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Abstract-Martingales in the limit (mils) were introduced about two decades ago as nontrivial 
extensions of martingales. It was proved in 1976 that they have good convergence properties (at least) 
for real-valued stochastic processes. But, so far there have not been found any “real-life” applications 
of mils. 

In this article, we apply the full generality of mils to a problem in information science. There 
we study the evolution in time of source journals as, e.g., defined by the Institute for Scientific 
Information (ISI) who selects, on a yearly basis, the most “visible” journals in the world. In this 
connection one also encounters quasi-martingales. @ 1999 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 
About 25 years ago some probabilists introduced generalizations of martingales and studied their 
convergence properties, both in W as in general infinite dimensional Banach spaces. We can refer 
to [I,21 for two original references and to the books [3,4] of Egghe and, respectively, Edgar and 
Sucheston, which are entirely devoted to these extensions. 

The main idea behind these extensions is to prove convergence of a stochastic process by looking 
at the behaviour of the conditional expectations. Let us first look at the simplest case: the case 
of a martingale. First, we fix some notation. Let (0,3, P) be a probability space. Let L1 denote 
the space L1(R, 3, P) of all integrable real valued functions on 0. If f E L1 and G c F is a 
sub-o-algebra of the a-algebra 3, then EG(f) or EGf denotes the conditional expectation of f 
with respect to G. 

Consider a sequence (Xn,3n)nE~ where X, E L1, Vn E N and (3n)nE~ is an increasing 
sequence of sub-a-algebras of 3. We say that (Xn,3n)nc~ is a stochastic process (or adapted 
sequence) if every X, is 3n-measurable. 

If EFnXX,+l = X,, a.e., for every n E W, we say that the process is a martingale. If the 
equality sign is replaced by > we call the process a submartingale and if we replace it by < we 
call it a supermartingale. These processes are well-known in probability theory (see [5]) and their 
applications are numerous, also beyond the mathematical scene. In faqt, we can mention here 
that we were able to apply (sub-) (super-) martingale theory to the evolution (e.g., growth) of 
databases in information science. See for this [6-91. 
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The processes described above all have the property to have conditional expectations that 
behave in a “monotonic” way. That led several probabilists to the definition of processes for 
which the difference 

EFrLX,+l - X, (1) 

(or using other indices-see below) does not not have a fixed sign. Instead one requires that (1) 
goes to zero (in a certain way) if the index goes to infinity. 

We encounter the following extensions of martingales (see [3,4]). 

(1) 

(2) 

The martingale in the limit (mil). A stochastic process (X,, 3n, P) is called a martingale 
in the limit (mil, for short) if 

a.e. (2) 

This clearly generalizes martingales since for them E3mXn = X,, a.e., for all n,m E W, 
m 5 n. We can mention here the theorem of Mucci [lo], stating that L1-bounded mils 
converge 8.e. 
Asymptotic martingales (amarts) and uniform amarts. Let (X,, 3,, P) be a stochastic 
process and denote by T the set of all bounded N-valued stopping times, i.e., functions 0 
for which {a = n} E 3,, Vn E N. Let cr E T. Denote by X, the function 

(XIJ)(w) = X,(,)(W), (3) 

for w E R. We say that (X,,3,, P) is an asymptotic martingale (amart, shortly) if the 
directed net 

(s > 
Xl7 (4) 

R VET 

converges (using the natural order on T). Note that also amarts generalize martingales: 
for them the net (4) is constant. Condition (4) and for real-valued processes (as we assume 
here) the notion of amart is equivalent to the one of uniform amart: (Xn, 3n, P) is called 
a uniform amart if 

;nptE (IE3uX, -X01) = 0. 
T- 
TET 

For the proof of this, we refer the reader to [3,4]. The equivalence of amarts and uniform amarts 
in fact characterises finite dimensional Banach spaces as can be read in [3]. Also in [3] one shows 
that quasi-martingales are uniform amarts. A quasi-martingale (X,, 3n, P) is a stochastic process 
for which 

00 
c E (IE3%+l - &I) < 03. (6) 
n=l 

They converge since we have more generally, by a theorem of Bellow from 1978 [2], that any 
L1-bounded uniform amart converges, a.e. 

As mentioned to me by Edgar [ll] there have not been found any real-life applications of mils 
or amarts in the sense that we are in need of their full generality. 

In this paper, we will construct a stochastic process that describes the evolution of a set of 
source journals, e.g., a set of internationally visible (“important”) journals as they are defined on 
a yearly basis by the company IS1 (Institute for Scientific Information). This will be explained 
in the next section. 

The paper closes with some problems in this connection. 
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The Institute for Scientific Information (ISI) in Philadelphia determines, on a yearly-basis, 
its set of so-called“source journals”, i.e., the set of, according to their standards, most visible 
journals in the world. The exact criterion on which one decides whether or not a journal becomes 
a source journal is of no importance here. Let us just mention that their decisions are based on 
citation analysis, within each subject. We stress the fact that our model, to be developed here, 
allows for any criterion. 

Such a list of source journals then forms the basis for many evaluation studies of scientific 
research. Although widely accepted (especially in the exact sciences, applied sciences, and med- 
ical sciences) and applied (e.g., in the allocation of research budgets), based on the degree of 
visibility of the journal in which one publishes, there is also a lot of criticism on the method (see, 
e.g., [12]). Let us mention one problem. One often argues that the list of source journals is not 
complete because several important journals are not included. This criticism is often heard also 
in developing countries where they claim to have valuable journals that are not recognised as 
source journals. This might be true in some cases and false in others. One could of course argue 
that, in an ideal world, even if one starts with a partially “wrong” set of source journals, we 
would end up, eventually, with “the right set”. This is so because journals that are little visible 
will cite the most visible journals and because the degree of citedness is the basis of the selection 
as source journal, those visible journals that were not in the initial list will be included sooner or 
later. 

Many problems can be posed here. For a list of them, we refer the reader to [13] and to the 
last section. Here, we will limit our study to the following problem. Suppose, for a start, that 
we have a universe U of “all” journals. Here, we can include all journals that exist (or came into 
existence) in the time period under study. Of course, in this setting, a journal cannot become a 
source journal before it actually exists. 

Suppose, at the starting point we select a certain subset A of U. How this set is determined 
is of no importance but its “survival”, when time passes, will be determined by the criteria that 
are adopted in the decision for a source journal (e.g., citation criteria). As explained above, this 
set A will change, when time passes due to the evolution in the visibility of journals in U and 
the possible fact that in A some “local” journals could have been wrongly selected (dependent 
on where the initial set is defined). 

PROBLEM. When time passes, what will be the remainder of A? In other words, what will be 
left over from our initial set of source journals? 

Note that this process is not necessarily increasing or decreasing. Indeed, when going from the 
first year to the second one there is a decrease: some journals of A can be dropped as source 
journals. But already from year 2, and continuing so, journals from A can be added or deleted 
(the ones added in case they were previously deleted from A at least once). 

So, the evolution of the “remainder” of A, the problem studied here, does not seem to be a 
process where expectations in the future are inferior or superior to what we have at a certain 
time (as is the case for (super-) (sub-) martingales). We will now construct the stochastic process 
that describes the remainder of A. 

Hence, let us take A C U at time t = 1. If we take the unity of time to be a year, say, then we 
have that several journals in A might leave as a source journal and also that many other journals 
from U become a source journal. This is not easy to model. Therefore we assume that the step 
of increase by one (from t to t + 1) stands for one change in the set of source journals (of any 
type: one in or one out). This is not a restriction since the many transactions in a year can be 
subdivided as indicated above. We define 

Xt = the number of journals from A that, after t steps, are source journals. 
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Note that X, represents a snapshot at time t (i.e., after t steps). The number Xt refers to journals 
of A that stayed as source journal all the time as well as to journals of A that left as a source 
journal, but then (before or at t) were again picked up as a source journal. Note, that X1 = #A. 

At each t we denote by At the set of source journals. Hence, X, = #(A, n A), ‘dt E N. To go 
from t to t + 1 we have the following algorithm. 

_ With probability a(t) there will be a journal from At IT A that leaves as a source journal 
at t+l. 

If this is not the case (with probability 1 - a(t)) there are two possibilities. 

- With probability ,0(t) j a ournal belonging to A \ At re-enters the set of source journals at 
t+1. 

- With probability 1 - p(t) it will be a journal from U \ A that enters as a source journal 
at t + 1. 

This description also determines the stochastic process (X,,.Ft)tc~ on the probability space 
(R, F, P). We have the following equation: 

@*Xt+l = a(t)(Xt - 1) + (1 - a(t))[P(t)(X, + 1) + (1 - P(t))Xtl. 

Hence, 
J+Xt+1 = x, + p(t) - a(t) - o(t)P(t). (7) 

Note that p(1) = 0. In general, a(t),@(t) are random variables, on (R, F, P). It is clear that 
equation (7) determines a process that allows for EFtXt+l 2 Xt as well as EFtXXt+l I: Xt. The 
only formal limitation on the cx(t)s and ,O(t)s is that, Vt E N 

-1 I p(t) - a(t) - a(t)/3(t) 5 1. (8) 

If one applies this to its maximal possibility and from t = 1 on we have that, at certain times, 
we have the whole of A as source journal and at other times we have nothing of A left as source 
journals. Hence, we have here a divergent process. 

But even more “moderate” behaviour of the cx(t)s and p(t)s does not always lead to a convergent 
process. If we, e.g., require that 

b&3(t) - a(t) - a(t)P(t)) = 0, a.e., (9) 

we are dealing with a process with the property 

&z IEFtXt+l - Xtl = 0, a.e., 

and it is well known that examples of such processes exist for which (Xt)tE~ does not converge 
(cf. [3,41). 

We will determine two cases in which convergence is obtained. It will turn out that we encounter 
the full generality of mils and quasi-martingales. 

2.1. (XtrFt)tE~ as a mil 

THEOREM. If 

2 a(t) < co, 
t=1 

CD(t) < 00, 

t=1 

a.e., 

a.e., 

(11) 

(12) 

then we have that (Xt,Ft& is a mil converging, a.e., to an integrable function. 
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PROOF. For every t, t’ E N, t’ 2 t 

E3tF”tt - X, = E31 c@(i) - a(i) - 
i=t 

49P(i)) > 1 
17 

03) 

as follows readily from (7) by induction. Now, 

E3t @,) I E3t (@i)) =E3t &B(i)) -E3’ [@i)) (14) 

= E3” f)?(i) - &), ( ) i=l i=l 

since p(i) is .Fi-measurable, by the inductive construction of the process (Xt,Ft)te~. Now, 
(E3” (Cz”=, P(i)), E) is an elementary martingale which converges to cz”=, ,8(i), a.e., (cf. [3, 
Theorem 11.1.6, p. 241). Hence, (14) implies that 

a.e. 

The same argument yields 

a.e. 

(11) and (12) imply that also 
M 

(15) 

(16) 

(17) 
t=1 

by the comparison test for the convergence of series and since all cx(t),P(t) are positive and 
inferior to 1. Hence, the same argument yields 

lim sup E3t 
t+ca t’>t 

t’& 

8.e. (18) 

In conclusion, by (13), 
lim sup IEFtXtt - Xtl = 0, 
t-cc t’>t 

t’s 

a.e., (1% 

hence, (Xt , Ft) is a mil. It is uniformly bounded (by #A) and hence the theorem of Mucci 
applies [lo], showing that (Xt)tEn converges, a.e., to an integrable function. I 

2.2. (Xt, 3&N as a Quasi-Martingale 

THEOREM. If 

~EkW) < 00, (20) 
t=1 

2 E(P(t)) < 00, (21) 
t=1 

then we have that (Xt, 3t)tEN is a quasi-martingale converging, a.e., to an integrable function. 
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PROOF. The proof is easy since, Vt E N 

E (IEF%+l - &I) = E(lP(t) - a(t) - 4tMt)l) I W(t)) + E(4t)) + E(a(t)P(t)). 
Hence, (20) ,(21) and again by the comparison test for series we have that 

5E (IE~~x~+~ - x,1> < m. 

Hence, (Xt, _?t)tE~ is a uniformly bounded quasi-martingale which converges (use, e.g., Bellow’s 
theorem on the convergence of L1-bounded uniform amarts [2]) to an integrable function. I 

NOTE From the above proof it is clear that it is sufficient to require 

c E(IP(t) - 4t) - 4Wt)l) < 0~). 
t=1 

3. PROBLEMS AND SUGGESTIONS 
FOR FURTHER RESEARCH 

3.1. Studying the evolution of A c U as the set of source journals requires the study of the 
process 

Xt = f(t), 

3.2. 

3.3. 

3.4. 

where f(t) is a distribution on (C&F, P). Hence, we are dealing here with stochastic 
processes in possibly infinite dimensional Banach spaces, see [3,4]. 
In the above sense, will we be able to prove that, no matter with which set A we start, we 
will always end up with the same limit set (i.e., fixed limit distribution)? 
What is the stability of the results obtained here, i.e., if we change the criteria to become 
a source journal a little bit, will the set of source journals, when followed for t increasing, 
experience dramatic changes or not? 
Find a condition on (X,, .Y=tF,) as in (7) such that it becomes an amart (and not necessarily 
a quasi-martingale). 

t=1 

1. 

2. 

3. 

4. 

5. 
6. 

7. 

8. 

9. 

10. 

11. 
12. 

13. 

REFERENCES 

D.G. Austin, G.A. Edgar and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, &its&$ 
fiir Wahrscheinlichtkeitstheorie und Verwandte Gebiete 30, 17-26 (1974). 
A. Bellow, Uniform amarts: A class of asymptotic martingales for which almost sure convergence obtains, 
Zeitschtift ftir Wahrscheinlichtkeitstheorie und Veerzoandte Gebiete 41, 177-191 (1978). 
L. Egghe, Stopping Time Techniques for Analysts and Probabilists, London Mathematical Society Lecture 
Notes Series 100, Cambridge University Press, Cambridge, UK, (1984). 
G.A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Cambridge University Press, Cam- 
bridge, UK, (1992). 
J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam, (1975). 
L. Egghe, Extension of the general “success breeds success” principle to the case that items can have multiple 
sources, In Proceedings of the Fifth Biennial Conference of the International Society for Scientometrics 
and Informetrics, Rosary College, River Forest, IL, pp. 147-156, (1995); Learned Information, Medford, 
NJ, (1995). 
L. Egghe, Source-item production laws for the case that items have multiple sources with fractional counting 
of credits, Jounzal of the American Society for Information Science 47 (lo), 73&748 (1996). 
L. Egghe and R. Rousseau, Generalized success-breeds-success principle leading to time dependent infor- 
metric dictributions, Journal of the American Society for Information Science 46 (6), 426-445 (1995). 
L. Egghe and R. Rousseau, Stochastic processes determined by a general success-breeds-success principle, 
Mathl. Comput. Modelling 23 (4), 93-104 (1996). 
A.G. Mucci, Another martingale convergence theorem, Pacific Journal of Mathematics 62 (2), 539-541 
(1976). 
G.A. Edgar, Oral communication, (1997). 
L. Egghe and R. Rousseau, Introduction to Infometrics, Quantitative Methods in Library, Documentation 
and Information Science, Elsevier, Amsterdam, (1990). 
R. Rousseau and E. Spinak, Do a field list of internationally visible journals and their journal impact factors 
depend on the initial set of journals ? A research proposal, Journal of Documentation 52 (4), 449-456 
(1996). 


