsystemΣ` has at leastMmin elements, i.e., #Σ` ≥ Mmin. For
this reason, the following iteration is performed for initializing the weight matrix:

1. Assign thecurrent measurement kto 1, and thecurrent system̀ to 1. Initianlizew
to theM × K null matrix:w = 0.

2. The firstMmin measurements are assigned to the current—i.e., first—subsystem:
w(11= 1, . . . ,wMmin,1 = 1. Now the current measurementk is set toMmin + 1.

3. The current measurement,ξk = (x[k],u[k], ẋ[k]), belongs to the current subsystem
Σ` if d(ξk, Σ ) is minimized by  = `. In that case: (i) it is assigned to the current
system by settingwk` = 1, and (ii) the next measurement is considered, i.e.,k is
increased, and step 3 is repeated.

4. If another systemΣ  is closer toξk, then this system is assigned to the current
system:̀ = , and measurementk is considered as the first ofMmin measurements
assigned directly to this subsystem, i.e.,wk` = 1, . . . ,wk+Mmin−1,` = 1, k is set to
k+ Mmin, and step 3 is repeated.



This iteration process is continued as long as there are unassigned measurements. When
the final subsystem has less thenMmin elements, these are discarded. Finally, all mea-
surements will belong to some subsystem, whilew obeys all constraints defined in
Equation (4). One of the advantages of thismatchingalgorithm is that it requires no
advance knowledge of the number of subsystems.

3.5 A tandem for network reconstruction using the subsystem weight matrix

The procedure for constructing and managing the subsystem weight matrixw, defined
in Section 3.4, allows for an efficient tandem approach to solving the identification
problem.

The non-linear probleṁX = H1X + H2U, defined in Equation (5), can be solved
in terms ofH1 and H2, but not in terms ofA, B, andW. It is a bilinear problem in
terms ofA andB for fixed W, otherwise it is a not well-posed quadratic problem. For
these reasons, we again split the problem and follow a tandem approach as discussed in
Section 3.2. However, in the present tandem the construction of the subsystem weight
matrixw is performed by the matching approach defined above, rather than by the LP2
defined in Equation (15). Both amount to a solution obeying the weight constraints in
Equation (4), but the matching algorithm will prevent too underdetermined systems that
will prematurely halt the iteration as they generate a fictitious match with the model.
The computation of the system matrices (A, B) is again performed by the robustL1 iden-
tification in LP1, withλ1 = 0, andλ2 = λ3. The tandem is controlled by the distance
between the data and the model:d(D, Σ)) = Esys(A, B,W|D), defined in Equation (11).
If this quantity has converged below a pre-specified threshold, the iteration is termi-
nated.

4 Numerical experiments and performance of the approach.

The approach described in the previous section resulted in an efficient and fast algo-
rithm that is able to estimate accurately the gene-gene coupling matrix based on several
genome-wide measurements, and that is robust towards measurement noise.

All experiments were performed on a PC with an Intel Pentium M processor of
1.73 GHz and 1 GB RAM memory under Windows XP Professional, using Matlab 6.5
Release 13 including the Optimization Toolbox. The latter’s routinelinprog was used
to solve LP problems; its default solution method is a primal-dual interior point method,
but an active set method can optionally be used, too. For larger problems, it turned
out to be essential for obtaining reasonable computation times that the LP problems
were solved by application of the active set method on the dual problem formulation.
Therefore, this method was adopted throughout all the experiments.

Since results can depend on the particularities of given data and the original sys-
tem that generated it, all experiments have been performed on a number of independent
runs on randomly selected data and systems. Hence they convey the behavior of our ap-
proach “on average”. The number of independent runs is 50 for each of the experiments
described below.



In line with the definitions above, we use the parametersN, M, K to quantify the
size and complexity of the input. In addition, the sparsity of the local interaction matrix
A is measured by the number of non-zero entries per row and denoted byk (which
should be much smaller thanN). To complete the system’s data set, some stochastic
Gaussian white noise is added to the input data set. It is normally distributed with zero
mean and some standard deviationσ that determines the noise level. To quantify the
quality of the resulting approximationAest of A∗, a performance measure is introduced:
the number of errorsNe.

These errors are generated in the reconstruction by the failure of the algorithm to
identify the true non-zero elements of the original sparse matrixA∗. These errors stem
from false positives and false negatives in the reconstructed matrixAest. Their numbers
are added up to produce the total number of errorsNe.

The success of the algorithm depends on different factors. First, for a certain num-
ber of genes, a sufficient number of measurements has to be available. Therefore, the
minimal number of measurements required for a certain number of genes, denoted by
Mmin, has been determined. This is the number of measurements so that the total system
error,Ne, is acceptably small. Figure 1 represents the values forMmin as a function of
the number of genes.

Fig. 1.Minimal number of required measurementsMmin as a function of the number of genesN.

For comparability reasons, the number of genes in all the following experiments has
been fixed toN = 150. Consequently, the associated minimal number of measurements
has been fixed toMmin = 90 (see Figure 1).

Second, the number of errorsNe depends on the noise levelσ. Figure 2 shows how
this noise level influences the error rate in our approach. As to be expected, the error
increases if the noise level increases, and vice versa.



Fig. 2. Number of errorsNe as a function of the noise levelσ, with N = 150, M = Mmin and
k = 1.

The numerical experiments consist of the comparison of the reconstructed network
with the—known—original network structure, and they clearly reveal the range where
the approach is effective.

A basic assumption in the approach is the sparsity of the underlying gene-gene
coupling matrix, represented by the number of non-zero entries per row,k. If k rises
above a certain threshold, the performance of the approach is abruptly and severely
affected (see Figure 3).

For relatively moderate noise levels and a high degree of sparsity—i.e., a small
numberk of non-zero elements in the rows of matrixA∗—the approach allows one to
reconstruct a sparse matrix with great accuracy from a relative small number of obser-
vationsM � N. For example,A∗ with rows of 150 components of which all but 3 are
equal to zero, can be efficiently reconstructed from just 90 independent measurements
(Figure 4).

Figure 4 shows an initial increase, followed by a decrease. Finally,Ne jumps abruptly
to zero above a certain threshold value forM. To explain this phenomenon, remember
that the number of errorsNe is the sum of the false positives and the false negatives
in the gene interaction matrix. The false positives correspond to the non-zero values
in the matrixAest that should be zero, and vice-versa for the false negatives. Turning
back to Figure 4, the initial increase is caused by false positives. Indeed, as long as
M < M′min, whereM′min is the minimal number of required measurementsin the case of
a single row, k ≈ M′min. As soon asM reachesM′min, the system becomes completely
determined, whencek drops to its proper value. Observe thatM′min < Mmin due to the
absence of effects related to the composition of rows. Notice that the false negatives
decrease monotonously over the entire range ofM.

Finally, some experiments concerning multiple subsystems were performed. Fig-
ure 5 shows the accuracy of the partioning of the available measurements into different



Fig. 3. Number of errorsNe as a function of the number of non-zero elements per rowk for a
single subsystem (K = 1), with N = 150 andM = Mmin.

Fig. 4. Number of errorsNe as a function of the number of measurementsM, with N = 150 and
k = 1.

subsystems. The error measureδ shown in Figure 5 is defined as the cumulative distance
in terms of time stamps between erroneously classified measurements and the switching
point of the class they belong to, relative to the total number of measurements. In the
experiment illustrated by Figure 5, two subsystems were identified.



Fig. 5. The distribution of the error measureδ for partioningM = 200 measurements into sub-
systems, withN = 150. Two subsystems were identified.

5 Discussion

In this work, we have presented an approach for modeling and identifying gene regula-
tory networks from near genome-wide expression profiles with a relative small amount
of time instances using a piecewise linear state space model. The state space model is a
rich and flexible metaphor from mathematical systems theory that, applied to this case,
allows for hierarchical activation through master genes, representing the effects of mul-
tiple external inputs, hidden states such as none-observed genes or protein densities,
and the effects of process and measurement noise. For this piecewise linear state space
modeling, we have presented an identification technique, based on a linear program-
ming problem. This approach resulted in an efficient and fast algorithm that is able to
accurately estimate the gene-gene coupling matrix for a large number of genes based
on only several hundred genome-wide measurements, and that is robust towards mea-
surement noise. Figure 6 shows the CPU time used by the algorithm as a function of
the number of genesN.

In future work, a few difficulties with regard to the system identifiability of this
approach, i.e., the potential to reconstruct the interaction network from empirical data,
will have to be addressed.

1. Due to the huge costs and efforts involved in the experiments, only a limited number
of time points are available in the data. Together with the high dimensionality of
the system, this makes the problem severely under-determined.

2. In the time series, many genes exhibit strong correlation in their time-evolution,
which is not per se indicative for a strong coupling between these genes, but rather
induced by the over-all dynamics of the ensemble of genes. This can be avoided by
persistently exciting inputs.



Fig. 6. The CPU time used by the reconstruction algorithm (in seconds) as a function of the
number of genesN.

3. Not all genes are observed in the experiment, and certainly most of the RNAs and
proteins are not considered. Therefore, there are manyhiddenstates.

4. Effects of stochastic fluctuations on genes with low transcription factors are severe
and will obscure their true dependencies.

5. Because the identification techniques work on the rows, the hierarchical principle
does not cause a problem, as the gene-gene interaction matrix is highly row-sparse
but not column-sparse. In fact, the method utilizes the sparsity of the matrix as an
implicit constraint, namely that the value of the components of the matrix should
be zero.

With this approach, it is possible to reconstruct the steady states and the associated
switching times of a metabolic processes from a set of micro-array experiments. In each
steady state the gene-gene interaction matrix defines the network topology. The micro-
array technique exhibits a strong increase in efficiency and a simultaneous decrease in
associated costs. In the near future, this will enable the registration of large time series
of genome wide expression profiles and associated protein densities. The future avail-
ability of such data makes the further development of the mathematical modeling and
associated identification of dynamic gene expression, such as the approach presented
here, an important condition for deducing and understanding the underlying interac-
tions between genes and their environment.
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