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ABSTRACT 

A basic model for the dynamics of a field list of internationally visible journals is 

constructed. We study, in function of time, the remainder of an initially choosen set of 

source journals. The stochastic process turns out to be a martingale in the limit (mil) or a 

quasi martingale, according to a.e. or L1-boundedness conditions on the controlling 

parameters of the system. Hence by theorems of Mucci of 1976 and of Bellow of 1978, the 

process converges under these conditions. We do not know of any other "real life" 

applications of mils and quasi martingales. The application in the field of information 

science is remarkable. 
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The most well-known set of internationally visible journals is the one produced by the 

Institute for Scientific Information (ISI). This set is called the set of core journals which are 

used for the citation analysis in their well-known indexes. It is also well-known that this 

list, although fairly stable, changes from year to year. It suffices to look at the yearly issues 

of the JCR (Journal Citation Reports). 

In addition to these yearly changes one might also ask the following basic question : 

suppose that, at a certain moment in the past, we would have started with a different list 

than the one adopted by IS1 at their very start. Would we end up with a list that is more or 

less the same as theirs or could there be significant differences? We, of course, suppose 

here that the techniques to delete or add a journal fromlto the list are the same in both 

cases. Such a technique (and also the above question) was formulated in detail in Rousseau 

and Spinak (1996) in which one asks for a dynamic study of these problems. These type of 

questions are also often formulated by research groups that experience certain barriers (e.g. 

language, part of the world, etc.), see e.g. Velho (1986, 1987), Gaillard (1989), Vinkler 

(1986), Garfield (1979), Cronin (1981) and Alvo (1978). For more on these issues we refer 

to reader to Egghe and Rousseau (1990). 

In a model-theoretic way, many problems can be studied. We will refer to them in the 

closing section of this paper. In this paper we will consider the "easiest" version of the 

problem described above. Let us consider a universe U of "all" journals. Here we can 

include all journals that exist (or came into existence) in the time period under study. Of 

course, in this setting, a journal cannot become a core journal before it actually exists. Let 

us from now on adopt the short term "core journal" for a member of the (yearly renewable) 

list of internationally visible journals. 

Suppose, in the first year ( t=l)  we start with an initial "core" list. How this list is 

constituted is of no importance right now but its "survival", when time passes, will be 

crucially determined by these criteria that were initially adopted. One could think of an 



initial core list that consists of the most important journals in a country (including 

international as well as local ones) and see what happens. For the moment, we can, 

however, take any nonempty subset A c U .  

Every year (or any other time unit) this list is reconsidered, hereby dropping journals from 

the present core list and adding new ones, based on scores of the (relative) number of times 

they are cited in a certain period. 

Note that the evolution of the set of core journals that belong to A is not necessarily 

increasing or decreasing. Indeed, when going from the first year (where A is the wre set) 

to the second year, there is a decrease : some journals of A can be dropped as core journals 

based on weak citation scores. But already from year 2, and continuing so, journals from A 

an be added or deleted (the ones added in case they were previously deleted as wre journal 

at least once). 

So, the evolution of the "remainder" of A,  the problem studied in this paper, does not seem 

to be a simple process where "expectations" (a term from probability theory) are increasing 

or decreasing in time, all the time. Such processes were encountered e.g. in Egghe and 

Rousseau (1995, 1996) and Egghe (1995, 1996) and are called sub- or supermartingales. 

It turns out that the process under study is a generalization of martingales, namely a 

- martingale in the limit (mil) under a.e.-convergence requirements of the controlling 

parameters 

- quasi martingale under L1-convergence requirements of the controlling parameters. 

We refer the reader to the appendix for a summary (with references) of the theory of 

stochastic processes, martingales, submartingales, supermartingales, mils and quasi 

martingales and also to Egghe (1984) and Edgar and Sucheston (1992). 

In the next section we develop the model of the "remainder" of A while in the third section 

its stochastic properties are studied and proved. 



The last section is developed to open problems and suggestions for further research. 

. . . . .  ~~.&&Drocessl set of core 

iournals. 

U. 1 Introduction 

Suppose U is the universe of all journals under possible consideration. It is a fixed set but 

can contain journals that were not existing at the starting time t = l .  Of course, before their 

"birth" their probability to become a source journal is zero. We fix a subset AcU as our 

starting set of source journals at t =  1. 

In the investigation of the evolution of the source set, when t increases, we came along two 

problems. 

1. If we take the unity of time to be a year, say, then we have that several journals in 

A might leave as a source journal and also that many other journals become a source 

journal. This is not easy to model. 

Therefore we assume that the step of increase of one (from t to t+ 1) stands for rn 

change in the set of source journals (of any type : one in, one out). This is not a 

restriction since the many transactions in this way, encountered in a year, can be 

subdivided as indicated above. We hence end up with time varying in a slower way 

but, by taking t high enough (and indeed this is possible since we allow t to go to 

infinity), we can reach any (high) number of years. 

Dealing with one transaction at a time has the advantage that we can use the same 

framework (but with different models!) as we did in the modelling of the Success- 

Breeds-Success phenomenon (SBS) in Egghe and Rousseau (1996). Also there we 

looked at changes in time being equal to the addition of a new item to be allocated to 

a (new or old) source. 



2. If one wants to follow the evolution of a set A (or of what is left of it as a set of 

source journals) one is inclined to define the stochastic process to be 

where A, is the set of source journals at time t. However, studying (1) means that we 

have processes with values in an infinite dimensional space and it is well-known than 

convergence of such processes in such spaces is difficult to prove, cf. Egghe (1984). 

In Egghe (1998) we give an attempt in this direction. 

But, also, by using (I), one requires too much in relation to the problem studied 

here. Studying (1) implies that we want to be informed, at any time t, of the 

behavior of every individual journal (i.e. by name) in A. This would be nice but is a 

far too demanding requirement. We repeat that the purpose of this paper is to study 

"what fraction (or number of journals) of the initial source set A is left after t steps?" 

Hence we can suffice with a stochastic process with values in the natural numbers, 

hence real valued processes that are indeed much easier to handle (see again Egghe 

(1984)). 

11.2 The smhastic process, 

Let t be as described in subsection 11.1. Define (not a stochastic process yet!) 

X, = the number of journals from A that, after t steps, are source journals 

Note that X, represents a snapshot at time t. The number X, refers to journals of A that 

stayed as a source journal all the time as well as to journals of A that left as a source journal 

but then (before or at t) were again picked up as a source journal. 

Note also that X, = #A, the number of elements in A. 



First we will determine the underlying probability space (Q,S,P)  on which all X, are 

defined and then we will determine the stochastic process by means of its conditional 

expectations (cf. also Egghe and Rousseau (1996), Egghe (1984) or the appendix which 

gives a brief account on the stochastic processes that are used in this paper). 

11.2.1 ----....------....--- The underlying -- . p_robabilitppace --------- ----------------- (Q,S,P). 

Let Q, = {I) .  To go from t = l  to t=2  (i.e. at the first change) we have the following 

possibilities : or (with probability a(1)) an element from A (the source set at t =  1) leaves as 

a source journal, or (with probability 1-a(1)) a journal from U\A enters as a source journal. 

Let us call the new set of source journals A, (call A=A,) and 

To go from t to t f l  for tz2, we can give the following general algorithm : 

- With probability a(t) there will be a journal from A, n A that leaves as a source 

journal at t + 1. 

If this is not the case (probability 1-a(t)) then there are two possibilities : 

- With probability P(t) a journal belonging to A\A, re-enters the set of source journals 

a t t + l  

- With probability 1-P(t) it will hence be a journal from U\A that enters as a source 

journal at t+  1. 

Let us call the new set of source journals A,+, and, according to the definition : 

Note that also the case t =  1 is covered here by putting P(1)=0. 



We take Q,={1,2) and, for every t23, Q,={1,2,3) with PI(l)=a(t), PI(2)=(l-a(t))P(t), 

Pt(3)=(1-a(t))(l-P(t)). Each time we take F,='P(QJ ("Penotes the set of all subsets of 623 

as our a-algebra. Finally, define (Q,F,P) to be the product probability space of the spaces 

(Q,,F,,PJ, t =  1,2,3 ,... . Define (;, to be the a-algebra generated by 9, ,..., gt via the sets 
I 

~roj,-'(x), where x is any element in n Q ,  and where 
1 - 1  

Proj, : Q-{1,2,3}' 

( x , )~<~-x=(x  ,,..., xJ 

denotes the projection on the first t coordinates. Each $I,, clearly, is a sub-a-algebra of F, 

and, furthermore, the sequence ($I,) increases. 

11.2.2 The stochastic process (X,,S,,P). 
-----------.........--------------------------- 

It is clear that, by construction and by definition of the a-algebras G, that every XI is q,- 

measurable. We hence have a stochastic process (XI,$II,P) (also called an adapted sequence - 

cf. Egghe (1984). The conditional expectations, relating X, to X,,, are as follows (a&) : 

Here we allowed the a(t)s and P(t)s to be dependent on o as well but in this case we assume 

them to be $I,-measurable (a logical assumption : the a(t)s and P(t)s act on the situation at 

time t : everything is $I,-measurable at that time!). In order not to overload the notation we 

will drop the o-dependence, whenever there cannot be any confusion. 



Equation (5) boils down to 

which can also be used in case t = l ,  assuming P(1)=0. 

From (6) it is immediately clear that, MEN 

Hence, by induction on t (and since X,=E(X,)= #A), 

1 

V~EN, t22 (for t=2  we use C =O). 
i=2  

If the limit exists. we also have 

111. Stochastic properties of the process (X,,%,P). 

Obviously, the properties of the stochastic process (X,,S,,P) depend on the interrelations of 

the probabilities a(i) and P(i), idV. 

Since XI = #A, a relation of the form 



9 

can only be true if one has the opposite inequality for lower t. Indeed, otherwise one would 

have E(Xb) > #A for some b, a contradiction. Hence, since also equality cannot be true 

based on (6) this would require P(t) = a(t)+a(t)p(t) for all t, which is not so since P(1)=0 

and a(l)+O, by the very definition of the process] we can definitely say that (X,,G,,P) is 

not a submartingale (see the appendix for an introduction on these processes). An equality 

of the form 

is possible, even for ail t, although very unlikely in practise. This would mean that, on the 

average and at each step, the set A looses source journals all the time. 

The yerv nature of a process as determined by (6) is of going up and down respectively by 

P(t) and a(t)(l+P(t))) and we can wonder if a stable limit situation exists. This is certainly 

not so in all cases. Indeed, according to (6) we can have many cases in which heavy 

fluctuations occur. Let us just give some examples : 

(1) The only limitation on the a(t)s and P(t)s is that, MEN : 

If one applies this to its maximal possibility and from t=  l on we even have that, at 

certain times, we have the whole of A as source journals and at other times we have 

nothing of A left as source journals. Hence we have here a divergent process. 

(2)  But even more "moderate" behavior of the a(t)s and P(t)s does not always lead to a 

convergent process. Indeed, f.i. only requiring that 



leads to processes with the property 

and it is well-known that examples of such processes exist (and reproducable here) 

for which (X&, does not converge (cf. Egghe (1984) and Edgar and Sucheston 

(1992)). 

If (13) is not sufficient and if we keep our idea that fluctuations must diminish at high t, 

equation (6 )  indicates that we must require that "something like" 

converges (in some sense) must be true. We will investigate two cases 

(i) the case that 

implying (15) in the a.e. sense 

(ii) the case that 

implying (15) in the L1-sense. 



It will turn out that these requirements lead us to generalizations of martingales that have 

been studied only 20 years ago. This link with the advanced theory of stochastic processes 

is remarkable. To a certain extent, the generalizations are also optimal : further relaxation 

of the conditions on a and p lead to diverging processes. 

111.1 First case :  mart^^ . . 

Let us continue to work with the process (X,,S,,P) for which (16) and (17) are valid. In the 

literature (cf. Egghe (1984), Edgar and Sucheston (1992)) the following definition is known 

: the process (X,,S,,P) is called a martingale in the limit (abbreviated mil) if 

6 
lim sup 1 E X,. - X, 1 = 0, a.e. 
t-* t ' > t  

(20) 

If we can show that our process is a mil then we can use the following theorem of Mucci 

(1976) : 

%orem 111.1 (MUCG& Let (X,,S,,P) be an L1-bounded mil. Then there exists an integrable 

function X.. such that 

lim XI = X_, a.e 
I-- 

The proof of this theorem (see e.g. also Egghe (1984), theorem V11.2.12, p.258) is non 

trivial and extends the classical downcrossing argument as given in the proof of the 

convergence of martingales (see e.g. Neveu (1975)). 

We have the following result : 

Theorem IlI.2 : Let (X,,S,,P) be as above for which (16) and (17) are valid. Then (X,,S,,P) 

is a mil and converges a.e. to an integrable function. 



as follows readily from (6) by induction. Now, since P(i)>O, 

Conditional expectations are order preserving. So 

Now 

- - 
6 Now (E '( P(i)) ,&P) is an elementary martingale which converges to C P(i), a.e., cf. 

i = l  i = l  

Egghe (1984), theorem 11.1.6, p.24. Furthermore 

- 
since each P(i) is S,-measurable and since i <  t. Also this converges to C P(i), a.e., by 

i = l  

assumption. In conclusion, using (23) and (24) we have that 



6 
1'- 1  

lirn sup E ' ( P(i)) = 0, a.e. 
1-= t ' 2 t  i = t  

The same argument yields 
t i - '  

lirn sup E ' ( x a(i)) = 0, a.e. 
1-- 1'21 I = '  

- - - 
Now, since a(i) and P(i) converge a.e., the same is true for x a(i)P(i) by the 

i = l  i = l  i = l ,  
comparison test for the convergence of series and since all a(i),p(i) are posltive and inferior 

to 1. Hence again we have that 

S 
1 ' - I  

lirn sup E ' ( a(i)P(i)) = 0, a.e 
I-= t ' t  i =1 

(25), (26) and (27) yield that (by(22)) and the triangle inequality, 

6 
lirn sup I E X - X = 0, a.e. , 
1-a t ' 2 t  

hence (X,,S,,P) is a mil. Since, by construction, every X, is bounded by #A, the process is 

uniformly bounded, hence L1-bounded. Mucci's theorem now yields the stated convergence 

property. 0 

&& : From the proof it is easy to see that conditions (16) and (17) can be relaxed to the 

single condition that 

converges a.e., for all t6N 



case : 

Let us first introduce the notion of quasi martingales. Suppose (X,,S,,P) is our process. It is 

called a quasi martingale if 

We will use the following result 

Beorem 111.3 (A. Bellow (197811, 

Let (X,,G,P) be an L1-bounded quasi martingale. Then it converges a.e. to an integrable 

function. 

In fact, the result of Bellow is more generally valid : it turns out to be true for uniform 

amarts (extending the notion of quasi martingales - see Egghe (1984) p. 122-125) and even 

vector-valued in certain Banach spaces ; we do not go into this here. 

The following result is now easy : 

Theorem 111.4 : Let (X,,S,,P) be as above for which (18) and (19) are valid. Then (X,,S,,P) 

is a quasi martingale and converges a.e. to an integrable function. 

ErPef : Using (6) yields 



(18) and (19) imply that the series consisting of the first two terms in the above addition 

converge. From this it also follows that 

by the comparison test for series and since all a(t),P(t) are positive and inferior to 1. This 

concludes the proof of the theorem, by involving theorem 111.3, again because the process 

(X,) is uniformly bounded, hence L'-bounded. 0 

&& : From the proof it is easy to see that conditions (18) and (19) can be relaxed to the 

single condition 

JV. Problems and ~~)sJgestions for further resea!% 

IV. 1 Work out the stochastic process X, with XI as in (1). Other o-algebras (than the GI s) 

wil be involved and we have here a process with values in a Banach space, e.g. the 

Hilbert space LZ (to take the easiest one). See also Egghe (1998) for a first attempt. 

IV.2 This paper only studies one of the simplest problems, namely : what is left from A 

as a source journal after t steps. The more intricate problem consists of describing 

the stable limit set after t steps (cf. the above problem). So, here we do not focus so 

much on A but on where we are going to. Also, if we start from two different sets 

(say A and B), do we end up with a fixed "limit" set of source journals, for high t ? 

(cf. the suggestions of Rousseau and Spinak (1996)). Here also values X, as in IV.l 

will be encountered, hence the values are in infinite dimensional Banach spaces. 
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If we do not end up with one stable limit set, how then does the limit set (found 

when we start with A) relates to the limit set (found when we start with B) and what 

is the relation with AnB or #(AnB)? 

IV.3 Model the total number of source journals that ever existed from t=  1 on (from A or 

from U in total). 

IV.4 How can rankings (e.g. based on impact factors) be involved in these models? What 

is the relation of a ranking (at a certain time t) of a source journal with the number 

of times the journal was a source journal ? 

IV.5 Is it possible to apply fixed point theory (cf. Smart (1974), lstratescu (1981)) to 

these type of problems ? 

1V.6 What is the stability of the results obtained here (and of the other problems raised 

here) i.e. if we change the criteria to become a source journal a little bit, will the set 

of source journals, when followed for t increasing, experience dramatic changes or 

not ? 

IV.7 it is our feeling that these models can also be applied to other domains in 

information science : evolution of retrieved sets over time (e.g. w.r.t. a fixed 

query), evolutions of bibliographies, of research groups, etc. 

IV.8 What is the involvement of stochastic differential equations in this (cf. Gard (1988), 

Gardiner (1997)) ? 
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For elementary notions on measure theory we refer to Egghe (1984) or to Halmos (1974). 

Let (Q,S,P) be a probability space, where F is a o-algebra. Let teN and GIcG be a sub-o- 

algebra of S such that (GJ,, increases. Let XI be an integrable function. We say that the 

process (X,,S,,P) is a stochastic process (or adapted sequence) if each XI is %-measurable 

(cf. Egghe (1984)). 

Let 94 be an arbitrary sub-o-algebra of S. For every integrable function f (integrable 

w.r.t. (Q,S,P)) there exists a a.e. unique integrable 

such that 

V A E S  and such that ~ ~ ( 9  is F-measurable. ~ ~ ( f )  is called the conditional expectation o f f  

w.r.t. 9 (cf. Egghe (1984)). 

Let (X,,G,P) be a stochastic process. It is called a martingale if, for every EN, 

6 E '(X,,,) = X,, a.e. (A3) 

G S 
We also denote E '(X,,,) by E X,,, if no confusion can arise. The process is called a 

submarringale if 

S 
E X,,, X,, a.e. 644) 



and a supermartingale if 

Positive supermartingales and L1-bounded submartingales converge a.e. to an integrable 

function X- (cf. Neveu (1975)). 

A classical interpretation of (A3), (A4) and (A5) goes in the direction of gambling : if X, 

denotes the gambler's fortune at time t, a martingale is a process where the gambler can 

expect to keep his fortune (on the average) ; he/she will win (on the average) in case of a 

submartingale and will loose (on the average) in case. of a supermartingale. The latter case 

is the most likely one since casinos must make money to pay for salaries and infrastructure. 

One can think of more "irregular" processes for which conditional expectations do not 

behave in a "monotonic" way as described by (A4) or (A5). These extensions have been 

formulated and studied about two decades ago (hence relatively recent). One such an 

extension is easy to formulate but leads to a non-trivial stochastic process : the so-called 

martingale in the limit : 

A stochastic process (X,,S,,P) is called a martingale in the limit (shortly mil) if 

S 
lim sup 1 E X,. - X,J = 0, a.e. 
1-- t ' l t  

We refer again to theorem 111.1 of Mucci (1976) stating that L1-bounded mils converge a.e. 

to an integrable function X-. 

This is a very good result and, in a way, optimal. Indeed, relaxing (A6) to 



leads to possibly divergent processes (XJ. 

However, requiring that 

leads to convergent processes (see below). A process that satisfies (A8) is called a quasi 

martingale. It is a special case of another generalization of martingales, namely the 

asymptotic martingales (amarts for short). We can introduce amarts as follows. Let 

(X,,S,,P) be a stochastic process on a. A stopping time s is a function 

such that, for every  EN 

We shortly, denote 

Let T denote the set of all bounded stopping times. Hence every TET can only have a finite 

range in N. For TET, denote X, by 

where x,,=,,denotes the characteristic function of { t= t ) ,  i.e. the function which is 1 if 

s(a)=t  and 0 if t(o)+t. 



The process (X,,S,,P) is called an amart if the net 

converges. Here we use the natural order < on T : o s r  iff o(o)st(o) for every oeQ. 

There is another definition, equivalent with the notion of amarts for real valued processes as 

is the case here, which is called "uniform amart". A process (X,,G,P) is called a uniform 

s, lim sup E(IE XT - X,I) = 0 
OET T\O 

r t T  

Here, logically, we use the definition 

So = {Sd#n{o=t)~G, for each teN) ( ~ 1 5 )  

Quasi martingales are uniform amarts, hence amarts (see Egghe (1984), p.123-124). There 

is the following convergence result for (uniform) amarts, hence for quasi martingales : 

every L1-bounded (uniform) amart converges a.e. to an integrable function. The proof that 

amarts converge was given in Austin, Edgar and Ionescu Tulcea (1974). The proof that 

uniform amarts converge (in the vector space context) was given in Bellow (1978). 

Problem : Find a condition on our process (X,,S,,P) such that it becomes an amart (and 

not necessarily a quasi martingale). 


