
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Privacy Preserving ID3 over Horizontally, Vertically and Grid Partitioned Data

Non Peer-reviewed author version

KUIJPERS, Bart; LEMMENS, Vanessa; MOELANS, Bart & TUYLS, Karl (2008)

Privacy Preserving ID3 over Horizontally, Vertically and Grid Partitioned Data. In:

ArXiv Computing Research Repository (CoRR).

Handle: http://hdl.handle.net/1942/7985

ar
X

iv
:0

80
3.

15
55

v1
 [

cs
.D

B
]

 1
1

M
ar

 2
00

8

Privacy Preserving ID3 over Horizontally,

Vertically and Grid Partitioned Data

Bart Kuijpers, Vanessa Lemmens, Bart Moelans

Theoretical Computer Science,

Hasselt University & Transnational University Limburg,

Belgium

Karl Tuyls

Department.of Industrial Design,

Eindhoven University of Technology,

The Netherlands

Abstract

We consider privacy preserving decision tree induction via ID3 in the case where
the training data is horizontally or vertically distributed. Furthermore, we consider
the same problem in the case where the data is both horizontally and vertically
distributed, a situation we refer to as grid partitioned data. We give an algorithm for
privacy preserving ID3 over horizontally partitioned data involving more than two
parties. For grid partitioned data, we discuss two different evaluation methods for
preserving privacy ID3, namely, first merging horizontally and developing vertically
or first merging vertically and next developing horizontally. Next to introducing
privacy preserving data mining over grid-partitioned data, the main contribution
of this paper is that we show, by means of a complexity analysis that the former
evaluation method is the more efficient.

1 Introduction

1.1 Privacy preserving data mining

In recent years privacy preserving data mining has emerged as a very active
research area in data mining. The application possibilities of data mining, com-

Email addresses: bart.kuijpers@uhasselt.be (Bart Kuijpers),
bart.moelans@uhasselt.be (Bart Moelans), k.p.tuyls@tue.nl (Karl Tuyls).

http://arXiv.org/abs/0803.1555v1

bined with the Internet, have attracted and inspired many scientists from dif-
ferent research areas such as computer science, bioinformatics and economics,
to actively participate in this relatively young field. Over the last few years this
has naturally lead to a growing interest in security or privacy issues in data
mining. More precisely, it became clear that discovering knowledge through a
combination of different databases, raises important security issues. Despite
the fact that a centralized warehouse approach allows to discover knowledge,
which would have not emerged when the sites were mined individually, privacy
of data cannot be guaranteed in the context of datawarehousing.

Although data mining results usually do not violate privacy of individuals, it
cannot be assured that an unauthorized person will not access the centralized
warehouse with some malevolent intentions to misuse gathered information for
his own purposes during the data mining process. Neither can it be guaranteed
that, when data is partitioned over different sites and data is not encrypted,
it is impossible to derive new knowledge about the other sites. Data mining
techniques try to identify regularities in data, which are unknown and hard to
discover by individuals. Regularities or patterns are to be understood as reve-
lations over the entire data, rather than on individuals. However to find such
revelations the mining process has to access and use individual information.

More formally, this problem is recognized as the inference problem [3,5]. Origi-
nally this problem dates back to research in database theory during the 70s and
early 80s, acknowledged back then as access control. Models were developed
offering protection against unauthorized use or access of the database. How-
ever, such models seemed unable to sufficiently protect sensitive information.
More precisely, indirect accesses (through a different database and metadata)
still allowed one to attain information not authorized for. Here, metadata con-
sists, e.g., of dependencies between different databases, integrity constraints,
domain knowledge, etc. In other words, the inference problem occurs when one
can obtain vital information through metadata violating individuals (or com-
panies) privacy. With the elaboration of different network technologies and
growing interest in pattern recognition this problem naturally carries over to
data mining. In fact it gets even worse as illustrated by Sweeny in [13]. In
her work Sweeny shows that the typical de-identification technique applied
on data sets for public use, does not render the result anonymous. More pre-
cisely, she demonstrated that combinations of characteristics (or attributes)
can construct a unique or near-unique identifier of tuples, which means that
information can be gained on individuals even when their identifiers are dis-
torted.

Over the past few years state of the art research in privacy preserving data
mining has concentrated itself along two major lines: data which is horizontally
distributed and data which is vertically distributed. Horizontally partitioned
data is data which is homogeneously distributed, meaning that all data tuples

2

yield over the same item or feature set. Essentially this boils down to different
data sites collecting the same kind of information over different individuals.
Consider for instance a supermarket chain which gathers information on the
buying behavior of its customers. Typically, such a company has different
branches, implying data to be horizontally distributed. Vertically distributed
data is data which is heterogeneously distributed. Basically this means that
data is collected by different sites or parties on the same individuals but with
differing item or feature sets. Consider for instance financial institutions as
banks and credit card companies, they both collect data on customers having
a credit card but with differing item sets.

1.2 Our contribution

In this paper, we also consider data which is both horizontally and vertically
distributed, which we will call grid partitioned data. To our knowledge, there
has been no research up till now in privacy preserving data mining that consid-
ers grid distributed data. However this kind of situation seems highly relevant
and significant. Consider for instance the situation were different financial
institutions gather data on clients concerning savings account, investments,
credit cards and others. This situation clearly considers data which is grid
partitioned, since some institutions deal with credit cards and not with in-
vestments and vice versa and since financial institutions typically have data
emerging from different branches of a bank. For a more thorough elaboration
of this example, we refer to the end of this Introduction (Section 1.3). In this
paper, we propose a new algorithm to preserve privacy when constructing a
decision tree for classification over grid partitioned data using ID3, involving
multiple parties. Most closely related to this work is that of Lindell and Pinkas
[8] who introduced a secure multi-party computation technique for classifica-
tion using the ID3 algorithm over horizontally partitioned data and that of
Du and Zhan [4] who introduced a protocol for making ID3 secure over verti-
cally partitioned data. An important contribution of our work is to consider
horizontally and vertically distributed data at the same time. Furthermore,
we also believe this is highly significant as most real life vital data mining
situations, involving multiple parties, consist of grid partitioned data. A mo-
tivating example is discussed in Section 1.3. For grid partitioned data, we
discuss two different evaluation methods for preserving privacy ID3, namely,
first merging horizontally and developing vertically or first merging vertically
and next developing horizontally. We show in Section 4 by means of a com-
plexity analysis that the former is the most efficient. In the context of secure
multiparty computation, the “semi-honest” and the “malicious” model [15,6]
are considered. In the former, all parties follow the protocol strictly, but are
allowed to remember everything they encounter while executing the protocol
and to use this information to compute information about the other parties,

3

whereas in the malicious model the parties are allowed to cheat. We assume
the semi-honest model in this paper.

The rest of this paper is structured as follows. We end this Introduction by
a motivating example for grid partitioned data, illustrating the importance of
efficiently dealing with grid partitioned data in data mining applications. In
Section 2, we sketch the preliminaries as the ID3 algorithm and definitions
of horizontally, vertically and grid distributed data. Section 3 introduces our
algorithm. We discuss the two different evaluation methods for preserving
privacy ID3 in Section 4. Section 5 concludes the paper.

1.3 Motivating example for grid partitioned data

Typically for financial institutions as banks is that they offer their clients
different services as a savings account, choice of credit card, Maestro and all
kinds of investment possibilities as mortgages, stock investments, fund orders
and so on. Of course a bank is interested in knowing which are good customers,
which are bad ones and which are possible defrauders. Reasons are obvious,
making profit and avoiding losses because of clients which are not credit worthy
and show unreliable behavior. Gathering all kinds of financial data about their
customers and their transactions can help them in identifying risky clients
and possible defrauders, preventing huge financial losses. More precisely, by
using good data mining techniques it becomes possible to generalize over these
gathered data sets and identify possible risks for future cases or transactions.
Typical for different branches is to gather the same kind (i.e. item sets) of data
on different clients, implying that data is horizontally partitioned. A possible
item set re-occurring at banks is illustrated in Table 1.

Table 1: A possible item set.

Cust. nr. mortgage account salary stock neg. saldo Fraudulent?

A11 25.000 104.200 2.200 0 no no

B12 0 1.001.020 4.4000 1.000 yes yes
...

...
...

...
...

...
...

However by combining their data sets, it would become possible to derive
knowledge, leading to a high level of precision in triggering fraudulent behav-
ior, which they would not have reached for individually. Consider for instance
a simplified rule X, Y → F , meaning that if features X and Y are satisfied
this implies a high chance the transaction is fraudulent. It is not imaginary
that this association rule is known to bank A and unknown to bank B, sim-
ply because B has not enough (local) tuples to support this rule. There is a
reasonable chance that by combining their databases, sites A and B would
have discovered association rules which globally hold and which they would

4

have not discovered individually, implying a greater accuracy in identifying
defrauders. Although such a cooperative behavior could save them a great
deal of money, none of them, as they are competitors, would be willing to
share all its transactions and itemsets with one another for obvious reasons.

Although it is possible for banks to gather substantial data on their clients
there is still room for more improvement. More precisely, a bank does not
typically manage all the services it offers. For instance credit card transactions
are managed by separate companies collaborating with banks. Despite this
cooperation, neither of them will be too happy to exchange data and item or
feature sets on their customers. Still if they would be willing to collaborate,
this could lead to a higher precision in identifying fraudulent cases and all
parties would benefit. In other words, the group of people having a credit card
is usually involved in an investment of all possible kinds: mortgages, stock
market, order funds etc. This implies that the group of individuals on which
the credit card companies gather data is more or less the same as the group
on which banks gather data concerning investments. This boils down to data
which is vertically partitioned.

Summarizing, this example shows that it is not imaginary at all that data
appears to be as well horizontally as vertically distributed in real life situa-
tions, which we call grid partitioned data. Note that we can easily extend the
above example to contain more parties. We could for instance add tax services,
interested in tracking people cheating on their taxes. Most importantly, the
example illustrates that we do not only need to consider privacy preserving
techniques for horizontally or vertically distributed data, but that it is highly
significant for real life applications to consider the combination of both.

2 Preliminaries

We start this section with a subsection summarizing the ID3 algorithm. Then
we continue with a subsection describing definitions and examples of horizon-
tally, vertically and grid distributed data. We continue with preliminaries on
multi-party computation.

2.1 The ID3 algorithm

The ID3 algorithm (Inducing Decision Trees) was originally introduced by
Quinlan in [11] and is described below in Algorithm 1. Here we briefly recall
the steps involved in the algorithm. For a thorough discussion of the algorithm
we refer the interested reader to [10].

5

The input of ID3 is a finite data set of tuples containing (discrete or nomi-
nal) values for a finite number of attributes, one of which is called the class
attribute (also called target class). ID3 induces a decision tree from an ex-
ample set in a top-down manner. More precisely, the algorithm starts at the
root node, choosing each time the attribute which separates the data most
efficiently according to their target class. Then the algorithm creates a branch
for each value of this attribute and continues from there by repeating the
above process until all attributes are used. To determine which attribute is
best in classifying the given data set, a measure from information theory is
used, namely information gain. Information gain is defined as the expected
reduction in entropy. Entropy measures the homogeneity of a data set. More
formally, the entropy of a data set of tuples S is defined as:

entropy(S) =
d∑

i=1

−pilog2pi (1)

where d is the total number of different values the target class can take on
and pi is the proportion of tuples of the data set having target value i. The
information gain of an attribute A is then defined as:

gain(S, A) = entropy(S) −
∑

v

|Sv|

|S|
entropy(Sv) (2)

with Sv the subset of S with tuples having value v for attribute A.

Algorithm 1 The ID3 Algorithm

Require: R, a set of attributes.
Require: C, the class attribute.
Require: S, data set of tuples.
1: if R is empty then

2: Return the leaf having the most frequent value in data set S.
3: else if all tuples in S have the same class value then

4: Return a leaf with that specific class value.
5: else

6: Determine attribute A with the highest information gain in S.
7: Partition S in m parts S(a1), ..., S(am) such that a1, ..., am are the dif-

ferent values of A.
8: Return a tree with root A and m branches labelled a1...am, such that

branch i contains ID3(R − {A} , C, S(ai)).
9: end if

6

2.2 Horizontally, vertically and grid partitioned data

In this section we provide a formal definition of horizontally, vertically and grid
partitioned data. We will use the projection operation as defined in relational
algebra in database theory.

Suppose we have:

(1) A relation (or data set) S over the schema I, A1, ..., A|R|, C consisting
of a finite number of tuples. The attribute I is supposed to be a key
(i.e., contain identifiers) and is not considered as an attribute to build
the decision tree. The only purpose of the attribute I is to be able to
join vertically distributed data. The attribute C will be referred to as the
class attribute.

(2) Parties Pij with i = 1, .., v, j = 1, .., h and v smaller than the number of
attributes (i.e., |R| + 1)

(3) Each party Pij is holding a part Sij containing information about certain
attributes (including I) and certain tuples. The Sij are such that
• Sij is a partition of S, more precisely S = ∪h

j=1
⊲⊳v

I,i=1
Sij;

• Sij and Sij′ have the same attributes but (parts of) different tuples of
S when j 6= j′;

• Sij and Si′j have disjoint attributes but contain information about the
same tuples of S.

Definition 1 We call S

• horizontally distributed if and only if v = 1;
• vertically distributed if and only if h = 1; and
• grid distributed if and only if v, h ≥ 2.

Examples of horizontally, vertically and grid distributed databases can be
found in Figures 1(a), 1(b) and 2.

2.3 Preliminaries on multiparty computation

In this section we recall some results from multiparty computation that will
be needed as building blocks in the algorithms in the next section.

Basically, secure multi-party computation (SMPC) makes sure that different
parties involved in a computation process, do not learn anything more than
the result(s) of the computation process and anything else that is derivable in
a polynomial amount of time (without cheating). More precisely, SMPC is of
great interest to the inference problem. In the case of horizontally, vertically

7

Party P11

I A1 A2 A3 A4 A5 C

...

...

Party P12

I A1 A2 A3 A4 A5 C

...

...

(a)

Party P11

I A1 A2 A3

...

...

Party P21

I A4 A5 C

...

...

(b)

Fig. 1: (left) Horizontally distributed data.(right) Vertically distributed data.

and grid partitioned data in data mining, the mining process requires a lot of
communication between the different parties. The SMPC techniques prevent
any party from deriving new knowledge about the other parties involved.

It is not our intention to give a complete overview here of SMPC, therefore we
refer to [9,2,15,8,12,1,3,14]. Here we provide the security protocols necessary
for our purposes, i.e.,

• the secure sum protocol,
• the Yao circuit,
• the secure union protocol,
• the secure size of set intersection protocol; and
• the xln(x) protocol.

We remark that in the context of secure multiparty computation, two models,
that we already mentioned before, are considered, namely the “semi-honest”
and the “malicious” model [6,15].

In the semi-honest model, all parties follow the protocol strictly. They are
allowed to remember everything they encounter while executing the protocol
and to use this information to compute (in polynomial time) information about
the other parties. In the malicious model the parties are allowed to cheat. They
may for example falsify their inputs in order to learn more about the input of
other parties.

8

Party P11

I A1 A2

...

...

Party P21

I A3

...

...

Party P31

I A4 A5 C

...

...

Party P12

I A1 A2

...

...

Party P22

I A3

...

...

Party P32

I A4 A5 C

...

...

Party P13

I A1 A2

...

...

Party P23

I A3

...

...

Party P33

I A4 A5 C

...

...

Fig. 2: Grid distributed data.

We will assume the semi-honest model in the description of our algorithms.

2.3.1 Secure sum protocol

The goal of this protocol is that k > 2 parties can compute the sum of the
values each party holds in such a way that no party can learn anything about
the values of the other parties.

The protocol of Kantarcioglu and Clifton [7] protects individual values by
using a random number. Party 0 adds a random number to its own value and
sends it to Party 1. Party 1 cannot learn anything from this value due to the
random number. Party 1 adds his value to this number and sends it along
to Party 2. This process continues until the last party has been reached. This
party adds his number to the number it received and sends it to Party 0. Party
0 can now compute the sum by distracting the random number from the sum
it received of the last party. Now Party 0 reveals the sum to the other parties.

9

How safe is this protocol? It can be shown, by means of a polynomial time
simulator, that, in the semi-honest model, this protocol is safe. Actually, to
show safety it is necessary that all values remain within a finite domain [0, m]
and all computations are done modulo m.

It should be remarked that the protocol can be broken if we assume the ma-
licious model. For instance, it is clear that when Party i − 1 and Party i + 1
collaborate, the value of Party i can be discovered. As a remedy for this prob-
lem, each party can split its value in n parts. Of all parts the sum is calculated.
To avoid that Party i−1 and Party i+1 can collaborate to discover the value
of Party i, during each of these n computations different paths are followed.
In this way, more parties have to collaborate to discover individual values.

2.3.2 Yao circuit

Yao introduced in [15] the concept of secure two party computation. He showed
that any function f(x, y), where x is the input of Party 1 and y the input of
Party 2, can be evaluated in a secure way.

To formalize the concept of security, we concentrate on functions f (Yao
makes use of Boolean circuits to represent a function f) of the form f(x, y) =
(f1(x, y), f2(x, y)). This function receives a part of its input, namely x, from
Party 1 and the other part of its input, namely y, from Party 2. Party 1 wants
to learn f1(x, y) and Party 2 wants to learn f2(x, y). Suppose that protocol Π
is used to learn f . V iewΠ

i is what Party i learns by executing protocol Π and
OutputΠi is the output of Party i (i = 1, 2). Finally, let Si be an algorithm
that can be executed in polynomial time. Yao defines

{S1(x, f1(x, y)), f2(x, y))} = {V iewΠ

1
(x, y), OutputΠ

2
(x, y))}

and

{(f1(x, y), S2(y, f2(x, y)))} = {OutputΠ(x, y), V iewΠ

2
(x, y))}

meaning that any party can learn from f , by executing protocol Π, only those
facts that can be learned in polynomial time from his/her input and his/her
output. Executing the protocol does therefore not provide any extra informa-
tion.

We remark that Goldreich et al. [6] generalized the results of Yao to more
than two parties. Goldreich et al. also gave the composition theorem that
states that if a function g can be reduced safely to a function f , and if there
is a protocol to safely compute f , then also g can be computed safely.

In this paper, we will refer to this type of circuits as Yao circuits, even if they
concern more than two parties.

10

2.3.3 Secure union protocol

When there are only two parties, computing the union of two sets belonging to
each of those parties, this can lead to security problems. Indeed, the knowledge
about ones own set and about the union, gives (at least partial) knowledge
about the other parties set. In this section, we outline a method to compute
the union of k itemsets, belonging to k parties, k > 2. The goal is that all
parties should learn the union, without learning about the itemsets of other
parties. The algorithm is from Kantarcioglu and Clifton [7] and consists of
four phases that we sketch below. These authors also show its security.

Phase 1 : All parties generate a commutative, deterministic encryption key Ei

and a decryption key Di. Each itemset is augmented with fake or dummy items
(this is done to prevent the determination of the cardinality of the itemset).
At the end of Phase 1, each party has an itemset of the same size (which is
agreed upon at the start).

Phase 2 : Each party encrypts its items and communicates them to the next
party (the communication is cyclic as in the case of secure sum computation,
i.e., Party i sends information to Party (i + 1) mod k). Each party encrypts
what he receives and passes it to the next party. This continues until each
Party i is in the possession of the completely encrypted items of Party (i + 1)
mod k. We remark that to continue one more step would be no longer secure.

Phase 3 : The even-numbered parties send all items in their possession to Party
0 and the odd-numbered parties do the same to Party 1 (the last party always
has to send to Party 1 to avoid that a party gets its own fully encrypted
itemset). Parties 0 and 1 take the union of what they received and remove the
doubles. Party 1 sends everything he has to Party 0, who removes the doubles.
At this point the union is in the possession of Party 0, be it fully encrypted.

Phase 4 : The encrypted union is sent to all parties to be decrypted. Finally
the fake items are removed and the result is announced to all parties.

2.3.4 Secure size of set intersection protocol

When there are only two parties, computing the size of the intersection of two
sets belonging to each of the parties can lead to security problems. Indeed, the
knowledge about ones own set and about the size of the intersection of two
sets gives (at least partial) knowledge about the set of the other party. So, we
are interested to compute the size of set intersection of k itemsets, belonging
to k parties, k > 2. The goal is that all parties should learn the size of set
intersection, without learning about the itemsets of other parties.

11

Jaideep Vaidya [14] proposed a protocol for the secure computation of the size
of set intersection. It is similar to the secure union protocol, and we will not
repeat the details here but refer to [14].

2.3.5 x ln(x) protocol

The x ln(x) protocol, due to Lindell and Pinkas [9], is different from the pre-
vious protocols. It uses Yao circuits, as mentioned earlier in this section.
Because circuits are only suitable for two parties, also this protocol is only
suitable for two parties. Assume we have two parties, called Alice and Bob.
Alice has a value xa and Bob has a value xb. The goal of the x ln(x) proto-
col is to give Alice and Bob both a share sa and sb respectively, such that
sa + sb = (xa + xb) ln(xa + xb)

The x ln(x) protocol makes use of two subprotocols. The first receives two
values xa and xb as input and returns two random shares of ln(xa + xb) as
output (using a Taylor series). The second, called the multiplication protocol,
receives two values ua and ub as input and returns two random shares of ua.ub

as output.

Alice and Bob run the ln(x) protocol and become shares ua and ub. Next, the
multiplication protocol is executed twice. First with ua and xb as input. This
gives Alice and Bob respectively shares va and vb. the second time it is called
with xa and ub, giving Alice and Bob respectively shares wa and wb. Alice now
has xa, ua, va and wa, with which she can compute sa = xaua+va+wa. Bob can
construct sb = xbub + vb +wb in a similar way. Since xaua +xbub +xaub +xbua

= (xa + xb)(ua + ub) = (xa + xb) ln(xa + xb), Alice and Bob both have their
share of (xa + xb) ln(xa + xb).

3 Privacy preserving ID3: Grid partitioned data

In the present section, we introduce our algorithms, preserving privacy over
grid partitioned data. Basically, we will study the following dilemma: when
data is grid partitioned we can first merge it horizontally and then further
develop the process vertically, or the other way around. Obviously other ways
of doing this are possible as well, but we consider only the two straightforward
ones. Of course while building the decision tree we need to preserve privacy
and use some well known protocols for this.

In this paper we consider privacy as protecting individual data tuples as well as
protecting attributes and values of attributes. So each party will reveal as little
as possible about its data while still constructing an applicable distributed

12

decision tree. The only thing that is known about the tree by all parties is its
structure and which party is responsible for each decision node. More precisely,
which party possesses the attribute used to make the decision, but not which
attribute (and value). We assume that only a limited number of parties know
the class attribute and no party knows the entire set of attributes, which is
obvious as we use grid partitioned data.

Once the tree is constructed instance classification proceeds as follows. The
party that wishes to classify a new unseen instance knows the root node of the
tree: or the node resides at his site or he knows the root node-identification
(nodeID). A root node identification contains a code identifying the party
possessing that particular node. Basically, when classifying a new instance,
control passes from party to party, depending on the decision nodes that are
visited. Every party knows the tuples attribute values for the nodes at its site
but knows nothing about the other attribute values. The classification then
happens as in Algorithm 2.

Algorithm 2 The classification algorithm called classify(t,nodeID). A site
wishes to classify a new instance t. Control starts at the root node (which
every party knows.)

1: if The nodeID is a leaf node then

2: its classification value (or distribution) is returned.
3: else if The nodeID is an interior node then

4: node = local node with nodeID
5: value = value of attribute node.A (used as decision attribute) for the

tuple t we are classifying
6: childID = node.value
7: return childID.classify(t,childID)
8: end if

Before introducing our new algorithms for grid partitioned data we introduce
a minor side result which has not been dealt with so far in the literature, i.e.
horizontally partitioned data with more than two parties.

3.1 Privacy preserving ID3 over Horizontally partitioned data involving more
than two parties

In this section we extend the result of Lindell and Pinkas [8], i.e. preserving
privacy for decision tree learning with two parties, to more than two parties.

13

Recall the ID3 algorithm from Section 2.1. We will separately consider its three
basic steps, i.e. emptiness test of the attribute set S, all transactions having
the same class label, i.e. class label test and the default case. We explain in
detail how the algorithm preserves privacy in each of them.

Emptiness test Thanks to the horizontal distribution of data and the fact
that all parties know the intermediate tree, they can easily determine whether
S is empty. In case S is empty they have to determine the most frequent
class value. This can be calculated by using the secure sum protocol for each
class value. Each party inputs the number of tuples having the particular class
value at his data site to the protocol. In this way they can safely compute for
each class value the total number of tuples over all sites, having this value for
its class attribute. Now a leaf node can be constructed containing the most
frequent class value.

Class label test To securely determine whether all tuples in S have the
same class value, a variant of the secure union protocol can be adopted. More
precisely, all parties provide a value as input to the protocol. If a party has only
one class value in all of its tuples, it provides this value as input. Otherwise,
a fixed symbol ⊥ is provided as input.
The protocol then runs analogously to the standard secure union protocol
until the step in which data has to be decrypted. The first party, i.e. party 0,
has all the values in its possession of which he deletes all doubles. Now there
are two possibilities, only one value remains or not. In case of the former, this
must be the value which was provided as input by party 0. This is a class
value or the ⊥ symbol. If it is a class value this means that all parties have
provided the protocol with this same value, otherwise it means that all parties
still have more than one class value. In case of the latter it is sure that there
are still more than one class value. The protocol then has to be stopped, else
values are learned by different parties which they should not learn.

Default case In this case should be determined which attribute classifies
data tuples in S most accurately. To calculate information gain, xln(x) has
to be calculated a number of times with x partitioned over the different par-
ties (being data tuples). This can be solved by the secure sum protocol. The
different parties provide as input their share of x to the protocol. The sum
known to the last party and the random value of the first party multiplied by
−1 are input of the xln(x) protocol. This protocol will provide shares of the
result as output, which then can be used as input to a circuit which securely
computes it sum and outputs which attribute classifies the tuples best.

14

The complete description can be found in Algorithm 3.

Algorithm 3 The privacy preserving ID3 algorithm for more than two parties
over horizontally distributed data

Require: R, The set of attributes.
Require: C, The class attribute.
Require: S, the horizontally distributed data set.
1: if The parties test if R is empty then

2: Secure sum protocol is used to calculate which class value ci is most
frequent.

3: Return a leaf with class value ci.
4: else if All parties use secure union protocol to test if all tuples in S have

the same class value ci. then

5: Return a leaf with class value ci.
6: else

7: Determine attribute A, classifying most accurately tuples in S: use se-
cure sum and xln(x) protocols.

8: Partition S in m parts S(a1), ..., S(am) such that a1...am are the different
values of A.

9: Return a tree with root A and m branches a1...am such that branch i

contains ID3(R − {A} , C, S(ai)).
10: end if

3.2 Grid Partitioned data

We will introduce the grid partitioned privacy preserving algorithm by running
through the different steps of ID3 informally. It is important to realize that no
site knows the complete attribute set S and only a limited number of parties
know the class attribute, more particularly as much as there are horizontal
distributions. Note that these algorithms only consider the cases for which the
parties are denoted by Pij with i = 1, .., v, j = 1, .., h.

3.2.1 Horizontal merge and vertical development

Recall the ID3 algorithm from Section 2.1. We will separately consider its three
basic steps, i.e. emptiness test of the attribute set S, all transactions having
the same class label, i.e. class label test and the default case. Here we consider
the case that we first merge the data horizontally and continue vertically. A
horizontal merge means that we eliminate the horizontal distribution, leaving
only a vertical distribution.

15

Emptiness test To determine if there are any attributes left, as many par-
ties as there are vertical distributions need to cooperate with one another as we
need to know all attributes to compute this test. This can be easily understood
from Figure 2. More precisely, in the example of that figure, parties Party11,
Party21 and Party31 can determine together if there are any attributes left.
These parties check how many possible attributes they still possess as a can-
didate decision node and pass this value as input to the secure sum protocol.
At the end of the protocol the sum and the random value are passed to a Yao
circuit, which tests if the sum equals zero (meaning that S is empty) or not.
In case of the sum being zero, the most frequent class value has to be deter-
mined. This is done in the following manner: first all parties determine the
tuples reaching the current node in the tree. Then these tuples are merged
horizontally by constructing a union over the vertical groups (over index i),
i.e. for each vertical group a secure union protocol is applied. In case of Fig-
ure 2 we have the following groups computing a union: Party11, Party12 and
Party13; Party21, Party22 and Party23 and Party31, Party32 and Party33.

Parties which are located on the same horizontal layer (meaning that they
have the same index for j), which are vertically distributed, will use the same
encryption key to compute the vertical unions (i.e. the horizontal merge). In
our example these are, Party11, Party21 and Party31; Party12, Party22 and
Party32; Party13, Party23 and Party33. At this stage there is only a verti-
cal distribution left over the entire distributed database, as we merged data
horizontally. Now we will continue by developing vertically. The intersection
of these different sets with the tuples in a particular class give the number of
tuples that reach that point in the tree. This can be done for each class value;
note that it is not necessary to use the secure size of set protocol because the
unions are already encrypted. This gives us eventually the most frequent class
value. Note that it is not necessary to decrypt the values again to compute the
intersections. The reason is that we used the same encryption keys for par-
ties at the same horizontal level, implying that equal values in the encrypted
unions are also equal in the real unions. Now a leaf can be constructed with a
certain leaf identifier. The value of the leaf is known by the parties that have
the class attribute. The others only know the identifier.

Class label test Checking whether all transactions in the training set S

have the same class value happens analogously to determining the most fre-
quent class value. More precisely, one party knowing the class attribute, can
compute the possible intersections, i.e., the intersections of the sets of tuples
which might reach the current level of the tree or node of the tree with the
tuples in a particular class. If all intersections equal zero besides one, all tu-
ples in S have that particular class value. Since they are all the same, now a
leaf node is constructed. The parties which were joined in one vertical group
knowing the class attribute, all know the id of the node (nodeID in the al-

16

gorithms) and the specific class value. All other parties just get to know the
nodeID of the node, which they need in case they need to classify a new tuple
leading to this node in the tree.

Default case In this case, the best classifying attribute has to be deter-
mined. To do this, transactions or tuples need to be counted. To learn these
numbers recall that entropy and information gain where defined as follows:
entropy(S) =

∑d
i=1

−pilog2pi where d is the total number of different values
the target class can take on and pi is the proportion of tuples of the data set
having target value i, i.e. Ni

N
, where N is the total number of tuples reach-

ing the current node and Ni is the number of tuples with attribute value
ai. The information gain of an attribute A is then defined as: gain(S, A) =

entropy(S) −
∑

v
|Sv|
|S|

entropy(Sv)

For each attribute information gain needs to be computed. First all parties de-
termine the tuples reaching the current node in the tree, i.e. N . Then these tu-
ples are merged horizontally by constructing a union over the vertical groups,
i.e. for each vertical group a secure union protocol is applied. In case of Fig-
ure 2, we have the following groups computing a union: Party11, Party12

and Party13; Party21, Party22 and Party23; Party31, Party32 and Party33.
For every vertical group, one party will iterate over its attributes. For each
such attribute, numbers of tuples need to be counted for every value of this
attribute. Thus for every value of the attribute (which is encrypted), an in-
tersection is computed over all the sets, resulting from the horizontal merge.
When we know all these numbers, the information gain of this attribute can
be computed. This step is repeated for all attributes. The process described so
far is called vertical development. On of the parties of each vertical group saves
the the information gain of its attributes. These parties can then cooperate to
compute the best classifying one. Finally, the party which possesses the best
classifying attribute constructs a decision node with is given a node identifier
nodeID. The value of the node is communicated to the other parties that also
possess this attribute. The other parties only get to know the identifier.

The complete description can be found in Algorithm 4.

3.2.2 Vertical merge and horizontal development

Emptiness test To determine if there are any attributes left, as many par-
ties as there are vertical distributions need to cooperate with one another as
we need to know all attributes to compute this test. So essentially this is done
in the same manner as with the horizontal merge, i.e. the previous algorithm.

17

Algorithm 4 The privacy preserving ID3 algorithm over grid partitioned data
when data is merged horizontally and further developed vertically.

Require: R, The set of attributes distributed among the parties Pij with
i = 1, .., v, j = 1, .., h.

Require: C, The class attribute with d class values, c1, ..., cd.
Require: S, the grid distributed data set over parties Pij with with i = 1, .., v,

j = 1, .., h and parties Pv,j holding the class attribute .
1: if (Emptiness test)The parties test if R is empty then

2: Secure sum protocol and Yao circuit are used to test whether R is empty.
3: In case the attribute set is empty, Secure union protocol is used to

merge data horizontally. For the vertical development, the secure size
of set intersection protocol does NOT have to be used. A Yao circuit is
used to calculate which class value ci is most frequent. A leaf node with
class value ci is returned.

4: else if All parties test whether all tuples have the same class value ci

then

5: Secure union protocoland Yao circuit are used to calculate this.
6: In case the test is TRUE, a leaf with class value ci is returned.
7: else

8: Determine attribute A, classifying most accurately tuples in S: use se-
cure union and secure sum protocols.

9: Partition S in m parts S(a1), ..., S(am) such that a1...am are the different
values of A.

10: Return a tree with root A and m branches a1...am such that branch i

contains ID3(R − {A} , C, S(ai)).
11: end if

To determine the most frequent class value we will merge data vertically.
More precisely, every party first determines the number of tuples that reach
the current level of the tree or node of the tree. For this the parties only use
the attributes they possess. Then we merge vertically by letting cooperate
the parties at the same horizontal level. In our example these are Party11,
Party21 and Party31; Party12, Party22 and Party32; Party13, Party23 and
Party33. The parties that possess the class attribute now need to compute
a set per class value. In our example these are parties Party31, Party32 and
Party33. They compute as many secure size of set protocols as there are class
values. In this manner they compute per horizontal group (or vertical merge)
the number of transactions per class value. If the parties possessing the class
attributes have computed these intersections, they have to cooperate to find
out the total number of tuples per class value. They compute this by using
a secure sum protocol per class value. Then these values are passed on to a
Yao circuit to be able to learn the most frequent class value. Now a leaf can
be constructed with a certain leaf identifier. The value of the leaf is known by
the parties that have the class attribute. The others only know the identifier.

18

Class label test Determining whether all tuples have the same class value
is analogous to the previous step. The difference lies in the Yao circuit, which
will test if all sums equal zero except for one. Again a leaf can be constructed
with a certain leaf identifier. The value of the leaf is known by the parties that
have the class attribute. The others only know the identifier.

Default case We need to compute the best classifying attribute. To do
this, transactions or tuples need to be counted. To learn these numbers recall
that entropy and information gain where defined as follows: entropy(S) =∑d

i=1
−pilog2pi where d is the total number of different values the target class

can take on and pi is the proportion of tuples of the data set having target value
i, i.e. Ni

N
, where N is the total number of tuples reaching the current node and

Ni is the number of tuples with attribute value ai. The information gain of an
attribute A is then defined as: gain(S, A) = entropy(S) −

∑
v

|Sv|
|S|

entropy(Sv)

First, we merge data vertically. More precisely, every party first determines
the number of tuples that reach the current level or node of the tree. For this
the parties only use the attributes they possess. Then data is merged vertically
by parties at the same horizontal layer (having the same j index in Pij) via
a secure size of set intersection protocol to obtain exactly those tuples that
are in the current dataset associated to the node under consideration in the
tree. In our example these are Party11, Party21 and Party31; Party12, Party22

and Party32; Party13, Party23 and Party33. Through a secure sum protocol
these numbers can now be added to learn the number of tuples that reach the
current node of the tree, which is denoted by N in the entropy formula.

Now we need to compute for each remaining attribute its information gain.
This is done by computing for each value of an attribute over each horizontal
layer, the number of tuples having this attribute value (we compute Ni). This
is done by using the secure size of set protocol. Then these numbers can be
added over all horizontal layers by using a secure sum protocol. This is called
horizontal development. The secure sum (added with the random value) and
the random value itself multiplied by one are provided to the xln(x) protocol.
This circuit will then output shares of the result which then can be used as
input to a circuit which securely computes it sum and outputs which attribute
classifies the tuples best. A decision node can now be constructed for the best
classifying attribute.

The description of the algorithm is summarized in Algorithm 5.

19

Algorithm 5 The privacy preserving ID3 algorithm over grid partitioned data
when data is merged vertically and further developed horizontally.

Require: R, The set of attributes distributed among the parties Pij with
i = 1, .., v, j = 1, .., h.

Require: C, The class attribute with d class values, c1, ..., cd.
Require: S, the grid distributed data set over parties Pij with i = 1, .., v,

j = 1, .., h and parties Pv,j holding the class attribute .
1: if (Emptiness test)The parties test if R is empty then

2: Secure sum protocol and Yao circuit are used to test whether R is empty.
3: In case the attribute set is empty, Secure size of set intersection protocol,

secure sum protocol and Yao circuit are used to calculate which class
value ci is most frequent. a leaf node with class value ci is returned.

4: else if All parties test whether all tuples have the same class value ci

then

5: Secure size of set intersection protocol, secure sum protocol and Yao
circuit are used to calculate this.

6: In case the test is TRUE, a leaf with class value ci is returned.
7: else

8: Determine attribute A, classifying most accurately tuples in S: use se-
cure size of intersection, secure sum and xln(x) protocols.

9: Partition S in m parts S(a1), ..., S(am) such that a1...am are the different
values of A.

10: Return a tree with root A and m branches a1...am such that branch i

contains ID3(R − {A} , C, S(ai)).
11: end if

4 Complexity analysis of privacy preserving ID3 over grid-partitioned

data

In this section we analyse the complexity of the two computation strategies
proposed in the previous section: first merging horizontally and developing
vertically or first merging vertically and next developing horizontally.

The different quantities h, v,k, |T |, |R|, d, m, t and n that play a role in this
analysis are explained in the next table.

20

Notation Meaning

h the number of horizontal groups

v the number of vertical groups

k the number of parties (=h × v)

|T | the number of tuples in the data set

|R| the number of attributes

d the number of values for the class attribute C

m the maximal number of values for an attribute

t the maximal length of encryption keys

n the maximal length of Taylor series

The predominant task in the ID3 algorithm is to determine the attribute with
the highest Information Gain and we will base our analysis mainly on this
component.

4.1 The complexity of the components from SMPC

In discussing the complexity of the building blocks described in Section 2.3
usually two components are considered: the computational complexity and the
communication complexity. The former considers the cost of computations in
the classical sense, the latter considers the cost of passing messages between,
e.g., between different parties.

4.1.1 The complexity of the secure sum protocol

For the secure sum protocol with k parties, the computation and communi-
cation costs are both O(k log (|T |)). Each of the parties never outputs values
larger than |T | and the messages passed are never larger than |T |. Assuming
binary encoding of numbers, this gives the above result.

4.1.2 The complexity of the secure union protocol and secure size of inter-
section protocol

For the secure union protocol and the secure size of intersection protocol with
k parties, the computation cost is O(k2|T |t3) and the communication cost is
O(k2|T |t). Indeed, the parties send sets of at most size |T |, they make use of

21

encryption keys of length t, hence the factor t3 in the computation cost, and
every party has to encrypt k2 sets. The value t in the communication cost
points at the size of the sets that are transmitted. In total k2 messages are
sent of size |T |t.

4.1.3 The complexity of the secure x ln x protocol and Yao circuits

The secure x ln x protocol for two parties has a computational cost of O(log (|T |))
and a communication cost of O(n log (|T |)t). It takes input values of at most
|T |. The protocol also depends on a value n that determines how far a Taylor
series is developed. The protocol contains a Yao circuit, created by one of the
parties who also gives his input to the circuit and passes it to the other party.
This explains the communication cost, in which n obviously plays a role since
it determines the size of the circuit. The second party receives the circuit and
feeds his input to the circuit. Hereto one oblivious transfer is performed per
bit. This step explains the computational cost.

4.2 The complexity of first horizontal merging

To determine the attribute that best classifies the data, for each attribute
unions have to be determined over h parties. The exact number of unions may
depend on the attribute under consideration. If it is an attribute that belongs
to the party that possesses the class attribute, it are v + d + m− 1 unions. If
an other party belongs the class attribute, it are v+d+m−2 unions. Also the
number of unions to be transmitted depends on the attribute. For attributes
in the possession of the owner of the class attribute, there are v − 1 unions to
be transmitted, for other attributes v + d − 2.
So, we conclude:

computation cost = O(|R|(v + d + m)(h2|T |t3))

communication cost = O(|R|(v + d)(h2|T |t)).

We end this section with a remark on how this protocol could be made more
efficient. Remark that the strength of this protocol resides in the fact that
adjacent parties may use the same encryption key. For this reason it is not
necessary to use the secure size of set intersection protocol to calculate in-
tersections. The first phase of this protocol can be skipped because the same
keys are used when computing unions. This is possible here because the data
is both horizontally and vertically distributed. When the data is only verti-
cally distributed, it would also be possible to let the parties agree on some
encryption keys and to simplify the protocol in this way.

22

4.3 The complexity of first vertical merging

Per attribute 1 + d + m + dm values have to be computed, namely:

• The number of transactions reaching the current node: 1;
• The number of transactions reaching the current node per class value: d.
• The number of transactions reaching the current node per attribute value:

m.
• The number of transactions reaching the current node per class value and

per attribute value: dm.

All these values can be computed via a secure size of set intersection protocol
that is each time executed by v parties. Since we have to count this for each
horizontal group, this gives in total h(1 + d + m + dm) calls to the secure size
of set intersection protocol. With these values the computation continues. In
case of two horizontal groups this is with the x ln x protocol; in the case of
more horizontal groups this is with the secure sum protocol, followed by the
x ln x protocol. So, we conclude:

computation cost = O(|R|(h(1 + d + m + dm))(v2|T |t3)+

|R|(1 + d + m + dm)(log (|T |))+

|R| log (|T |)) [+O(h log (|T |))]

and

communication cost = O(|R|(h(1 + d + m + dm)).(v2|T |t)+

|R|(1 + d + m + dm)n(log (|T |)t)+

|R| log (|T |)t) [+O(h log (|T |))].

4.4 Conclusion on the complexity analysis

We start by remarking that it looks more logical to merge the data first hor-
izontally and then to further develop it vertically. De emptiness test can be
implemented more efficiently in the former case. The secure x ln x protocol
gives an approximated result, but the difference from the real result is small.
This protocol also makes heavy use of circuit computations. In practice it is
preferable to avoid this.

For what concerns complexity, the above obtained expressions also show that
first horizontally merging is advantageous. And as remarked before it can be

23

improved by an optimal use of encryption. Indeed, by giving different parties
the same encryption key it is not necessary to perform the secure size of set
intersection protocols after the secure union protocols have been executed.

5 Conclusions

In this paper we first discussed the significance of extending the current state
of the art in privacy preserving datamining to grid partitioned data, i.e. data
which is as well horizontally as vertically partitioned. Our motivating exam-
ple shows that this situation is of great interest to real world situations and
applications. Then we continued by formally defining horizontally, vertically
and grid partitioned data. To our knowledge we are the first to formalize the
concept of grid partitioned data.

We continued by introducing three new privacy preserving data mining al-
gorithms. We started by extending the result of Lindell and Pinkas [8], i.e.
preserving privacy for decision tree learning with two parties when data is
horizontally distributed, to more than two parties. However, the main contri-
bution of this paper are the two algorithms to securely induce a distributed
decision tree when data is grid partitioned. More precisely, we considered two
possible solutions: one in which data is first merged horizontally and then
further developed vertically and vice versa. The complexity analysis of both
algorithms shows that it is more efficient to first merge data horizontally and
further develop it vertically than the other way around.

References

[1] R. Agrawal, R. Srikant, Privacy-preserving data mining, in: Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2000.

[2] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, M. Y. Zhu, Tools for privacy
preserving data mining, SIGKDD Explorations 4 (2) (2002) 28–34.

[3] C. Clifton, D. Marks, Security and privacy implications of data mining, in:
Proceedings of the ACM SIGMOD Workshop on Data Mining and Knowledge
Discovery, 1996.

[4] W. Du, Z. Zhan, Building decision tree classifier on private data, in: IEEE
International Conference on Data Mining Workshop on Privacy, Security, and
Data Mining, 2002.

[5] C. Farkas, S. Jajodia, The inference problem: A survey, SIGKDD Explorations
4 (2) (2002) 6–11.

24

[6] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or a
completeness theorem for protocols with honest majority, in: Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing (TOC),
1987.

[7] M. Kantarcioglu, C. Clifton, Privacy-preserving distributed mining of
association rules on horizontally partitioned data, in: Proceedings of the ACM
SIGMOD Workshop on Research Issues on Data Mining and Knowledge
Discovery (DMKD), 2002.

[8] Y. Lindell, B. Pinkas, Privacy preserving data mining, in: Proceedings of 20th
Annual International ryptology Conference (CRYPTO), 2000.

[9] Y. Lindell, B. Pinkas, Privacy preserving data mining, in: Proceedings of 20th
Annual International Cryptology Conference, vol. 1880 of Lecture Notes in
Computer Science, 2000.

[10] T. Mitchell, Machine learning, McGraw-Hill Series in Computer Science.

[11] J. R. Quinlan, Induction of decision trees, Machine Learning 1 (1) (1986) 81–
106.

[12] C. Su, K. Sakurai, Secure computation over distributed databases, IPSJ journal.

[13] L. Sweeney, A primer on data privacy protection. phd thesis, in: Massachusetts
Institute of Technologie, 2001.

[14] J. Vaidya, Privacy Preserving Data Mining over Vertically Partitioned Data,
PhD thesis, Purdue University, 2004.

[15] A. C.-C. Yao, How to generate and exchange secrets (extended abstract), in:
Proceedings of the 27th IEEE Symposium on Foundations of Computer Science
(FOCS), 1986.

25

