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ABSTRACT

A basic model for the dynamics of a field list of internationally visible journals is
constructed. We study, in function of time, the remainder of an initially choosen set of
source journals. The stochastic process turns out to be a martingale in the limit {(mil) or a
quasi martingale, according to a.e. or L'-boundedness conditions on the controlling
parameters of the system. Hence by theorems of Mucci of 1976 and of Bellow of 1978, the
process converges under these conditions. We do not know of any other “real life”
applications of mils and quasi martingales. The application in the field of information

science is remarkable.
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L. Introduction.

The most well-known set of internationally visible journals is the one produced by the
Institute for Scientific Information (ISI). This set is called the set of core journals which are
used for the citation analysis in their well-known indexes. It is also well-known that this
list, although fairly stable, changes from year to year. It suffices to look at the yearly issues

of the JCR (Journal Citation Reports).

In addition to these yearly changes one might also ask the following basic question :
suppose that, at a certain moment in the past, we would have started with a different list
than the one adopted by ISI at their very start. Would we end up with a list that is more or
less the same as theirs or could there be significant differences? We, of course, suppose
here that the techniques to delete or add a journal from/to the list are the same in both
cases. Such a technique (and also the above question) was formulated in detail in Rousseau
and Spinak (1996) in which one asks for a dynamic study of these problems. These type of
questions are also often formulated by research groups that experience certain barriers (e.g.
language, part of the world, etc.), see e.g. Velho (1986, 1987), Gaillard (1989), Vinkler
(1986), Garfield (1979), Cronin (1981) and Alvo (1978). For more on these issues we refer
to reader to Egghe and Rousseau (1990).

In a model-theoretic way, many problems can be studied. We will refer to them in the
closing section of this paper. In this paper we will consider the “easiest” version of the
problem described above. Let us consider a universe U of “all” journals. Here we can
include all journals that exist (or came into existence) in the time period under study. Of
course, in this setting, a journal cannot become a core journal before it actually exists. Let
us from now on adopt the short term “core jourﬁal" for a member of the (yearly renewable)

list of internationally visible journals.

Suppose, in the first year (t=1) we start with an initial “core” list. How this list is
constituted is of no importance right now but its “survival”, when time passes, will be

crucially determined by these criteria that were initially adopted. One could think of an



3

initial core list that consists of the most important journals in a country (including
international as well as local ones) and see what happens. For the moment, we can,

however, take any nonempty subset AcU.

Every year (or any other time unit) this list is reconsidered, hereby dropping journals from
the present core list and adding new ones, based on scores of the (relative) number of times

they are cited in a certain period.

Note that the evolution of the set of core journals that belong to A is not necessarily
increasing or decreasing. Indeed, when going from the first year (where A is the core set}
to the second year, there is a decrease : some journals of A can be dropped as core journals
based on weak citation scores. But already from year 2, and continuing so, journals from A
an be added or deleted (the ones added in case they were previously deleted as core journal

at least once),

So, the evolution of the “remainder” of A, the problem studied in this paper, does not seem
to be a simple process where “expectations” (a term from probability theory) are increasing
or decreasing in time, all the time. Such processes were encountered e.g. in Egghe and

Rousseau (1995, 1996} and Egghe (1995, 1996) and are called sub- or supermartingales,

It turns out that the process under study is a generalization of martingales, namely a
- martingale in the limit (mil) under a.e.-convergence requirements of the controlling
parameters

- quasi martingale under L'-convergence requirements of the controlling parameters.

We refer the reader to the appendix for a summary (with references) of the theory of
stochastic processes, martingales, submartingales, supermartingales, mils and quasi

martingales and also to Egghe (1984) and Edgar and Sucheston (1992).

In the next section we develop the model of the “remainder” of A while in the third section

its stochastic properties are studied and proved.



The last section is developed to open problems and suggestions for further research.

Suppose U is the universe of all journals under possible consideration. It is a fixed set but
can centain journals that were not existing at the starting time t=1. Of course, before their
“birth" their probability to become a source journal is zero. We fix a subset AcU as our

starting set of source journals at t=1.

In the investigation of the evolution of the source set, when t increases, we came along two

problems.

1. If we take the unity of time to be a year, say, then we have that several journals in
A might leave as a source journal and also that many other journals become a source

journal. This is not easy to model.

Therefore we assume that the step of increase of one (from t to t+1) stands for one
change in the set of source journals (of any type : one in, one out). This is not a
restriction since the many transactions in this way, encountered in a year, can be
subdivided as indicated above. We hence end up with time varying in a slower way
but, by taking t high enough (and indeed this is possible since we allow t to go to

infinity), we can reach any (high) number of years.

Dealing with one transaction at a time has the advantage that we can use the same
framework (but with different models!) as we did in the modelling of the Success-
Breeds-Success phenomenon (SBS) in Egghe and Rousseau (1996). Also there we
looked at changes in time being equal to the addition of a new item to be allocated to

a (new or old) source.
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2. If one wants to follow the evolution of a set A {or of what is left of it as a set of

source journals) one is inclined to define the stochastic process to be
X, = Xa, s (D

where A, is the set of source journals at time t. However, studying (1) means that we
have processes with values in an infinite dimensional space and it is well-known than
convergence of such processes in such spaces is difficult to prove, cf. Egghe (1984).

In Egghe (1998) we give an attempt in this direction.

But, also, by using (1), one requires too much in relation to the problem studied
here. Studying (1) implies that we want to be informed, at any time t, of the
behavior of every individual journal (i.e. by name) in A. This would be nice but is a
far too demanding requirement. We repeat that the purpose of this paper is to study

“what fraction (or number of journals) of the initial source set A is left after t steps?”
Hence we can suffice with a stochastic process with values in the natural numbers,

hence real valued processes that are indeed much easier to handle (see again Egghe

(1984)).

11.2 The stochastic process.

Let t be as described in subsection II. 1. Define (not a stochastic process yet!)

X, = the number of journals from A that, after t steps, are source journals
Note that X, represents a snapshot at time t. The number X, refers to journals of A that
stayed as a source journal all the time as well as to journals of A that left as a source journal

but then (before or at t) were again picked up as a source journal.

Note also that X; = #A, the number of elements in A.
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First we will determine the underlying probability space (£2,%,P)} on which all X, are
defined and then we will determine the stochastic process by means of its conditional
expectations (cf. also Egghe and Rousseau (1996), Egghe (1984) or the appendix which

gives a brief account on the stochastic processes that are used in this paper).

Let Q, = {1}. To go from t=1 to t=2 (i.e. at the first change) we have the following
possibilities : or (with probability (1)) an element from A (the source set at t=1) leaves as
a source journal, or (with probability 1-¢(1)) a journal from U\A enters as a source journal.

Let us call the new set of source journals A, (call A=A,) and
X, = #A;n A) (2)
To go from t to t+1 for t22, we can give the following general algorithm :
- With probability a(t) there will be a journal from A, N A that leaves as a source
journal at t+1.

If this is not the case {probability 1-a(t)) then there are two possibilities :

- With probability B(t) a journal belonging to A\A, re-enters the set of source journals

att+1

- With probability 1-p(t) it will hence be a journal from U\A that enters as a source

journal at t+1.

Let us call the new set of source journals A, ., and, according to the definition :

Xy = #(Ay,, N A) 3)

Note that also the case t=1 is covered here by putting 8(1}=0.
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We take Q,={1,2} and, for every t=3, Q={1,2,3} with P(I)=a(), P2)=(1-a()B(0),

P,(3)=(1-a(t))(1-B(t)). Each time we take & =P(Q) (P denotes the set of all subsets of £2)

as our o-algebra. Finally, define (©,,P) to be the product probability space of the spaces

(Q,F.P), t=1,23,... . Define G, to be the o-algebra generated by #,...,5, via the sets
1

Proj[l(x) , where x is any element in I1Q. and where
i-1

Proj, : Q-{1,2,3}

(X=X =(X;,...,%X)

denotes the projection on the first t coordinates. Each G, clearly, is a sub-0-algebra of &,

and, furthermore, the sequence (G,) increases.

11.2.2 The stochastic process (X,,G,.P).

It is clear that, by construction and by definition of the o-algebras G, that every X, is G-
measurable. We hence have a stochastic process (X,,G,,P) (also called an adapted sequence -

cf. Egghe (1984). The conditional expectations, relating X, to X,,, are as follows (weQ) :
X (w) = #A

E X, (@) = a(1)(@)(X,(®)-1) + (1-a(1)(®))X,(w) @

and for tz2

E" X)) = e(@)(Xw)-1) + (1-e(){w)[BEO(@)(Xw)+1)+(1-pOW)NX(w)] ()

Here we allowed the a(t)s and B(t)s to be dependent on w as well but in this case we assume
them to be G-measurable (a logical assumption : the «(t)s and ((t)s act on the situation at
time t ; everything is G-measurable at that time!). In order not to overload the notation we

will drop the w-dependence, whenever there cannot be any confusion.



Equation (5) boils down to

EG‘XH, = X, +B(t)-a(t)-a(t)B(t)

which can also be used in case t=1, assuming p(1)=0.

From (6) it is immediately clear that, VieN

E(X.,;) = E(X)+EP)-E(a()-E(e®B (1)

Hence, by induction on t (and since X,;=E(X,)= #A),
t-1
E(X) = #A - E(a(1))+ Y [E(B(D))-E(e(i))-E(e(DHB())]
i=2

1

vteN, t>2 (for t=2 we use Y =0).
i=2

If the limit exists, we also have

o

imE(X) = #A - E(e(1)) + Y [E(B)-E(a(i)-E(e()B()].

1o i=2

II1. Stochastic properties of the process (X,,G,P).

(6)

9

&

®

Obviously, the properties of the stochastic process (X;,G;,P) depend on the interrelations of

the probabilities a(i) and B(i), ieN.

Since X, = #A, a relation of the form

E'%X,., >X,

(10)
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can only be true if one has the opposite inequality for lower t. Indeed, otherwise one would
have E(Xto) > #A for some t,, a contradiction. Hence, since also equality cannot be true
[based on (6) this would require B(t) = a(t)+a(t)P(r) for all t, which is not so since B(1)=0
and «(1)#0, by the very definition of the process] we can definitely say that (X,,G,,P) is
not a submartingale (see the appendix for an introduction on these processes). An equality

of the form
Gy
E"X, <X (11)

is possible, even for all t, although very unlikely in practise. This would mean that, on the

average and at each step, the set A looses source journals all the time.

The very nature of a process as determined by (6) is of going up and down respectively by
B(t) and a(t)(1+[B(t))) and we can wonder if a stable limit situation exists. This is certainly
not so in all cases. Indeed, according to (6) we can have many cases in which heavy

fluctuations occur. Let us just give some examples :
(1) The only limitation on the a(t)s and P(t)s is that, VteN :

-1 < P(O)-a(®)-ap© < 1 (12)

If one applies this to its maximal possibility and from t=1 on we even have that, at
certain times, we have the whole of A as source journals and at other times we have

nothing of A left as source journals. Hence we have here a divergent process.

2) But even more “moderate” behavior of the a(t)s and PB(t)s does not always lead to a

convergent process. Indeed, f.i. only requiring that

lim [B(t)-at)-a®)p®)] = 0, ae. (13)

tree
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leads to processes with the property

lim [E*X,., - X| = 0, a.e. (14)

t=oo

and it is well-known that examples of such processes exist (and reproducable here)
for which (X).n does not converge (cf. Egghe (1984) and Edgar and Sucheston
(1992)).

If (13) is not sufficient and if we keep our idea that fluctuations must diminish at high t,

equation {6) indicates that we must require that “something like”
3 (B -a(i)-o()BEN (15)
i=1

converges (in some sense) must be true. We will investigate two cases

(i) the case that

o

Y o) <=, ae (16)
1=1
Y BG) < =, ae (17)
i=1

implying (15) in the a.e. sense

(ii) the case that

Y Ee()) < (18)
i=1 .

Y E@@) < = 19
1=1

implying (15) in the L'-sense.
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It will turn out that these requirements lead us to generalizations of martingales that have
been studied only 20 years ago. This link with the advanced theory of stochastic processes
is remarkable. To a certain extent, the generalizations are also optimal : further relaxation

of the conditions on « and P lead to diverging processes.

.1 . martineales in the limi

Let us continue to work with the process {X,,G,,P) for which (16) and (17) are valid. In the
literature (cf. Egghe (1984), Edgar and Sucheston (1992)) the following definition is known

: the process (X,,G,,P) is called a martingale in the limit (abbreviated mil) if

lim sup IEG X -X) =0, ae. 20
¢

t-oe t’ 2

If we can show that our process is a mil then we can use the following theorem of Mucci
(1976) :

Theorem IIT.1 (Mucci). Let (X,,G,P) be an L'-bounded mil. Then there exists an integrable

function X_ such that

Iim X = X, ae (21)

1w

The proof of this theorem (see e.g. also Egghe (1984), theorem VIL.2.12, p.258) is non
trivial and extends the classical downcrossing argument as given in the proof of the

convergence of martingales (see e.g. Neveu (1975)).
We have the following result :

Theorem 1.2 : Let (X,,G,,P) be as above for which (16) and (17) are valid. Then (X,,G,,P)

is a mil and converges a.e. to an integrable function.
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Proof :
E'X, - X,
t'-1
=E" ( 3 (B)-at)-e®B) (22)

as follows readily from (6) by induction. Now, since [((i)=0,

t'-1 o0

Y B@ < X BG).

i=t i=t

Conditional expectations are order preserving. So

t'-1 ) o
E* (3 B@) <E' ( L B0 23)
Now
G, e G e Gy e
E™ (LB = E"QLB®) - E'QL ) 24)

Now (EG‘( E B(1)),G,P) is an elementary martingale which converges to ): B@), a.e., cf.
=1 i-1

Egghe (1984), theorem I1.1.6, p.24. Furthermore
G t-1
E™ () BG)
it

-1
= 2 B0
1=1

since each B(i) is G-measurable and since i<t. Also this converges to Z B@), a.e., by
i=1
assumption. In conclusion, using (23) and (24) we have that
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t/-1

lim sup E G ( Z B) = 0, ae. (25)

tew 't

The same argument yields

t'-1

lim sup E* ( Y ai)) = 0, ace. 26)

tmo 21 i=t

Now, since Z (i) and Z B(i) converge a.e., the same is true for Z a()B() by the

i=! i=1
comparison test for the convergence of series and since all a(i), B(i) are posmve and inferior

to 1. Hence again we have that

fim sup E" ( Z a()p@) = 0, ae. (27)

tee t'2t

(25), (26) and (27) yield that (by(22)) and the triangle inequality,

lim sup |E°'X, - X,| = 0, a.e. , (28)

toee 12l

hence (X,,G,P) is a mil. Since, by construction, every X, is bounded by #A, the process is
uniformly bounded, hence L'-bounded. Mucci’s theorem now yields the stated convergence

property. O

Note : From the proof it is easy to see that conditions (16) and (17) can be relaxed to the

single condition that

E5 (3 (BG)-oi)- 2B 29)
io1

converges a.e., for all teN
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. quasi martingal

Let us first introduce the notion of quasi martingates. Suppose (X,.G,,P) is our process. It is

called a quasi martingale if
- 3
Y E(E X, -X) <= (30)
t=1

We will use the following result :
Theorem 111.3 (A, Bellow (1978)).

Let (X,,G,P) be an L'-bounded quasi martingale. Then it converges a.e. to an integrable

function.
In fact, the result of Bellow is more generally valid : it turns out to be true for uniform
amarts (extending the notion of quasi martingales - see Egghe (1984) p.122-125) and even

vector-valued in certain Banach spaces ; we do not go into this here.

The following result is now easy :

Theorem II1.4 : Let (X,,G,,P) be as above for which (18) and (19) are valid. Then (X,,G,,P)

is a quasi martingale and converges a.e. to an integrable function.

Proof : Using (6) yields
G,
E(lE Xt+1 - Xti)

= E(|P®)-a(t)-a()B(t) )
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< B(B(1)) +E(a(v) +E(a(D)B ). - (31

(18) and (19) imply that the series consisting of the first two terms in the above addition

converge. From this it also follows that

Y Ee(B() < =
=1

by the comparison test for series and since all a(t),B(t) are positive and inferior to 1. This
concludes the proof of the theorem, by involving theorem II1.3, again because the process

(X)) is uniformly bounded, hence L'-bounded. O

Note : From the proof it is easy to see that conditions (18) and (19) can be relaxed to the
single condition

oo

Y E(|B@-a(n-amP®)]) < (32)

t=1

lem i f

IV.1 Work out the stochastic process X, with X, as in (1). Other o-algebras (than the G, s)
wil be involved and we have here a process with values in a Banach space, e.g. the

Hilbert space L? (to take the easiest one). See also Egghe (1998) for a first attempt.

IV.2 This paper only studies one of the simplest problems, namely : what is left from A
as a source journal after t steps. The more intricate problem consists of describing
the stable limit set after t steps {cf. the above problem). So, here we do not focus so
much on A but on where we are going to. Also, if we start from two different sets
(say A and B), do we end up with a fixed “limit" set of source journals, for high t ?
(cf. the suggestions of Rousseau and Spinak (1996)). Here also values X, as in IV.1

will be encountered, hence the values are in infinite dimensional Banach spaces.
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IV.4

IV.5

IV.6

Iv.7

IV.8
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If we do not end up with one stable limit set, how then does the limit set (found
when we start with A) relates to the limit set (found when we start with B) and what

is the relation with AnB or #(AnB)?

Model the total number of source journals that ever existed from t=1 on (from A or

from U in total).

How can rankings (e.g. based on impact factors) be involved in these models? What
is the relation of a ranking (at a certain time t) of a source journal with the number

of times the journal was a source journal ?

Is it possible to apply fixed point theory (cf. Smart (1974), Istratescu (1981)) to

these type of problems ?

What is the stability of the results obtained here (and of the other problems raised
here) i.e. if we change the criteria to become a source journal a little bit, will the set
of source journals, when followed for t increasing, experience dramatic changes or

not ?

It is our feeling that these models can also be applied to other domains in
information science : evolution of retrieved sets over time (e.g. w.r.t. a fixed

query), evolutions of bibliographies, of research groups, etc.

What is the involvement of stochastic differential equations in this (cf. Gard (1988),
Gardiner (1997)) ?
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For elementary notions on measure theory we refer to Egghe (1984) or to Halmos (1974).

Let (Q,G,P) be a probability space, where G is a o-algebra. Let teN and GG be a sub-o-
algebra of G such that (G),.y increases. Let X, be an integrable function. We say that the
process (X,,G,,P) is a stochastic process (or adapted sequence) if each X, is G-measurable

(cf. Egghe (1984)).

Let ¥ <G be an arbitrary sub-c-algebra of G. For every integrable function f (integrable

w.r.t. (Q,G.P)) there exists a a.e. unique integrable

E”(f) (A1)
such that

[Eeo - [r (A2)

A A

VYAeZ and such that E”(f) is #-measurable. E”(f) is called the conditional expectation of f
w.r.t. # (cf. Egghe (1984)).

Let (X,,G,,P) be a stochastic process. It is called a martingale if, for every teN,

E*{X,,,) = X, a.e. (A3)

G G . . . .
We also denote E™ (X,,) by E" X,,, if no confusion can arise. The process is called a

submartingale if

E'X, > X, ae. (Ad)
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and a supermartingale if

ESX. <X, ae. (AS5)

Positive supermartingales and L'-bounded submartingales converge a.e. to an integrable

function X, (cf. Neveu (1975)).

A classical interpretation of (A3), (A4) and (A5) goes in the direction of gambling : if X
denotes the gambler’s fortune at time t, a martingale is a process where the gambler can
expect to keep his fortune (on the average) ; he/she will win (on the average) in case of a
submartingale and will loose (on the average) in case of a supermartingale. The latter case

is the most likely one since casinos must make money to pay for salaries and infrastructure.

One can think of more “irregular” processes for which conditional expectations do not
behave in a “monotonic” way as described by (A4) or (AS5). These extensions have been
formulated and studied about two decades ago (hence relatively recent). One such an
extension is easy to formulate but leads to a non-trivial stochastic process : the so-called

martingale in the limit :

A stochastic process (X,G,,P) is called a martingale in the limit (shortly mil) if

im sup |E°X, - X,] = 0, a.c. (A6)

toee tzt

We refer again to theorem I11.1 of Mucci (1976) stating that L'-bounded mils converge a.e.

to an integrable function X_.

This is a very good result and, in a way, optimal. Indeed, relaxing (A6) to

lim |[EX,,, - X,| =0, a.e. (A7)

e
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leads to possibly divergent processes (X)).

However, requiring that

Y E(JE X, -X]) < = (AB)
t=1

leads to convergent processes (see below). A process that satisfies (A8) is called a quasi
martingale. It is a special case of another generalization of martingales, namely the
asymptotic martingales (amarts for short). We can introduce amarts as follows. Let

(X,,G,,P) be a stochastic process on {). A stopping time T is a function

t:Q-N (A9)
such that, for every teN

{wel|t(w)=t1}€G,. (Al10)
We shortly, denote

{1=1} = {weld|t(w)=1} (A11)

Let T denote the set of all bounded stopping times. Hence every t€T can only have a finite

range in N, For t€T, denote X, by
(X Hw) = X (w) (A12)

= ( Z X, x{t=t}](m)’

t=min t

where X, denotes the characteristic function of {t=t}, i.e. the function which is 1 if

t(w)=t and 0 if T(w)=t.
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The process (X,,G,,P) is called an amart if the net

[X, = [X(@)dPw) (A13)
Q Q
converges. Here we use the natural order < on T : o<1 iff o(w)<t(w) for every weQ,

There is another definition, equivalent with the notion of amarts for real valued processes as

is the case here, which is called "uniform amart". A process (X,,G,P) is called a uniform

amart if

lim sup E(|E*X, - X,|) = 0 (A14)
geT T:20
el

Here, logically, we use the definition

G, = {SeG|Sn{o=t}eG,, for each teN} (Al15)
Quasi martingales are uniform amarts, hence amarts (see Egghe (1984), p.123-124). There
is the following convergence result for (uniform) amarts, hence for quasi martingales :
every L'-bounded (uniform) amart converges a.e. to an integrable function. The proof that
amarts converge was given in Austin, Edgar and lonescu Tulcea (1974). The proof that

uniform amarts converge (in the vector space context) was given in Bellow (1978).

Problem : Find a condition on our process (X,,G,,P) such that it becomes an amart (and

not necessarily a quasi martingale).



