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Abstract

This paper is concerned with the learning process
of a sparse interaction network, for example, a
gene-protein interaction network. The advan-
tage of the process we purpose is that there will
always be a studer that fits the teachell
very well with a relatively small data set and a
high number of unknown components, i.e., when
the number of measuremenis is significantly
smaller than the system sikxe

To measure the ficiency of this learning
process, we use the generalization errgg,,
which represents the probability that the student
is a good fit to the teacher. From our experi-
ments it follows that the quality of the fit depends
on several factors: First, the ratio = M/N of

the number of measurements to the system size
has a strong impact. Surprisingly, we find that a
sudden identification transition occurs for value
« = agenWhich corresponds tgyen = 1/2. From
this sample size onwards the student will be a
good fit to the teacher. Interestingly, the gener-
alization thresholdvgen, Will always be signif-
icantly smaller then 1. Second, the quality of
the fit depends on the sparsity of the network. If
the number of non-zero components increases, as
sparsity disappears, théfieiency of the process
will gradually increase. Finally there is an impact
of the noise level. The learning process is robust
to noise upto a certain threshold. We see that,
at this level, the impact on the noise suddenly
and dramatically increases as a consequence of

which the student will no longer be a good fit to
the teacher.

Keywords: machine learning, sparse systems, network re-
construction, robust identification.

1. Introduction and motivation

Over the last two decades research in the area of genetics
and bio-informatics has increased spectacularly. Oneeof th
main contributing factors has been the development of mi-
croarray technologies, which has enabled the measurement
of gene expression levels and profiles on a genome-wide
scale.

In previous work (Westra et al., 2006) we were concerned
with the identification and reconstruction of dynamic gene-
protein interaction networks with intrinsic and extrinsic
noise from empirical data, such as a set of microarray time
series. To model the interactions amongst genes and pro-
teins, we considered them as biochemical reactions and
thus we represented them as rate equations.
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e &(t) any stochastic uncertainty for genat timet of external influences (in general the number of columns
of By) and the sparsitykr. ky represents the number of
e J; the decay rate non-zero values per row & and Bt together. For each
measurementy, the following equation holds:
In many engineering applications, the number of measure-
mentsM available for system identification (also known Xm = ar Xm + brUm (2)
as reverse engineering) and model validation is usuallyl_ o , )
much larger than the system ordérwhich represents the 1h€ a@im is to reproduce the teacher’s output for any input
number of genes. In the application of Westra et al. (Westr@€rfectly after seeing/ examples, so we need a student,

— H _ NxN — NxP
et al., 2006), though, the number of measureméts S = (As, Bs) with As = R andBs = R™®, to learn.
typically much smaller thatN because we have to deal Learning means that the student has to determine the sub-

with poor data In practice, because of the high costs, S€t of features used by the tea}cher anq in this context thus
there are a few microarray experiments and lots of genedas t0 search for the interaction matrids(Bs), that is

This substantial lack can give rise to an identifiability @0 acceptable fit for the original oneAq(, Br), using the
problem, in which case a larger subset of the mode[at€ €quation (2) and{(U, X). With an "acceptable’ fit we
class is entirely consistent with the observed data and ng1ean that the estimated matrix caffelf from the original
unique model results. Since conventional techniques foPn€ With a small but acceptable error.

system identification are not well suited to deal with such

situations, it thus becomes important to work around this2, The Iearning process

by exploiting as much additional information as possible . ) . )
about the underlying system, in particular the relation T he rate equation, which will be used to reconstruct inter-

between the number of measurements and the number g]ction matrices and is described in Section 1 can be rewrit-
genes, the sparsity of the gene regulatory network and th€n as a state-space system of the form:

influence of noise. X =AX+BU+¢ 3)

The model constructed in (Westra et al., 2006) is notvhere

only capable of reconstructing gene-protein interactigtn n _

works, but can also reconstruct other networks based ona ® X = (X1,...,%n) € RNM, the estimates of the state
small number of available measurements. derivatives aty, ...ty

Alternatively, the problem may be rephrased as the iden-
tification of the subset of features used by the teacher to
generate its response. Since the teacher is sparse, only a
subset of the available input values is actually processed. ¢ U = (uy,...,un) € RP*M, the external stimuli at
Hence, we can view this problem in the context of feature
selection.

Because of the éfierent possibilities we want to gener-  ® é € RN, stochastic Gaussian white noise
alize this process of reconstruction and reformulate it as

a learning process. A learning process is defined byare all known quantities.

Mitchell (Mitchell, 1997) as searching through a very large
space of possible hypotheses to determine one that beﬁ
fits the observed data and any prior knowledge held by th
learner. Learning is useful when, first, large databases m

contain valuable implicit regularities that can be discede by the row-vecto; and the (known)-th row of X by the
automatically, second, in poorly understood domainswher%w_vectom_. Thisl yields the following decoupled set of
humans might not have the knowledge needed to deveIoRI linear syétems of equations of sidxN (with M the

effective algonthm_s and, third, in doma_uns Whef?’ the PIO - umber of equations arid the number of unknowns):
gram must dynamically adapt to changing conditions.

For our model we have a teachdr, = (Ar, Br), with X )

Ar = RV and B = RV, Each component of [ @ fi ][ U ]Zéi . (I=i<N) 4)

At € [-0.9,-0.1[U]0.1,0.9] and each component & €

[-1, 1] and are uniform distributed. This teacfieis a ma-

trix that represents the mRNA concentration per gene per

measurement and has the knowledge about the number ®he process to learn these interaction matrices can be for-
genes (in general the number of rowsAgf), the number mulated as follows:

o X =(Xg,...,%) € RNVM the full state observations at
t1,...,tm

t,...,tm

tshould be noted that this matrix equation can be treathed
a‘ian a row-by-row fashion. Denoting the (unknowirth row
<l As by the row-vector, the (unknown)-th row of Bg



In each of these linear systems of equations,Nheector  good fit. Secondly, the sparsiyalso has a strong influence

a; and theP-vectorg; are to be computed frorivl equa- on M and thirdly, the quality of the result also depends on
tions, with M typically smaller thanN, to deal with the the noise level¢. We try to establish this by experiments.

poor data property. This means that there are too manyhese experiments are presented in Section 3.

degrees of freedom because there are a small number of

equatiqnsj\/l, and a lot of unknowln.vari.abllesl. To deal 3. Experiments

with this problem, an extra condition is imposed. More
precisely a sparsity constraint enandg; is added, which  The success of the learning process described in Section 2
dictates that a number of componentshndg; have to  depends on the relations between the parameter values. To
be zero. Some studies about computing a sparse solutianvestigate these, several numerical experiments have bee

to a consistent underdetermined linear system of equatiorsonducted.

Cx = D has been conducted. Thg-minimization max- . .
L ; All experiments were performed on a PC with an Intel Pen-
imizes the number of zeros, but is too complex to com-

oL o tium M processor of 1.73 GHz and 1 GB RAM memory
pute. Thereford.;-minimization is used because it gives, . . .
. . o under Windows XP Professional, using Matlab 6.5 Release
under certain conditions, a good approximation as noted b

Fuchs (Fuchs, 2003 Fuchs, 2004, For more ceais abog 191010 1 OpITFalen Toobox e atersfo,
this technique see also (Peeters & Westra, 2004) and (Wes- prog b '

tra, 2005). It is well known that this problem can be refor- solution method is a primal-dual interior point method, but

mulated as an LP-problem (linear programming problem)an active set method can optionally be used, too. For larger

In other words. finding a vector having as manv zeros a'groblems, it turned out to be essential for obtaining reason
' 9 9 y :flble computation times that the LP problems were solved

possible can be replaced by the much simpler problem 0by application of the active set method on the dual problem

fmdln'g a ygctor for WthH!ISIIll IS mmw_nal. . formulation. Therefore, this method was adopted through-
For simplicity of representation, we incorporate maix .
out all the experiments.

in matrix As (dim(As) = N x (N + P)) and matrixU in
matrix X (dim(X) = (N + P) x M). So the LP problem can Since results can depend on the particularities of givea dat
be reformulated by: minimize the -norm of Ag and the original system that generated it, all experiments
have been performed on a number of independent runs on
randomly selected data and systems. Hence they convey
the behavior of our approach “on average”.

N+P
minllAslly < aslvpe{giwélasi,,w, (1<i<N) (5)
In line with the definitions above, we use the parameters
N and M to quantify the size and complexity of the
input. To generalize these input-parameters we define
a = M/N. In addition, the sparsity of the interaction
matrix Ar is measured by the number of non-zero entries
per row and denoted Byt (which should be much smaller
thanN). Also for this parameter we use a generalization
k1 = kr/N. To complete the system’s data set, some

subject to theM conditions
Xm = @sXm (6)

which represents the training sgt = (Xm, Xm) for
m= 1...M. LP yields a studen$ that always faithfully
reproduces the training set, but may or may not be equal t

the teachefl. In the context of learning the latter implies . . . o .
that the student has memorized or stored the exampledochastic Gaussian white notses added to the input data

in the training set perfectly, but was unable to generalize®t: It is normally distributed with zero mean and some
beyond that point. This fact will be taken into account Standard deviatiow that determines the noise level. To

by introducing the generalization error. It represents théiu@ntify the quality of the fit, the resulting approximation

failure of the student to reproduce the teacher's outpuf's: @ performance measure is introduc&do T

given a training set of sizeVl. For more details see

Section 3. As already described in Section 1, for the quality of the
learning process it is important to evaluate the trainirtg se

The main question of this paper is the following: how manyX- The number of available measuremeltsiepends on
measurementVlgen = agenN, does the student need to be the number of rowd because if there are not enough mea-
supplied with in order to determine the subset of feature§urements, the student is not a good fit to the teacher. This
used by the teacher? First, it is important to determine th@henomenon is shown in Figure 1. Results have been ob-
required size of the training set for a student to success@ined by averaging over 50 independently and randomly
fully learn the teacher's character. If the number of avail-selected instances of teacher and training set for three dif
able measurements is too small as a function of the numbdgrent system sizeN = 100 160 300, each with sparsity

of rows, the learning process is not capable to construct & ~ 0.031. As mentioned before, by the use of LP we al-
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Figure 1.The probability of an errogge, as a function of learn-

ing the training set of sizer

M/N for N

100(circles),

N = 160(squares) and = 300(triangles) for constart ~ 0.031

and for a full matrixAr.
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Figure 2.The probability of an errogge, as a function of learning

0.35 04

the training set of sizee = M/N for N = 100(diamonds)N =
160(squares) and = 300(triangles) for constart ~ 0.031 and

for only one rowAr,,.

ways get a studer8 that is capable to reproduce the train-
ing set correctly, but there is a possibility that this stide
may not be equal to the teachir In the context of learn-

ing this situation implies that the student has memorized or
stored the examples in the training set perfectly, but was
unable to generalize beyond that point. For small values of
a, the algorithm fails to reproduce the teacher with proba-
bility egen = 1. However, for increasing size of the training
set, one notes that LP generates a student that equals the
teacher with probability + ezen ~ 1. The transition from
one regime to the other is quite sudden, especially for in-
creasing system sizd. That is the reason why the gener-
alization threshold is introduced. It represents the malim
size of the training set from which the student is able to
generalize. Since the size of the training set necessary for
generalization depends on a specific instance of the teacher
and the training set, the generalization threshold can be de
fined more rigorously as the fractiagen = Mgen/N SO that

the student and the teacher will be equal after training with
probability 2 for a large number of independently and
randomly selected instances Bfandy. Figure 1 shows
that, if « is suficiently large, i.e., ife > agen the student

S fits the teacher very well. Furthermore we notice that
agen< 1.

Moreover, Figure 1 illustrates thage, depends on the size

of the systenmN for constantt because the transition to-
wards generalization occurs for smaller values@fs the
system sizéN increases.

If only one equality (one row ofr,) is considered, as in
Figure 2, we see that the transition towards generalization
occurs increasingly sudden for larger systevasFurther-
more we see thaige, is independent ol for constani.

The relation between the generalization error curves for a
system ol rows in Figure 1 and those for one with a single
row in Figure 2 can be understood as follows. The gener-
alization thresholdygen for the former is—by definition—
reached whemgen = 1/2. However, this implies that for
half the number of independent ruiadl,rows must be iden-
tified correctly. This means that the acceptable error rate
£acc < 1/2 for each row, even for very small systems. More
precisely, the acceptable generalization error per row can
be computed from /2 = (1 - eacd", O, €acc = 1— (1/2)Y/N.

The size of the training set required to attain the error rate
€acc IS denoted by, and can—at least in principle—be
read from the curves in Figure 2 for the desired value of
the system siz&. By definition,aacc = agen Which eluci-
dates the relation between Figures 1 and 2. In Figure 2, one
observes that for increasing system size, the system identi
fication transition is increasingly sudden, i.e., the dagv
ategen = 1/2 increases wittN. On the other handgc de-
creases wittN, and hence it is not a priori clear from Fig-
ure 2 howgenWill vary as a function oN. Figure 3 allows

to derives an upper bound fag.c and hence a lower bound



for the suddeness of the transition in Figure 2 for values ovalue of the teacheAr,,. The error is the sum of the
false positives and false negatives in the students|f
lower bound, (17, the size of the training set necessary tois non-zero while it should be zero becausg, is zero,
learn just one row (see Figure 2) an@®the upper bound there is a false positive and s, is zero while it should
be non-zero or wheis,, has a diferent sign tharhr,

N — co. More precisely, A7 < aaec < 0.39, with the

determined by interpolation.
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Figure 3.The training set of sizege, = Mgen/N as a function of

there is a false negative.

Again, results have been obtained by averaging over
50 independently and randomly selected instances of
teacher and training set for threeffdrent system sizes

N = 100 160,300, each with sparsityr ~ 0.031. Figure 5

is also a representation of the quality of the learning as a
function ofa, but only for one royequation ofAs and Ar

and only one run of a randomly selected instance of the
teacher and the training set for one system $ize 240

and for a constant sparsity ~ 0.037. Both figures show
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1/N, the blue stars are measured from figure 1, the red line is an g” 095; +
approximation based on these stars. b Lo
0.94 >
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Note that the probabilistic approach outlined above also  "| -

explains another qualitative féikrence between Figures 1
and 2. While the curves in Figure 2 are anti-symmetric .|
with respect taegen = 1/2, this is not the case in Figure 1.
Since a failure to identify even a single row of the matrix

>
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results in the failure of the system as a whole, the systengigure 4The quality of the learning process as a function of
the training set of size&e = M/N for N = 100(circles),N =
but extends to—comparared to Figure 2—larger values 0160(squares) anl = 300(triangles) and for constatt ~ 0.031.

identification transition sets in for values @fen— a =~ 0,

a — agen.

N examples would be needed to determMeunknown
values. However, it is clear that < agen < 1, which

their positions also need to be identified.

Figure 4 shows the student-teacher overBpo T as
a function of the training set sizeSoT represents
the correctness £1-error) of the results of the learning

an initial decrease, followed by an increase&do T = 1.

This result is rather surprising since one would expect thaPbserve that the startpoints, = 1 for all system sizesl,

are equal to approximately @«t). The initial decrease is
because the number of non-zero components is very low
shows that less information than naively expected is necegnd increases as a function Wfuntil a certain point. At
sary to achieve good generalization. This is a consequendBis point the identification of the system starts and there i
of the sparsity of the teacher. It turns out to be much easiean increase until the number of necessary measurements
to identify the input features used by a sparse teacher tt$ available. From this point onwards the student fits the
determine its output than to determine the interactiongeacher perfectly anBoT =1.Asin Figure 1, there is an

at a non-sparse teacher. Obviously one needs more thamcreasingly sudden transition from one regime to the other
kr = kN examples to determirig- non-zero values since for higher values foN. Also the minimum value 08 o T
decreases in Figure 4 for increasing system sizes. These
sudden transitions are more clear in Figure 5 (represents
just one typical run), because Figure 4 has the same results
but has to take all rows dfs into account and is averaged

over 50 runs.

processes. The error is defined as follows: each value of
the studeniig , will be compared with the corresponding Until now we have used a fixed value for the sparsity of



' ‘ ‘ ‘ ber of measurements has to be maximal sodgat= 1 for
o8l , realistic system sizes.
096/% ] Finally, as mentioned, it is also important to observe the
OOOO N influence of noise on the learning process. Therefore we
oot o 1 added to the input data set some stochastic Gaussian white
J oozl ° 0%, 1 noise& with zero mean.The standard deviatienof this
g ° % noise distribution can be interpreted as the noise level.
g oo ] Results have been obtained by averaging over 50 inde-
os8- RGN ] pendently and randomly selected instances of teacher and
ol °% s % o | training set for one system si2¢ = 100, with sparsity
% %° kr ~ 0.031. As we can expect,en increases wheun in-
0.84 o 4

Figure 5.The quality of the learning process as a function of the
training set of sizer = M/N for only one row, withN = 240 and
a constankr ~ 0.037.

0.4 —

the teachergy, but the sparsity has also an impact on the
learning process. Results have been obtained again by av =~ o3t ]
eraging over 50 independently and randomly selected in- .| i
stances of teacher and training set for twietient system
sizesN = 100 160. Figure 6 shows thatif increaseggen
increases too. It is obvious that the more non-zero values ~ * oox o ows om oms o oow ox oos oos
there are per row oA, the more measurements are neces-

sary to fit this teachefr. Furthermore, it is also important Figure 7.The training set of Sizergen =

the noise levetr.

01f b

Mgen/N as a function of

1k

1 creases: we see that the increase varies as a function of
More precisely, the increase afen is more or less linear
uptoo =~ 0.021. From that point onwardge, = 1. This
value ofo is the threshold for the noise level beyond which

] the model is not able to learn with less thidnexamples.

] Further more, we known that the standard deviation of the
system’s respons¥, denoted byry, is of order 1. So we
conclude that the learning process is robust to noise upto a
noise level of 2 %.
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oL 020804 0806 0T 080t Using experiments, we have addressed answers to the fol-
lowing questions:

Figure 6.The training set of sizevgen = Mgen/N as a func-
tion of the sparsityer = kr/N for N = 100(circles) andN = e How many measuremeni8yen = agerN does the stu-
160(squares). dentS need to fit the teachdr?

_ e How does the sparsity influenoegen?
to observe that there exists an upper bound for the degree of

sparsity, for example, the upper bound is approximately at ¢ How does the noise level influenagen?

kt ~ 0.37 forN = 100. We also can conluce that this upper

bound is dependent on the system $izél his upperbound From our experiments, we can conclude that the student fits
means that ikt is larger than this upper bound, the num- the teacher very well whet is significantly smaller than



1 on two conditions. First, there is an upper bound for the
sparsity which depends on the system $izeSecond, the
noise level should not exceet a threshold.

In summary, our experiments clearly demonstrate that for

high degrees of sparsity and relatively moderate noise lev-

els, the student already fits the teacher with great accuracy
for a small sample size.
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