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Abstract

Road transport makes up a large share of total costs
of intermodal transport. In this paper pre- and end-
haulage in the service area of intermodal container ter-
minals is modelled as a Full Truckload Pickup and De-
livery Problem. A single container is delivered from
the terminal to a customer or picked up at a customer
location and returned to the terminal. Customers im-
pose hard time windows. A two-phase insertion heuris-
tic is developed. In a first phase delivery customers are
paired with pickup customers. These pairs of customers
are assigned to routes in a second phase. The initial so-
lution is improved by a local search procedure based on
a CROSS operator. The construction heuristic and im-
provement heuristic are demonstrated by means of a
numerical example.

I. Introduction

Pre- and end-haulage of intermodal container termi-
nals involves the pickup or delivery of containers at
customer locations. Road transport constitutes a rela-
tively large share of intermodal transport costs. There-
fore, the attractiveness of intermodal transport can be
increased by organizing the road segment in the inter-
modal transport chain more efficiently.

The drayage of containers in the service area of an
intermodal terminal can be modelled as a Full Truck-
load Pickup and Delivery Problem with Time Windows
(FTPDPTW). In this study a full truckload is assumed
to be a single container. A delivery activity to a con-
signee starts from the intermodal terminal with a full
container and a pickup activity returns a container to
the intermodal terminal for shipment by barge.

II. Related literature

The Pickup and Delivery Problem (PDP) is an ex-
tension to the classical Vehicle Routing Problem (VRP)
where customers may both receive and send goods. Du-
mas et al. [3] formulate the pickup and delivery prob-

lem with time windows and present an exact solution
based on column generation. Savelsbergh and Sol [9]
give a general description of the PDP. Less than truck-
load PDP are among others investigated by Nanry and
Barnes [8], Landrieu et al. [6] and Lu and Dessouky [7].
Gronalt et al. [4] study the problem of transporting
full truckloads between distribution centres. In their
PDPTW goods are transported between customer lo-
cations, as opposed to our problem definition where all
containers either originate or return to the terminal.
A full truckload PDPTW is also considered by Currie
and Salhi [1] and [2]. The problem studied in these
papers differs from our setting with respect to the def-
inition of tasks. Goods have to be picked up at works
of a construction company and delivered to customers.
The closest related article to our research is given by
Imai et al. [5]. The authors present a heuristic based
on Lagrangian relaxation for the drayage problem of in-
termodal container terminals, without taking time win-
dows into account.

III. Problem definition

The following optimization problem can be formu-
lated in terms of a vehicle routing problem with full
container load. Assuming a homogeneous container
type and size, find the optimal assignment of delivery
and pickup customer pairs to a fleet of vehicles, in or-
der to minimize the total cost of servicing all customers,
which includes fixed vehicle costs and travelling costs.
In accordance with Dumas et al. [3], a fixed vehicle cost
is introduced to minimize the fleet size. Each vehicle
used incurs a fixed cost, which may vary with the vehi-
cle. Fixed costs include depreciation of own vehicles or
leasing costs if the vehicle is hired, insurance payments
and fixed costs for hiring an extra truck driver. Travel-
ling costs are proportional to the total time necessary
to service all customers, which implies travelling time
and truck waiting time at customer sites.

All orders are assumed to be known in advance, so
the problem is studied in a static environment. An in-
termodal terminal is open during a pre-specified daily
time window. All trucks k must return to the terminal
before the end of their depot window Lk. A final as-



sumption underlying our problem definition is the exis-
tence of hard time windows at customer locations. This
leads to the following integer programming formulation:

Min
∑

i∈(V D∪0)

∑
j∈(V P∪0)

∑
k∈K

CRijkxijk +
∑
k∈K

FCk

subject to

∑
i∈(V D∪0)

∑
k∈K

xijk = 1 ∀j ∈ V P (1)

∑
j∈(V P∪0)

∑
k∈K

xijk = 1 ∀i ∈ V D (2)

Ei ≤ bi ≤ Li ∀i ∈ V D (3)
Ej ≤ bj ≤ Lj ∀j ∈ V P (4)

xijk ∈ {0, 1} ∀i ∈ (V D ∪ 0), j ∈ (V P ∪ 0), k ∈ K (5)

V D = set of delivery points (index i)
V P = set of pickup points (index j)
K = set of trucks (index k)
CRijk = cost of performing route (i, j) by truck k
FCk = fixed cost of truck k
xijk = 1 if delivery i and pickup j are served in one
route by truck k
Lk = depot window of truck k
Ei = earliest start time of delivery i
Li = latest start time of delivery i
Ej = earliest start time of pickup j
Lj = latest start time of pickup j
bi = actual time delivery i begins
bj = actual time pickup j begins
t0i = travel time from terminal 0 to delivery i
tij = travel time from delivery i to pickup j
tj0 = travel time from pickup j to terminal 0
si = service time of delivery i
sj = service time of pickup j

Pickup and delivery customers can be combined in
one route or can be serviced separately. In the latter
case either the delivery point i or the pickup point j is
represented by the depot 0 in our formulation. Equa-
tions (1) and (2) guarantee that all pickups and deliver-
ies are visited only once. Constraints (3) and (4) state
the hard time windows of customers. Constraint (5)
defines the problem as a binary integer program. The
presence of hard time windows implies:∑

k∈K

xijk = 1 ⇒ bi + si + tij ≤ bj

∀i ∈ V D,∀j ∈ V P (6)

Constraint (6) is linearized to solve the problem to op-
timality:

bi + si + tij − (Li + si + tij −Ej) · (1−
∑
k∈K

xijk) ≤ bj

∀i ∈ V D,∀j ∈ V P (7)

When delivery point i and pickup point j are serviced in
a single route, expression (7) equals (6). When delivery
point i and pickup point j are not visited in a single
route, expression (7) reduces to:

bj − Ej ≥ bi − Li

This inequality is always satisfied since the left-hand
side is positive and the right-hand side is negative.

Hard time windows are also imposed on the total
service time of a route k. These depot time windows
are expressed by the following constraints:∑

i∈(V D∪0)

xijk = 1 ⇒ bj + sj + tj0 ≤ Lk

∀j ∈ V P ,∀k ∈ K (8)

xi0k = 1 ⇒ bi + si + ti0 ≤ Lk

∀i ∈ V D,∀k ∈ K (9)

Constraints (8) and (9) can be linearized in a similar
way:

bj + sj + tj0 − (1−
∑

i∈(V D∪0)

xijk) · (Lj + sj + tj0) ≤ Lk

∀j ∈ V P ,∀k ∈ K (10)

bi + si + ti0 − (1− xi0k) · (Li + si + ti0) ≤ Lk

∀i ∈ V D,∀k ∈ K (11)

A final set of constraints ensures feasibility of the
routes. Two additional variables are defined:
pik = position of delivery customer i in route k
pjk = position of pickup customer j in route k
The position is equal to zero if a customer is not in-
serted in the route. Otherwise the position takes on a
positive integer value.∑

i∈(V D∪0)

xijk = 0 ⇒ pjk = 0

∀j ∈ V P ,∀k ∈ K (12)

∑
j∈(V P∪0)

xijk = 0 ⇒ pik = 0

∀i ∈ V D,∀k ∈ K (13)

Each pickup customer in a pair is serviced after the
delivery customer.

xijk = 1 ⇒ pjk = pik + 1

∀i ∈ V D,∀j ∈ V P ,∀k ∈ K (14)

Service of a delivery customer cannot begin before the
pickup customer in a preceding pair is serviced by the
same truck.

pik > pjk ⇒ bi − t0i ≥ bj + sj + tj0

∀i ∈ V D,∀j ∈ V P ,∀k ∈ K (15)



The next section proposes a two-phase insertion
heuristic to find near-optimal solutions. An improve-
ment heuristic is presented in section V. Section VI
demonstrates both heuristics by means of a numerical
example. Finally, conclusions are drawn in section VII.

IV. Two-phase insertion heuristic

The VRP belongs to the class of NP-hard problems.
Problem sizes which exact models are able to solve are
relatively small. In practice heuristics are used to solve
problems of realistic size. In this section an insertion
heuristic is developed, which consists of two phases to
obtain a near-optimal solution. In a first phase pickups
and deliveries are combined into pairs. These pairs of
customers are inserted into routes in a second phase.

A. Phase 1: Pairing pickups and deliveries

Due to the existence of hard time windows, not every
pickup customer and delivery customer can be com-
bined into a feasible route. Inconsistencies in time win-
dows are checked first:

Ei + si + tij ≤ Lj ∀i ∈ V D, j ∈ V P

This check results in a list of feasible combinations.
The waiting time between delivery i and pickup j can
be limited to a maximum amount MAXWAIT . A
feasible pair of customers is discarded from the list if
the minimum waiting time MINWAITij is larger than
allowed.

MINWAITij =
{

0 if Ej ≤ Li + si + tij
Ej − (Li + si + tij) else

A pickup customer j and delivery customer i are al-
lowed in one tour only if:

MINWAITij ≤ MAXWAIT

Second, interesting combinations of customers are se-
lected. In forming pairs of pickups and deliveries, both
spatial and temporal aspects are to be taken into ac-
count. The savings in travel time obtained from serving
delivery i and pickup j together should be as large as
possible.The following expression for savings in travel
time should be maximized:

(ti0 + t0j − tij)

The time window slack between customers i and j
should be as small as possible, which implies a mini-
mization of:

(Lj − Ei − si − tij)

Therefore, the pair of pickup and delivery customers
with the lowest value for the following criterion is se-
lected first:

w1 · (Lj − Ei − si − tij) + w2 · (tij − ti0 − t0j) (16)

The weights w1 and w2 reflect the importance given to
each objective. These weights are parameters of the

construction heuristic. Depending on the nature of the
problem, more weight should be given to the savings in
waiting time or the savings in travel time. The process
of pairing customers is repeated until no further fea-
sible combinations exist between the remaining pickup
customers and delivery customers. The remaining cus-
tomers are inserted into individual routes and form an
imaginary pair with a dummy customer.

An opportunity cost for not choosing the best com-
bination for a delivery i or pickup j can also be taken
into account. Gronalt et al. [4] argue that this re-
gret approach leads to significant improvements in the
best solution. The opportunity cost OC1i (respectively
OC1j) can be defined as the difference in savings in
travel time achieved by the best combination for deliv-
ery i (pickup j) and the currently selected combination.
Selection criterion (16) can be extended with this third
objective.

w1 · (Lj − Ei − si − tij) + w2 · (tij − ti0 − t0j)
+ w3 · (OC1i + OC1j) (17)

The opportunity cost related to the time window slack
can also be added to this selection criterion. This op-
portunity cost OC2i (respectively OC2j) is defined as
the difference between the time window slack of the cur-
rent combination and the smallest time window slack
of delivery i (pickup j) in any combination.

w1 · (Lj − Ei − si − tij) + w2 · (tij − ti0 − t0j)
+ w3 · (OC1i + OC1j) + w4 · (OC2i + OC2j) (18)

B. Phase 2: Route construction

In a second phase routes are constructed consecu-
tively. The first route is serviced by the vehicle with
the lowest fixed cost FCk. Vehicles are used in increas-
ing order of their fixed costs. Pairs of customers are
inserted into routes in increasing order of their latest
start time Lij .

Lij = Min{Li − t0i;Lj − tij − si − t0i}

A pair of customers can be inserted in an existing route
k if it can start later than the time necessary to service
the customers already assigned to the vehicle k and
if the vehicle is able to return to the terminal within
its depot window. The total time necessary to service
customers assigned to a vehicle k is defined as the route
service time RSk.

RSk ≤ Lij and Max(RSk, Eij) + RSij ≤ Lk

The route service time RSk is initially set to 0. The
time necessary to service pair (i, j), RSij , is the sum
of travel times, service times and the minimum waiting
time.

RSij = si + sj + t0i + tij + tj0 + MINWAITij

In case insertion into multiple existing routes is feasible,
the pair of customers is added to the existing route with



the smallest waiting time between the previous pair. If
no feasible insertions in existing routes are possible,
the pair of customers is assigned to an unused vehicle
to create a new route.

Finally the route service time RSk is updated. De-
fine the earliest starting time Eij as the earliest time a
vehicle can leave the depot for servicing pair (i, j) with-
out unnecessary waiting between delivery i and pickup
j.

Eij =

 Li − t0i if Li ≤ (Ej − tij − si)
Ej − tij − si − t0i if Ei ≤ (Ej − tij − si) ≤ Li

Ei − t0i if (Ej − tij − si) ≤ Ei

This leads to the following expression for updating the
route service time RSk after inserting pair (i, j).

RSk =
{

RSk + RSij if Eij < RSk

Eij + RSij else

V. Improvement heuristic

In this section a local search heuristic is proposed
to improve a feasible solution found by the construc-
tion heuristic described above. Considering the nature
of the problem, the neighborhood of the local search
procedure is defined as follows. Two pairs of pickup
and delivery customers, for example (g, h) and (i, j),
are selected from two different routes. These pairs are
recombined into new pairs of pickup and delivery cus-
tomers, (g, j) and (i, h). This move is further denoted
as CROSS operator. The local search heuristic first
lists all feasible CROSS moves. A CROSS move is fea-
sible if the pickup customers and delivery customers can
be combined into new pairs, taking into account their
time windows. Second, it is checked whether these new
pairs of customers can be reinserted into the routes.
Either (g, j) is inserted into the first route and (i, h)
into the second or the other way round. Next, the lo-
cal search heuristic selects the CROSS move with the
largest improvement Ighij or smallest deterioration in
route service times RSk.

Ighij = RSgh + RSij −RSgj −RSih

The improvement heuristic stops after a predefined
number of iterations without any reduction in total
costs of servicing all customers.

VI. Numerical example

A numerical example is discussed to demonstrate the
mechanism of the construction heuristic and improve-
ment heuristic. In this example an intermodal terminal
has to deliver containers to five customer sites and pick
up containers at five other customer sites. The terminal
is open during six hours per day. Trucks have to return
after 360 minutes. Service at customer sites takes eight
minutes. The problem is studied in a static environ-
ment. Travel times, waiting times and service times
are therefore assumed to be constant. Table I presents
the time windows imposed by pickup customers and
delivery customers.

delivery i Ei Li pickup j Ej Lj

1 10 100 1 0 100
2 50 250 2 100 280
3 80 180 3 200 260
4 50 360 4 80 320
5 100 300 5 5 80

TABLE I: Customer time windows

Distances, expressed in time units, from the depot 0
to customers and between customers are given in table
II. Table III mentions the cost CRijk of servicing each
pair of customers. Fixed costs are assumed to be equal
for all vehicles. Since all solutions found for this exam-
ple require the same number of vehicles, fixed vehicle
costs are left out of the comparison.

distance i j 0 1 2 3 4 5
0 0 63 48 49 12 44
1 9 57 40 41 14 40
2 47 42 5 11 48 50
3 36 45 13 16 37 43
4 18 56 32 32 18 35
5 24 82 55 53 12 26

TABLE II: Distance matrix

cost
i j

0 1 2 3 4 5

0 0.0 178.7 138.7 141.3 42.7 128.0
1 34.7 193.3 150.7 221.3 68.0 145.3
2 136.0 224.0 154.7 164.0 164.0 209.3
3 106.7 213.3 150.7 156.0 134.7 185.3
4 58.7 204.0 152.0 153.3 85.3 150.7
5 74.7 246.7 190.7 189.3 85.3 146.7

TABLE III: Cost matrix

A. Construction heuristic

In the pairing phase of the heuristic a maximum
waiting time, MAXWAIT , of 30 minutes is allowed
between serving a delivery customer and a pickup cus-
tomer. The maximum waiting time is a parameter of
the construction heuristic. Its value should be large
enough to allow flexibility in the pairing phase, but
small enough in comparison with the depot time win-
dow of 360 minutes. Equal weights w1 and w2 of five
are assigned to savings in waiting time and travel time
in the first selection criterion (16). This results in the
ranked list of feasible pairs of customers given in ta-
ble IV. Selected pairs are highlighted in bold. In this
example all customers can be combined into pairs; no
dummy customers are necessary.

In the second phase of the heuristic the selected pairs
of customers are inserted into routes. Results are pre-
sented in table V. Vehicle 1 returns to the depot after



delivery i pickup j selection criterion
2 1 -340
1 5 45
1 1 50
5 3 395
3 3 435
5 2 500
2 3 530
3 2 540
2 2 635
4 3 675
4 2 780
5 4 880
3 4 920
2 4 1015
1 2 1025
4 4 1160
1 4 1405

TABLE IV: Ranked pairs of customers

313 minutes, vehicle 2 after 287 minutes. Travelling
costs of this solution are 794.7.

route 1 route 2
2-1 1-5
5-3 3-2

4-4

TABLE V: Route construction

B. Parameter setting

The selection criterion in the first phase of the heuris-
tic is a weighted combination of two sub-criteria. The
initial solutions found by the construction heuristic de-
pend on the values assigned to the weights in the se-
lection criterion. A multi-start approach, assigning dif-
ferent values to these weights, can be applied to find
the best overall solution. Solutions found by differ-
ent parameter settings are presented in table VI. The
best solution is obtained in this example when a large
weight is assigned to the savings in travel time. The
corresponding routes are given in table VII.

weight 1 weight 2 Travelling costs
0 1 776

0.092 0.908 776
0.093 0.907 762.7
0.188 0.812 762.7
0.189 0.811 801.3
0.462 0.538 801.3
0.463 0.537 794.7

1 0 794.7

TABLE VI: Parameter setting

route 1 route 2
2-1 1-5
4-2 3-3

5-4

TABLE VII: Best routes found by construction heuristic

C. Opportunity costs

When the second selection criterion (17) is applied
in the pairing phase of the construction algorithm, the
same best solution with a cost of 762.7 is found. Also no
further improvement in best solution is found when the
opportunity costs of time window slack (18) are taken
into account. Assigning various values to the weights in
this selection criterion leads to the same best solution
with a travelling cost of 762.7.

D. Improvement heuristic

The local search procedure described in section V is
applied to the first solution of the construction heuris-
tic given in table V. This initial solution is obtained
by giving equal weights in selection criterion (16) and
without taking opportunity costs into account. Two
CROSS moves are possible in this solution. Table VIII
lists the pairs of customers involved and resulting im-
provements. The second CROSS move is selected. Pair
(i, h) is inserted in the first route and pair (g, j) in the
second route. The resulting routes, presented in table
IX, imply a travelling cost of 758.7, which is lower than
the best solution found after parameter setting. The
improvement algorithm stops after two further itera-
tions without any improvement in the objective func-
tion value.

pair (g,h) pair (i,j) Ighij

5-3 3-2 -5
5-3 4-4 27

TABLE VIII: CROSS moves

route 1 route 2
2-1 1-5
4-3 3-2

5-4

TABLE IX: Best routes found by improvement heuristic

E. Bound

In order to evaluate the results of the heuristics, a
lower bound for the optimal solution is computed. The
problem is relaxed by ignoring the final group of con-
straints which determine the feasibility of the routes.
The solution of the relaxed problem gives a lower bound
to the problem including all constraints. The optimal



solution for the relaxed problem formulation has a trav-
elling cost of 758.7. The routes are shown in table X.
These routes are not feasible when taking constraints
(12) to (15) into account.

route 1 route 2
2-1 1-5
3-2
4-3
5-4

TABLE X: Best routes of relaxed problem definition

We can conclude that the improvement heuristic is
able to find the optimal solution in this numerical ex-
ample. A comparison of table IX and table X shows
that the same pairs of customers are selected, but the
assignment of pairs to routes differs. Whereas the
routes are not feasible in the solution of the relaxed
problem, they are in the solution of the improvement
heuristic.

VII. Conclusions

In this study a special class of pickup and delivery
problems has been explored, in which vehicles carry full
truckloads to and from an intermodal terminal. An in-
sertion heuristic consisting of two phases is proposed.
The two-phase construction heuristic is able to find a
feasible solution in a short time span. This solution can
be further improved by a local search procedure based
on the CROSS operator. Further research is necessary
to test the heuristic on large problems. Other neigh-
borhood definitions in the local search procedure may
also be investigated. A tabu search algorithm based
on reactive tabu search can be developed. Results of
the tabu search procedure can be compared with the
heuristic described in this paper. Finally, the problem
can be investigated in a stochastic environment.
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