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Abstract
This paper is concerned with the learning process
of a sparse interaction network, for example, a
gene-protein interaction network. The advan-
tage of the process we purpose is that there will
always be a studentS that fits the teacherT
very well with a relatively small data set and a
high number of unknown components, i.e., when
the number of measurementsM is significantly
smaller than the system sizeN.
To measure the efficiency of this learning
process, we use the generalization error,ǫgen,
which represents the probability that the student
is a good fit to the teacher. From our experi-
ments it follows that the quality of the fit depends
on several factors: First, the ratioα = M/N of
the number of measurements to the system size
has a strong impact. Surprisingly, we find that a
sudden identification transition occurs for value
α ≈ αgen which corresponds toǫgen = 1/2. From
this sample size onwards the student will be a
good fit to the teacher. Interestingly, the gener-
alization thresholdαgen, will always be signif-
icantly smaller then 1. Second, the quality of
the fit depends on the sparsity of the network. If
the number of non-zero components increases, as
sparsity disappears, the efficiency of the process
will gradually increase. Finally there is an impact
of the noise level. The learning process is robust
to noise upto a certain threshold. We see that,
at this level, the impact on the noise suddenly
and dramatically increases as a consequence of
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which the student will no longer be a good fit to
the teacher.

Keywords: machine learning, sparse systems, network re-
construction, robust identification.

1. Introduction and motivation

Over the last two decades research in the area of genetics
and bio-informatics has increased spectacularly. One of the
main contributing factors has been the development of mi-
croarray technologies, which has enabled the measurement
of gene expression levels and profiles on a genome-wide
scale.

In previous work (Westra et al., 2006) we were concerned
with the identification and reconstruction of dynamic gene-
protein interaction networks with intrinsic and extrinsic
noise from empirical data, such as a set of microarray time
series. To model the interactions amongst genes and pro-
teins, we considered them as biochemical reactions and
thus we represented them as rate equations.

ẋi(t) =
N
∑

j=1

ai j x j(t) +
P
∑

p=1

bipup(t) + ξi(t) − λi xi(t) (1)

for (1 ≤ i ≤ N) with

• ai j the influence rate from genej on genei

• x j(t) the expression of genej at timet

• bip the external stimuli rate from inputp on genei

• up(t) the expression of external stimuli from inputp at
time t



• ξi(t) any stochastic uncertainty for genei at timet

• λi the decay rate

In many engineering applications, the number of measure-
mentsM available for system identification (also known
as reverse engineering) and model validation is usually
much larger than the system orderN, which represents the
number of genes. In the application of Westra et al. (Westra
et al., 2006), though, the number of measurementsM is
typically much smaller thanN because we have to deal
with poor data. In practice, because of the high costs,
there are a few microarray experiments and lots of genes.
This substantial lack can give rise to an identifiability
problem, in which case a larger subset of the model
class is entirely consistent with the observed data and no
unique model results. Since conventional techniques for
system identification are not well suited to deal with such
situations, it thus becomes important to work around this
by exploiting as much additional information as possible
about the underlying system, in particular the relation
between the number of measurements and the number of
genes, the sparsity of the gene regulatory network and the
influence of noise.

The model constructed in (Westra et al., 2006) is not
only capable of reconstructing gene-protein interaction net-
works, but can also reconstruct other networks based on a
small number of available measurements.
Alternatively, the problem may be rephrased as the iden-
tification of the subset of features used by the teacher to
generate its response. Since the teacher is sparse, only a
subset of the available input values is actually processed.
Hence, we can view this problem in the context of feature
selection.
Because of the different possibilities we want to gener-
alize this process of reconstruction and reformulate it as
a learning process. A learning process is defined by
Mitchell (Mitchell, 1997) as searching through a very large
space of possible hypotheses to determine one that best
fits the observed data and any prior knowledge held by the
learner. Learning is useful when, first, large databases may
contain valuable implicit regularities that can be discovered
automatically, second, in poorly understood domains where
humans might not have the knowledge needed to develop
effective algorithms and, third, in domains where the pro-
gram must dynamically adapt to changing conditions.
For our model we have a teacher,T = (AT , BT), with
AT = RNxN and BT = RNxP. Each component of
AT ∈ [−0.9,−0.1[∪]0.1, 0.9] and each component ofBT ∈

[−1, 1] and are uniform distributed. This teacherT is a ma-
trix that represents the mRNA concentration per gene per
measurement and has the knowledge about the number of
genes (in general the number of rows ofAT), the number

of external influences (in general the number of columns
of BT) and the sparsity,kT . kT represents the number of
non-zero values per row ofAT andBT together. For each
measurement,m, the following equation holds:

ẋm = aT xm+ bTum (2)

The aim is to reproduce the teacher’s output for any input
perfectly after seeingM examples, so we need a student,
S = (AS, BS) with AS = R

NxN andBS = R
NxP, to learn.

Learning means that the student has to determine the sub-
set of features used by the teacher and in this context thus
has to search for the interaction matrix, (AS, BS), that is
an acceptable fit for the original one, (AT , BT), using the
rate equation (2) and (X,U, Ẋ). With an ’acceptable’ fit we
mean that the estimated matrix can differ from the original
one with a small but acceptable error.

2. The learning process

The rate equation, which will be used to reconstruct inter-
action matrices and is described in Section 1 can be rewrit-
ten as a state-space system of the form:

Ẋ = AX+ BU + ξ (3)

where

• Ẋ = (ẋ1, . . . , ẋm) ∈ RNxM, the estimates of the state
derivatives att1, . . . , tM

• X = (x1, . . . , x1) ∈ RNxM, the full state observations at
t1, . . . , tM

• U = (u1, . . . , um) ∈ RPxM, the external stimuli at
t1, . . . , tM

• ξ ∈ RNxM, stochastic Gaussian white noise

are all known quantities.

It should be noted that this matrix equation can be treathed
in a row-by-row fashion. Denoting the (unknown)i-th row
of AS by the row-vectorαi , the (unknown)i-th row of BS

by the row-vectorβi and the (known)i-th row of Ẋ by the
row-vectorδi . This yields the following decoupled set of
N linear systems of equations of sizeMxN (with M the
number of equations andN the number of unknowns):

[

αi βi

]

[

X
U

]

= δi , (1 ≤ i ≤ N) (4)

The process to learn these interaction matrices can be for-
mulated as follows:



In each of these linear systems of equations, theN-vector
αi and theP-vectorβi are to be computed fromM equa-
tions, with M typically smaller thanN, to deal with the
poor data property. This means that there are too many
degrees of freedom because there are a small number of
equations,M, and a lot of unknown variables,N. To deal
with this problem, an extra condition is imposed. More
precisely a sparsity constraint onαi andβi is added, which
dictates that a number of components ofαi andβi have to
be zero. Some studies about computing a sparse solution
to a consistent underdetermined linear system of equations
Cx = D has been conducted. TheL0-minimization max-
imizes the number of zeros, but is too complex to com-
pute. ThereforeL1-minimization is used because it gives,
under certain conditions, a good approximation as noted by
Fuchs (Fuchs, 2003; Fuchs, 2004). For more details about
this technique see also (Peeters & Westra, 2004) and (Wes-
tra, 2005). It is well known that this problem can be refor-
mulated as an LP-problem (linear programming problem).
In other words, finding a vector having as many zeros as
possible can be replaced by the much simpler problem of
finding a vector for which‖S‖1 is minimal.
For simplicity of representation, we incorporate matrixBS

in matrix AS (dim(AS) = N × (N + P)) and matrixU in
matrix X (dim(X) = (N + P) × M). So the LP problem can
be reformulated by: minimize theL1-norm ofAS

min
AS

‖AS‖1 ⇐⇒ min
aSi,1 ...aSi,N+P

N+P
∑

j=1

|aSi, j | , (1 ≤ i ≤ N) (5)

subject to theM conditions

ẋm = aSxm (6)

which represents the training setχ = (Xm, Ẋm) for
m = 1 . . .M. LP yields a studentS that always faithfully
reproduces the training set, but may or may not be equal to
the teacherT. In the context of learning the latter implies
that the student has memorized or stored the examples
in the training set perfectly, but was unable to generalize
beyond that point. This fact will be taken into account
by introducing the generalization error. It represents the
failure of the student to reproduce the teacher’s output
given a training set of sizeM. For more details see
Section 3.

The main question of this paper is the following: how many
measurements,Mgen = αgenN, does the student need to be
supplied with in order to determine the subset of features
used by the teacher? First, it is important to determine the
required size of the training set for a student to success-
fully learn the teacher’s character. If the number of avail-
able measurements is too small as a function of the number
of rows, the learning process is not capable to construct a

good fit. Secondly, the sparsityk also has a strong influence
on M and thirdly, the quality of the result also depends on
the noise level,ξ. We try to establish this by experiments.
These experiments are presented in Section 3.

3. Experiments

The success of the learning process described in Section 2
depends on the relations between the parameter values. To
investigate these, several numerical experiments have been
conducted.

All experiments were performed on a PC with an Intel Pen-
tium M processor of 1.73 GHz and 1 GB RAM memory
under Windows XP Professional, using Matlab 6.5 Release
13 including the Optimization Toolbox. The latter’s rou-
tine linprog was used to solve LP problems; its default
solution method is a primal-dual interior point method, but
an active set method can optionally be used, too. For larger
problems, it turned out to be essential for obtaining reason-
able computation times that the LP problems were solved
by application of the active set method on the dual problem
formulation. Therefore, this method was adopted through-
out all the experiments.

Since results can depend on the particularities of given data
and the original system that generated it, all experiments
have been performed on a number of independent runs on
randomly selected data and systems. Hence they convey
the behavior of our approach “on average”.

In line with the definitions above, we use the parameters
N and M to quantify the size and complexity of the
input. To generalize these input-parameters we define
α = M/N. In addition, the sparsity of the interaction
matrix AT is measured by the number of non-zero entries
per row and denoted bykT (which should be much smaller
thanN). Also for this parameter we use a generalization
κT = kT/N. To complete the system’s data set, some
stochastic Gaussian white noiseξ is added to the input data
set. It is normally distributed with zero mean and some
standard deviationσ that determines the noise level. To
quantify the quality of the fit, the resulting approximation
AS, a performance measure is introduced:−→S ◦ −→T .

As already described in Section 1, for the quality of the
learning process it is important to evaluate the training set
χ. The number of available measurementsM depends on
the number of rowsN because if there are not enough mea-
surements, the student is not a good fit to the teacher. This
phenomenon is shown in Figure 1. Results have been ob-
tained by averaging over 50 independently and randomly
selected instances of teacher and training set for three dif-
ferent system sizesN = 100, 160, 300, each with sparsity
κT ≈ 0.031. As mentioned before, by the use of LP we al-



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

ε G
en

Figure 1.The probability of an errorǫgen as a function of learn-
ing the training set of sizeα = M/N for N = 100(circles),
N = 160(squares) andN = 300(triangles) for constantκT ≈ 0.031
and for a full matrixAT .
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Figure 2.The probability of an errorǫgen as a function of learning
the training set of sizeα = M/N for N = 100(diamonds),N =
160(squares) andN = 300(triangles) for constantκT ≈ 0.031 and
for only one rowATn.

ways get a studentS that is capable to reproduce the train-
ing set correctly, but there is a possibility that this student
may not be equal to the teacherT. In the context of learn-
ing this situation implies that the student has memorized or
stored the examples in the training set perfectly, but was
unable to generalize beyond that point. For small values of
α, the algorithm fails to reproduce the teacher with proba-
bility ǫgen ≈ 1. However, for increasing size of the training
set, one notes that LP generates a student that equals the
teacher with probability 1− ǫgen ≈ 1. The transition from
one regime to the other is quite sudden, especially for in-
creasing system sizeN. That is the reason why the gener-
alization threshold is introduced. It represents the minimal
size of the training set from which the student is able to
generalize. Since the size of the training set necessary for
generalization depends on a specific instance of the teacher
and the training set, the generalization threshold can be de-
fined more rigorously as the fractionαgen= Mgen/N so that
the student and the teacher will be equal after training with
probability 1/2 for a large number of independently and
randomly selected instances ofT andχ. Figure 1 shows
that, if α is sufficiently large, i.e., ifα ≥ αgen, the student
S fits the teacher very well. Furthermore we notice that
αgen< 1.
Moreover, Figure 1 illustrates thatαgen depends on the size
of the systemN for constantκT because the transition to-
wards generalization occurs for smaller values ofα as the
system sizeN increases.
If only one equality (one row ofATn) is considered, as in
Figure 2, we see that the transition towards generalization
occurs increasingly sudden for larger systemsN. Further-
more we see thatαgen is independent ofN for constantκT .

The relation between the generalization error curves for a
system ofN rows in Figure 1 and those for one with a single
row in Figure 2 can be understood as follows. The gener-
alization thresholdαgen for the former is—by definition—
reached whenεgen = 1/2. However, this implies that for
half the number of independent runs,all rows must be iden-
tified correctly. This means that the acceptable error rate
εacc≪ 1/2 for each row, even for very small systems. More
precisely, the acceptable generalization error per row can
be computed from 1/2 = (1− ǫacc)N, or,ǫacc = 1− (1/2)1/N.
The size of the training set required to attain the error rate
ǫacc is denoted byαacc and can—at least in principle—be
read from the curves in Figure 2 for the desired value of
the system sizeN. By definition,αacc = αgen which eluci-
dates the relation between Figures 1 and 2. In Figure 2, one
observes that for increasing system size, the system identi-
fication transition is increasingly sudden, i.e., the derivate
at ǫgen = 1/2 increases withN. On the other hand,ǫacc de-
creases withN, and hence it is not a priori clear from Fig-
ure 2 howαgenwill vary as a function ofN. Figure 3 allows
to derives an upper bound forαacc and hence a lower bound



for the suddeness of the transition in Figure 2 for values of
N → ∞. More precisely, 0.17 ≤ αacc ≤ 0.39, with the
lower bound, 0.17, the size of the training set necessary to
learn just one row (see Figure 2) and 0.39 the upper bound
determined by interpolation.
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Figure 3.The training set of sizeαgen = Mgen/N as a function of
1/N, the blue stars are measured from figure 1, the red line is an
approximation based on these stars.

Note that the probabilistic approach outlined above also
explains another qualitative difference between Figures 1
and 2. While the curves in Figure 2 are anti-symmetric
with respect toεgen = 1/2, this is not the case in Figure 1.
Since a failure to identify even a single row of the matrix
results in the failure of the system as a whole, the system
identification transition sets in for values ofαgen− α ≈ 0,
but extends to—comparared to Figure 2—larger values of
α − αgen.

This result is rather surprising since one would expect that
N examples would be needed to determineN unknown
values. However, it is clear thatκT ≪ αgen < 1, which
shows that less information than naively expected is neces-
sary to achieve good generalization. This is a consequence
of the sparsity of the teacher. It turns out to be much easier
to identify the input features used by a sparse teacher to
determine its output than to determine the interactions
at a non-sparse teacher. Obviously one needs more than
kT = κTN examples to determinekT non-zero values since
their positions also need to be identified.

Figure 4 shows the student-teacher overlap−→S ◦ −→T as
a function of the training set size.−→S ◦ −→T represents
the correctness (=1-error) of the results of the learning
processes. The error is defined as follows: each value of
the studentASn,n will be compared with the corresponding

value of the teacherATn,n. The error is the sum of the
false positives and false negatives in the student. IfASn,n

is non-zero while it should be zero becauseATn,n is zero,
there is a false positive and ifASn,n is zero while it should
be non-zero or whenASn,n has a different sign thanATn,n

there is a false negative.
Again, results have been obtained by averaging over
50 independently and randomly selected instances of
teacher and training set for three different system sizes
N = 100, 160, 300, each with sparsityκT ≈ 0.031. Figure 5
is also a representation of the quality of the learning as a
function ofα, but only for one row/equation ofAS andAT

and only one run of a randomly selected instance of the
teacher and the training set for one system sizeN = 240
and for a constant sparsityκT ≈ 0.037. Both figures show
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Figure 4.The quality of the learning process as a function of
the training set of sizeα = M/N for N = 100(circles),N =
160(squares) andN = 300(triangles) and for constantκT ≈ 0.031.

an initial decrease, followed by an increase to−→S ◦ −→T = 1.
Observe that the startpoints,M = 1 for all system sizesN,
are equal to approximately (1− κT). The initial decrease is
because the number of non-zero components is very low
and increases as a function ofN until a certain point. At
this point the identification of the system starts and there is
an increase until the number of necessary measurements
is available. From this point onwards the student fits the
teacher perfectly and−→S ◦−→T = 1. As in Figure 1, there is an
increasingly sudden transition from one regime to the other
for higher values forN. Also the minimum value of−→S ◦ −→T
decreases in Figure 4 for increasing system sizes. These
sudden transitions are more clear in Figure 5 (represents
just one typical run), because Figure 4 has the same results
but has to take all rows ofAS into account and is averaged
over 50 runs.

Until now we have used a fixed value for the sparsity of
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Figure 5.The quality of the learning process as a function of the
training set of sizeα = M/N for only one row, withN = 240 and
a constantκT ≈ 0.037.

the teacher,κT , but the sparsity has also an impact on the
learning process. Results have been obtained again by av-
eraging over 50 independently and randomly selected in-
stances of teacher and training set for two different system
sizesN = 100, 160. Figure 6 shows that ifκT increasesαgen

increases too. It is obvious that the more non-zero values
there are per row ofAT , the more measurements are neces-
sary to fit this teacherAT . Furthermore, it is also important

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ

α G
en

Figure 6.The training set of sizeαgen = Mgen/N as a func-
tion of the sparsityκT = kT/N for N = 100(circles) andN =
160(squares).

to observe that there exists an upper bound for the degree of
sparsity, for example, the upper bound is approximately at
κT ≈ 0.37 forN = 100. We also can conluce that this upper
bound is dependent on the system sizeN. This upper bound
means that ifκT is larger than this upper bound, the num-

ber of measurements has to be maximal so thatαgen= 1 for
realistic system sizes.

Finally, as mentioned, it is also important to observe the
influence of noise on the learning process. Therefore we
added to the input data set some stochastic Gaussian white
noiseξ with zero mean.The standard deviationσ of this
noise distribution can be interpreted as the noise level.
Results have been obtained by averaging over 50 inde-
pendently and randomly selected instances of teacher and
training set for one system sizeN = 100, with sparsity
κT ≈ 0.031. As we can expect,αgen increases whenσ in-
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Figure 7.The training set of sizeαgen = Mgen/N as a function of
the noise levelσ.

creases: we see that the increase varies as a function ofσ.
More precisely, the increase ofαgen is more or less linear
uptoσ ≈ 0.021. From that point onwardsαgen = 1. This
value ofσ is the threshold for the noise level beyond which
the model is not able to learn with less thanN examples.
Further more, we known that the standard deviation of the
system’s responsėX, denoted byσẊ, is of order 1. So we
conclude that the learning process is robust to noise upto a
noise level of 2 %.

4. Conclusions

Using experiments, we have addressed answers to the fol-
lowing questions:

• How many measurementsMgen= αgenN does the stu-
dentS need to fit the teacherT?

• How does the sparsity influenceαgen?

• How does the noise level influenceαgen?

From our experiments, we can conclude that the student fits
the teacher very well whenα is significantly smaller than



1 on two conditions. First, there is an upper bound for the
sparsity which depends on the system sizeN. Second, the
noise level should not exceet a threshold.

In summary, our experiments clearly demonstrate that for
high degrees of sparsity and relatively moderate noise lev-
els, the student already fits the teacher with great accuracy
for a small sample size.
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