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Abstract

For a number of reasons, surrogate endpoints are considered instead of the so-called true
endpoint in clinical studies, especially when such endpoints can be measured earlier, and/or
with less burden for patient and experimenter. Surrogate endpoints may occur more frequently
than their standard counterparts. For these reasons, it is not surprising that the use of surrogate
endpoints in clinical practice is increasing.

Building on the seminal work of Prentice (1989) and Freedman et al (1992), Buyse et al
(2000) framed the evaluation exercise within a meta-analytic setting, in an effort to overcome
difficulties that necessarily surround evaluation efforts based on a single trial. In this paper, we
review the meta-analytic approach for continuous outcomes, discuss extensions to non-normal
and longitudinal settings, as well as proposals to unify the somewhat disparate collection of
validation measures currently on the market. Implications for design and for predicting the
effect of treatment in a new trial, based on the surrogate, are discussed. Two case studies are
analyzed, one in schizophrenia and one in opthalmology.

Some Key Words: Hierarchical model; Likelihood reduction factor; Meta-analysis; Random-
effects model; Surrogate endpoint; Surrogate threshold effect.

1 Introduction

The use of surrogate endpoints in the development of new therapies has always been very controver-

sial, partly owing to a number of unfortunate historical instances where treatments showing a highly

positive effect on a surrogate endpoints were ultimately shown to be detrimental to the subjects’

clinical outcome, and conversely, some instances of treatments conferring clinical benefit without

measurable impact on presumed surrogates (Fleming and DeMets 1996). For example, in cardio-

vascular disease, the unsettling discovery that the two major anti arrhythmic drugs encanaide and
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flecanaide reduced arrhythmia but caused a more than 3-fold increase in overall mortality stressed

the need for caution in using non-validated surrogate markers in the evaluation of the possible

clinical benefits of new drugs (CAST 1989). On the other hand, the dramatic surge of the AIDS

epidemic, the impressive therapeutic results obtained early on with zidovudine, and the pressure

for an accelerated evaluation of new therapies, have all led to the use of CD4 blood count and later

of viral load as endpoints that replaced time to clinical events and overall survival (DeGruttola

and Tu 1994), in spite of serious concerns about their limitations as surrogate markers for clinically

relevant endpoints (Lagakos and Hoth 1992).

Throughout this paper, we use the terms “endpoint” and “marker” interchangeably to refer simply

to some random variable that can be measured over the course of the disease process. Variables

that are measured early in the course of the disease are often suggested as potential “surrogates”

for those that are measured later. The following definitions reflect the commonly accepted use of

various terms in the biomedical literature (Biomarkers Definition Working Group 2001). A clinical

endpoint is a characteristic or variable that reflects how a patient feels, functions, or survives.

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of

normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic

intervention. A surrogate endpoint is a biomarker that is intended to substitute for a clinical

endpoint. A surrogate endpoint is expected to predict clinical benefit, harm, or lack thereof.

One important reason for the present interest in surrogate endpoints is the advent of a large number

of biomarkers that closely reflect the disease process. An increasing number of new drugs have a

well-defined mechanism of action at the molecular level, allowing drug developers to measure the

effect of these drugs on the relevant biomarkers (Ferentz 2002). There is increasing public pressure

for new, promising drugs to be approved for marketing as rapidly as possible, and such approval

will have to be based on biomarkers rather than on some long-term clinical endpoint (Lesko and

Atkinson 2001). As an illustration of this trend towards early decision-making, recently proposed

clinical trial designs use treatment effects on a surrogate endpoint to screen for treatments that

show insufficient promise to have a sizeable impact on survival (Royston, Parmar, and Qian 2003).

If the approval process is shortened, there will be a corresponding need for earlier detection of

safety signals that could point to toxic problems with new drugs. It is a safe bet, therefore, that
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the evaluation of tomorrow’s drugs will be based primarily on biomarkers, rather than on the

longer-term, harder clinical endpoints that have dominated the development of new drugs until

now.

It is therefore best to use validated surrogates, though one needs to reflect on the precise meaning

and extent of validation (Schatzkin and Gail 2002). Like in many clinical decisions, statistical

arguments will play a major role, but ought to be considered in conjunction with clinical and

biological evidence. At the same time, surrogate endpoints can play different roles in different

phases of drug development. While it may be more acceptable to use surrogates in early phases

of research, one should be much more restraint using them as substitutes for the true endpoint in

pivotal phase III trials, since the latter might imply replacing the true endpoint by a surrogate

for all future studies as well, a far-reaching decision. For a biomarker to be used as a “valid”

surrogate, a number of conditions must be fulfilled. The ICH Guidelines on Statistical Principles

for Clinical Trials state that “In practice, the strength of the evidence for surrogacy depends upon

(i) the biological plausibility of the relationship, (ii) the demonstration in epidemiological studies of

the prognostic value of the surrogate for the clinical outcome and (iii) evidence from clinical trials

that treatment effects on the surrogate correspond to effects on the clinical outcome” (International

Conference on Harmonisation 1998).

Two motivating case studies are introduced in Section 2. The meta-analytic evaluation framework

is presented in Section 3, in the context of normally distributed outcomes. Extensions to a variety

of non-Gaussian settings are discussed in Section 4. Efforts for unifying the scattered suite of

validation measures are reviewed in Section 5. Implications for prediction of the effect in a new

trial and for designing studies based on surrogates are the topics of Section 6.

2 Motivating Case Studies

2.1 A Meta-analysis of Five Clinical Trials in Schizophrenia

The data come from a meta-analysis of five double-blind randomized clinical trials, comparing the

effects of risperidone to conventional anti psychotic agents for the treatment of chronic schizophre-

nia. The treatment indicator for risperidone versus conventional treatment will be denoted by Z.
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Schizophrenia has long been recognized as a heterogeneous disorder with patients suffering from

both ‘negative’ and ‘positive’ symptoms. Negative symptoms are characterized by deficits in cogni-

tive, affective and social functions, for example poverty of speech, apathy and emotional withdrawal.

Positive symptoms entail more florid symptoms such as delusions, hallucinations and disorganized

thinking, which are superimposed on mental status (Kay, Fiszbein, and Opler 1987). Several mea-

sures can be considered to asses a patient’s global condition. Clinician’s Global Impression (CGI) is

generally accepted as an admittedly subjective clinical measure of change. Here, the change of CGI

versus baseline will be considered as the true endpoint T . It is scored on a 7-grade scale used by the

treating physician to characterize how well a subject has improved since baseline. Another useful

and sufficiently sensitive assessment scales is the Positive and Negative Syndrome Scale (PANSS)

(Kay, Opler, and Lindenmayer 1988). The PANSS consists of 30 items that provide an opera-

tionalized, drug-sensitive instrument, which is highly useful for both typological and dimensional

assessment of schizophrenia. We will use the change versus baseline in PANSS as our surrogate S.

The data contain five trials and in all trials, information is available on the investigators that

treated the patients. This information is helpful to define group of patients that will become units

of analysis.

2.2 Age-related Macular Degeneration Study (ARMD)

This is a clinical trial involving patients with age-related macular degeneration, who progressively

lose vision. Overall, 190 patients from 42 centers participated in the trial. Patients’ visual acuity

was assessed using standardized vision charts displaying lines of five letters of decreasing size, which

patients had to read from top to bottom. The visual acuity was measured by the number of letters

correctly read. The binary indicator for treatment is set to Z = −1 for placebo and Z = 1 for

interferon-α. The surrogate endpoint S is visual acuity 6 months after starting treatment while

the true endpoint T is the change in visual acuity at 1 year. In the analysis, the centers in which

patients were treated will be considered as units of analysis. Six out of 42 centers participating in

the trial enrolled patients only to one of the two treatment arms. These centers were excluded from

consideration. A total of 36 centers were thus available for analysis, with a number of individual

patients per center ranging from 2 to 18 (183 patients overall).
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3 A Meta-analytic Framework for Normally Distributed Outcomes

Several methods have been suggested for the formal evaluation of surrogate markers, some based

on a single trial with others, currently gaining momentum, of a meta-analytic nature. The first

formal single trial approach to validate markers is due to Prentice (1989), who gave a definition

of the concept of a surrogate endpoint, followed by a series of operational criteria. Freedman et

al (1992) augmented Prentice’s hypothesis-testing based approach, with the estimation paradigm,

through the so-called proportion of treatment effect explained. In turn, Buyse and Molenberghs

(1998) added two further measures: the relative effect and the adjusted association. All of these

proposals are hampered by the fact that they are single-trial based, in which there evidently is

replication at the patient level, but not at the level of the trial.

3.1 A Meta-Analytic Approach

Although the single trial based methods are relatively easy in terms of implementation, they are

surrounded with the difficulties stated at the end of the previous section. Therefore, several authors,

such as Daniels and Hughes (1997), Buyse et al (2000), and Gail et al (2000) have introduced

the meta-analytic approach. This section briefly outlines the methodology, followed by simplified

modeling approaches as suggested by Tibaldi et al (2003).

The meta-analytic approach was formulated originally for two continuous, normally distributed

outcomes, and extended in the meantime to a large collection of outcome types, ranging from

continuous, binary, ordinal, time-to-event, and longitudinally measured outcomes (Burzykowski,

Molenberghs, and Buyse 2005). First, we focus on the continuous case, where the surrogate and

true endpoints are jointly normally distributed.

The method is based on a hierarchical two-level model. Both a fixed-effects and a random-effects

view can be taken. Let Tij and Sij be the random variables denoting the true and surrogate

endpoints for the jth subject in the ith trial, respectively, and let Zij be the indicator variable for

treatment. First, consider the following fixed-effects models:

Sij = µSi + αiZij + εSij, (1)
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Tij = µT i + βiZij + εT ij , (2)

where µSi and µT i are trial-specific intercepts, αi and βi are trial-specific effects of treatment Zij

on the endpoints in trial i, and εSi and εT i are correlated error terms, assumed to be zero-mean

normally distributed with covariance matrix

Σ =

(
σSS σST

σTT

)
. (3)

In addition, we can decompose



µSi

µT i

αi

βi




=




µS

µT

α

β




+




mSi

mT i

ai

bi



, (4)

where the second term on the right hand side of (4) is assumed to follow a zero-mean normal

distribution with covariance matrix

D =




dSS dST dSa dSb

dT T dTa dTb

daa dab

dbb



. (5)

A classical hierarchical, random-effects modeling strategy results from the combination of the above

two steps into a single one:

Sij = µS +mSi + αZij + aiZij + εSij , (6)

Tij = µT +mT i + βZij + biZij + εT ij. (7)

Here, µS and µT are fixed intercepts, α and β are fixed treatment effects, mSi and mT i are random

intercepts, and ai and bi are random treatment effects in trial i for the surrogate and true end-

points, respectively. The random effects (mSi, mT i ,ai , bi) are assumed to be mean-zero normally

distributed with covariance matrix (5). The error terms εSij and εT ij follow the same assumptions

as in the fixed effects models.

After fitting the above models, surrogacy is captured by means of two quantities: trial-level and

individual-level coefficients of determination. The former quantifies the association between the

treatment effects on the true and surrogate endpoints at the trial level, while the latter measures

6



the association at the level of the individual patient, after adjustment for the treatment effect. The

former is given by:

R2
trial = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)

dbb
. (8)

The above quantity is unitless and, at the condition that the corresponding variance-covariance

matrix is positive definite, lies within the unit interval.

Apart from estimating the strength of surrogacy, the above model can also be used for prediction

purposes. To this end, observe that (β + b0|mS0, a0) follows a normal distribution with mean and

variance:

E(β + b0|mS0, a0) = β +

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1 (
µS0 − µS

α0 − α

)
, (9)

Var(β + b0|mS0, a0) = dbb −
(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)
. (10)

A prediction can be made using (9), with prediction variance (10). Of course, one has to properly

acknowledge the uncertainty resulting from the fact that parameters are not known but merely

estimated. We return to this issue in Section 6.

Models (1) and (2) are referred to as the full fixed-effects models. It is sometimes necessary, for

computational reasons, to contemplate a simplified version. A reduced version of these models

is obtained by replacing the fixed trial-specific intercepts by a common one. Thus, the reduced

mixed effect models result from removing the random trial-specific intercepts mSi and mT i from

models (6) and (7). The R2 for the reduced models then is:

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
.

A surrogate could be adopted when R2
trial is sufficiently large. Arguably, rather than using a fixed

cutoff above which a surrogate would be adopted, there always will be clinical and other judgment

involved in the decision process. The R2
indiv is based on (3) and takes the following form:

R2
indiv = R2

εTi|εSi
=

σ2
ST

σSSσTT

. (11)
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3.2 Simplified Modeling Strategies

Though the above hierarchical modeling is elegant, it often poses a considerable computational

challenge (Burzykowski, Molenberghs, and Buyse 2005). To address this problem, Tibaldi et al

(2003) suggested several simplifications, briefly outlined here. These authors considered three

possible dimensions along which simplifications can be undertaken.

The first choice is between treating the trial-specific effects as fixed or random. If the trial-specific

effects are chosen to be fixed, a two-stage approach is adopted. The first-stage model will take

the form (1)–(2) and at the second stage, the estimated treatment effect on the true endpoint is

regressed on the treatment effect on the surrogate and the intercept associated with the surrogate

endpoint as

β̂i = λ̂0 + λ̂1µ̂Si + λ̂2α̂i + εi. (12)

The trial-level R2
trial(f) then is obtained by regressing β̂i on µ̂Si and α̂i, whereas R2

trial(r) is obtained

from regressing β̂i on α̂i only. The individual-level value is calculated as in (11), using the estimates

from (3).

The second option is to consider the trial-specific effects as random. Depending on whether the

endpoints are considered jointly or separately (see next paragraph), two directions can be followed.

The first one involves a two-stage approach with at the first stage univariate models (6)–(7). A

second stage model consists of a normal regression with the random treatment effect on the true

endpoint as response and the random intercept and random treatment effect on the surrogate as

covariates. The second direction is based on a full random effects model.

Though natural to assume the two endpoints correlated, this can lead to computational difficulties

in fitting the models. The need for the bivariate nature of the outcome is associated with R2
indiv,

which is in some cases of secondary importance. In addition, there is also a possibility to estimate

it by making use of the correlation between the residuals from two separate univariate models.

Thus, further simplification can be achieved by fitting separate models for the true and surrogate

endpoints, the so-called univariate approach.

If in the trial dimension, the trial-specific effects are considered fixed, models (1)–(2) are fitted
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separately. Similarly, if the trial-specific effects are considered random, models (6)–(7) are fitted

separately, i.e., the corresponding error terms in the two models are assumed independent.

When the univariate approach and/or the fixed-effects approach are chosen, there is a need to

adjust for the heterogeneity in information content between trial-specific contributions. One way of

doing so is weighting the contributions according to trial size. This gives rise to a weighted linear

regression model (12) in the second stage.

In summary, the simplified strategies perform rather well, especially when outcomes are of a con-

tinuous nature (Cortiñas et al 2004), and are a valuable addition to the fully specified hierarchical

model, for those situations where the latter is infeasible or less reliable.

3.3 Unit of Analysis

A cornerstone of the meta-analytic method is the choice of unit of analysis such as, for example,

trial, center, or investigator. This choice may depend on practical considerations, such as the

information available in the data, experts’ considerations about the most suitable unit for a specific

problem, the amount of replication at a potential unit’s level, and the number of patients per unit.

From a technical point of view, the most desirable situation is where the number of units and

the number of patients per unit is sufficiently large. This issue has been discussed by Cortiñas et

al (2004). Of course, in cases where one has to resort to simplified strategies, one has to reflect

carefully on the status of the results obtained. Arguably, they may not be as reliable as one might

hope for, and one should undertake every effort possible to increase the amount of information

available. Clearly, even an analysis based on a simplified strategy, especially in the light of good

performance, may support efforts to make more data available for analysis.

3.4 Treatment Coding

Most of the work reported in Burzykowski, Molenberghs, and Buyse (2005) is for a dichotomous

treatment indicator. Two choices need to be made at analysis time. First, the treatment variable

can be considered continuous or discrete (a class variable). Second, when a continuous route is

chosen, it is relevant to reflect on the actual coding, 0/1 and −1/ + 1 being the most commonly
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encountered ones. For models with treatment occurring as fixed effect only, these choices are

essentially irrelevant, since all choices lead to an equivalent model fit, with parameters connected

by simple linear transformations. Note that this is not the case, of course, for more than three

treatment arms. However, of more importance for us here is the impact the choices can have on

the hierarchical model. Indeed, while the marginal model resulting from (6)–(7) is invariant under

such choices, this is not true for the hierarchical aspects of the model, such as, for example, the

R2 measures derived at the trial level. Indeed, a −1/ + 1 coding ensures the same components of

variability operate in both arms, whereas a 0/1 coding, for a positive-definite D matrix, forces the

variability in the experimental arm to be greater than or equal to the variability in the standard

arm. Both situations may be relevant, and it is of importance to illicit views from the study’s

investigators.

3.5 Ill-conditioned and Non-positive Definite Variance-covariance Matrix

When the full bivariate random effect is used, the R2
trial is computed from the variance-covariance

matrix (5). It is sometimes possible that this matrix be ill-conditioned and/or non-positive definite.

In such cases, the resulting quantities computed based on this matrix might not be trustworthy.

One way to asses the ill-conditioning of a matrix is by reporting its condition number, i.e., the

ratio of the largest over the smallest eigenvalue. A large condition number is an indication of ill-

conditioning. The most pathological situation occurs when at least one eigenvalue is equal to zero.

This corresponds to a positive semi-definite matrix, which occurs, for example, when a boundary

solution is obtained. While it is hard to definitively identify the reason for a zero eigenvalue,

insufficient information, either in terms of the number of trials, the simple size within trials, or

both, may often be the cause and deserving of careful assessment. Using the simplified methods

is certainly an option in this case; apart from providing a solution to the problem, it may give a

handle on the problem at hand.
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3.6 Application to the Case Studies

3.6.1 A Meta-analysis of Five Clinical Trials in Schizophernia

Let us start with the schizophrenia study. Here, trial seems the natural unit of analysis. Unfortu-

nately, the number of trials is not sufficient to apply the full meta-analytic approach. The use of

trial as unit of analysis for the simplified methods might also entail problems. The second stage

involves a regression model based on only five points, which might give overly optimistic or at least

unreliable R2 values. The other possible unit of analysis for this study is ‘investigator’. There

were 176 investigators, each treating between 2 and 60 patients. The use of investigator as unit of

analysis is also surrounded with problems. Although a large number of investigators is convenient

to explain the between investigator variability, because some investigators treated few patients, the

resulting within-unit variability might not be estimated correctly.

The basic meta-analytic approach and the corresponding simplified strategies have been applied,

with results displayed in Table 1. Investigator and trial were both used as units of analysis.

However, as there were only five trials, it became difficult to base the analysis on trial as unit

of analysis in the case of the full bivariate random-effects approach. The results have shown a

remarkable difference in the two cases. Consistently, in all of the different simplifications, the R2
trial

values were found to be higher when trial was used as unit of analysis. The bivariate full random

effect model does not converge when trial is used as the unit of analysis. This might be due to

lack of sufficient information to compute all sources of variability. The reduced bivariate random

effects model converged for both cases, but the resulting variance-covariance matrices were not

positive-definite and were ill-conditioned, as can be seen from the very large value of the condition

number. Consequently, the results of the bivariate random effects model should be treated with

caution. If we concentrate on the results based on investigator as unit of analysis, we observe a

low level of surrogacy of PANSS for CGI, with R2
trial ranging roughly between 0.5 and 0.68 for the

different simplified models. This result, however, has to be coupled with other findings based on

expert opinion to fully guarantee the validation of PANSS as possible surrogate for CGI. Turning to

R2
indiv, it ranges between 0.4904 and 0.5230, depending on the method of analysis, which is relatively

low. To conclude, based on the investigators as unit of analysis, PANSS does not seem a promising
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surrogate for CGI.

3.6.2 Age-related Macular Degeneration Study

For the ARMD study, the only available unit of analysis was center. There were 36 centers which

treated between 2 and 18 patients. Note that these data has been analyzed by Buyse et al (2000)

with a treatment coding of 0 and 1 for the placebo and treatment arms, respectively. Here, the

−1/+1 coding was used and thus slightly different results obtain. The basic meta-analytic approach

and the corresponding simplified modeling strategies have also been applied to this dataset and

the results are displayed in Table 2 when the −1/ + 1 coding is used, and in Table 3, when

the 0/1 coding is employed. The R2
trial ranges roughly between 0.64 and 0.8, except for the full

bivariate random effects models where we find R̂2
trial = 0.9999. However, the corresponding variance-

covariance matrices were non-positive definite and have very large condition number, a sign of high

uncertainty surrounding the latter estimate. Hence, the results cannot be trusted. Based on the

findings, it is possible to say that assessment of visual acuity at 6 months does not seem to be a very

strong surrogate for the same assessment at 1 year. While the impact of the coding is clear from

the results, there are no substantive changes in the conclusions. Nevertheless, we recommend the

−1/+ 1 coding, since it is sensible to assume the overall variance is similar in both arms, whereas

the 0/1 coding forces the variance to be larger in the experimental arm. In conclusion, one has to

be aware that results can be obtained that look reasonable but are not trustworthy. Hence, the

diagnostic tools, such as the condition number, will be a valuable role.

4 Non-Gaussian Endpoints

Statistically speaking, the surrogate endpoint and the clinical endpoint are realizations of random

variables. As will be clear from the formalism in Section 3, one is in need of the joint distribution

of these variables. The easiest, but not the only, situation is where both are Gaussian random

variables, but one also encounters binary (e.g., CD4+ counts over 500/mm3, tumor shrinkage),

categorical (e.g., cholesterol levels <200 mg/dl, 200-299 mg/dl, 300+ mg/dl, tumor response as

complete response, partial response, stable disease, progressive disease), censored continuous (e.g.,

time to undetectable viral load, time to cardiovascular death), longitudinal (e.g., CD4+ counts
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over time, blood pressure over time), and multivariate longitudinal (e.g., CD4+ and viral load over

time jointly, various dimensions of quality of life over time) endpoints. The models used to validate

a surrogate for a clinical endpoint will depend on the type of variables observed in the problem

at hand. Table 4 shows some examples of potential surrogate endpoints in various diseases. In

what follows, we will briefly discuss the settings of binary endpoints, failure-time endpoints, the

combination of an ordinal and a survival endpoint, and longitudinal endpoints.

4.1 Binary Endpoints

Renard et al (2002) have shown that extension to this situation is easily done using a latent variable

formulation. That is, one posits the existence of a pair of continuously distributed latent variable

responses (S̃ij , T̃ij) that produce the actual values of (Sij , Tij). These unobserved variables are

assumed to have a joint normal distribution and the realized values follow by double dichotomiza-

tion. On the latent-variable scale, we obtain a model similar to (1)–(2) and in the matrix (3) the

variances are set equal to unity in order to ensure identifiability. This leads to the following model:




Φ−1(P [Sij = 1|Zij ,mSi , ai,mTi , bi]) = µS +mSi + (α+ ai)Zij ,

Φ−1(P [Tij = 1|Zij ,mSi , ai,mT i , bi]) = µT +mT i + (β + bi)Zij ,

where Φ denotes the standard normal cumulative distribution function. Renard et al (2002) used

pseudo-likelihood methods to estimate the model parameters. Similar ideas have been used in the

case one of the endpoints is continuous, with the other one binary or categorical (Burzykowski,

Molenberghs, and Buyse 2005, Ch. 6).

4.2 Two Failure-time Endpoints

Assume now that Sij and Tij are failure-time endpoints. Model (1)–(2) is replaced by a model for

two correlated failure-time random variables. Burzykowski et al (2001) used copulas to this end

(Clayton 1978, Hougaard 1986). Precisely, one assumes the joint survivor function of (Sij , Tij) is

written as:

F (s, t) = P (Sij ≥ s, Tij ≥ t) = Cδ{FSij(s), FT ij(t)}, s, t ≥ 0, (13)

where (FSij , FT ij) denote marginal survivor functions and Cδ is a copula, i.e., a distribution function

on [0, 1]2 with δ ∈ R1.
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When the hazard functions are specified, estimates of the parameters for the joint model can be

obtained using maximum likelihood. Shih and Louis (1995) discuss alternative estimation methods.

The association parameter is generally hard to interpret. However, it can be shown (Genest and

McKay 1986) that there is a link with Kendall’s τ :

τ = 4
∫ 1

0

∫ 1

0
Cδ(u, v)Cδ(du, dv) − 1,

providing an easy measure of surrogacy at the individual level. At the second stage R2
trial can be

computed based on the pairs of treatment effects estimated at the first stage.

4.3 An Ordinal Surrogate and a Survival Endpoint

Assume that T is a failure-time random variable and S is a categorical variable with K ordered

categories. To propose validation measures, similar to those introduced in the previous section,

Burzykowski et al (2004) also used bivariate copulas, combining ideas of Molenberghs, Geys, and

Buyse (2001) and Burzykowski et al (2001). One marginal distribution is a proportional odds

logistic regression, while the other is a proportional hazards model. The Plackett copula (Dale

1986) was chosen to capture the association between both endpoints. The ensuing global odds

ratio is relatively easy to interpret.

4.4 Longitudinal Endpoints

Most of the previous work focuses on univariate responses. Alonso et al (2003) showed that going

from a univariate setting to a multivariate framework represents new challenges. The R2 measures

proposed by Buyse et al (2000), are no longer applicable. Alonso et al (2003) based their calcula-

tions of surrogacy measures on a two-stage approach rather than a full random effects approach.

They assume that information from i = 1, . . . , N trials is available, in the ith of which, j = 1, . . . , ni

subjects are enrolled and they denoted the time at which subject j in trial i is measured as tijk. If

Tijk and Sijk denote the associated true and surrogate endpoints, respectively, and Zij is a binary

indicator variable for treatment then along the ideas of Galecki (1994), they proposed the following

joint model, at the first stage, for both responses




Tijk = µT i + βiZij + gT ij(tijk) + εT ijk,

Sijk = µSi + αiZij + gSij(tijk) + εSijk,
(14)
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where µT i and µSi are trial-specific intercepts, βi and αi are trial-specific effects of treatment Zij

on the two endpoints and gT ij and gSij are trial-subject-specific time functions that can include

treatment-by-time interactions. They also assume that the vectors, collecting all information over

time for patient j in trial i, ε̃T ij and ε̃Sij are correlated error terms, following a mean-zero multi-

variate normal distribution with covariance matrix

Σi =

(
ΣTT i ΣTSi

Σ′
TSi ΣSSi

)
=

(
σTT i σTSi

σTSi σSSi

)
⊗Ri. (15)

Here, Ri is a correlation matrix for the repeated measurements.

If treatment effect can be assumed constant over time, then (8) can still be useful to evaluate

surrogacy at the trial level. However, at the individual level the situation is totally different, the

R2
ind no longer being applicable, and new concepts are needed.

Using multivariate ideas, Alonso et al (2003) proposed the variance reduction factor (V RF ) to

capture individual-level surrogacy in this more elaborate setting. They quantified the relative

reduction in the true endpoint variance after adjustment by the surrogate as

V RFind =
∑
i{tr(ΣTT i) − tr(Σ(T |S)i)}∑

i tr(ΣTT i)
, (16)

where Σ(T |S)i
denotes the conditional variance-covariance matrix of ε̃Tij given ε̃Sij : Σ(T |S)i =

ΣTT i−ΣTSiΣ−1
SSiΣ

′
TSi. Here, ΣTT i and ΣSSi are the variance-covariance matrices associated with the

true and surrogate endpoint respectively and ΣTSi contains the covariances between the surrogate

and the true endpoint. Alonso et al (2003) showed that the V RFind ranges between zero and one,

and that V RFind = R2
ind when the endpoints are measured only once.

An alternative proposal is

θp =
∑

i

1
Npi

tr
{(

ΣTT i − Σ(T |S)i

)
Σ−1
TT i

}
. (17)

Structurally, both V RF and θp are similar, the difference being the reversal of summing the trace

and calculating the ratio. In spite of this strong structural similarity the VRF is not symmetric in

S and T and it is only invariant with respect to linear orthogonal transformations, whereas θp is

both symmetric and invariant with respect to the broader class of linear bijective transformations.
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A common problem of all previous proposals is that they are strongly based on the normality

assumption and extensions to non-normal settings are difficult. To overcome this limitation, Alonso

et al (2005), introduced a new parameter, the so-called R2
Λ, to evaluate surrogacy at the individual

level when both responses are measured over time or in general when multivariate or repeated

measures are available

R2
Λ =

1
N

∑

i

(1 − Λi), (18)

where: Λi =
|Σi|

|ΣTT i| |ΣSSi|
. This parameter not only allows the detection of more general patterns

of association but can also be extended to more general settings that those defined by the normal

distribution. They proved that R2
Λ ranges between zero and one, and that in the cross-sectional case

R2
Λ = R2

ind. These authors have shown that R2
Λ = 1 whenever there is a deterministic relationship

between two linear combinations of both endpoints, allowing the detection of strong associations

in cases where the VRF or θp would fail in doing so.

5 Towards a Unified Approach

The longitudinal method of the previous section, while elegant, hinges upon normality. First

using the likelihood reduction factor (Section 5.1) and then an information-theoretic approach

(Section 5.2), extension, and therefore unification, will be achieved.

5.1 The Likelihood Reduction Factor

Estimating individual-level surrogacy, as the previous developments clearly show, has frequently

been based on a variance-covariance matrix coming from the distribution of the residuals. However,

if we move away from the normal distribution, it is not always clear how to quantify the association

between both endpoints after adjusting for treatment and trial effect. To address this problem,

Alonso et al (2004b) considered the following generalized linear models in the ith trial

gT (Tij) = µTi + βiZij , (19)

gT (Tij) = θ0i + θ1iZij + θ2iSij. (20)
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The longitudinal case would be covered by considering particular functions of time in (19) and

(20). Consider G2
i as the log-likelihood ratio test statistics to compare (19) with (20) in trial i, and

quantify the association between both endpoints at the individual level using a scaled likelihood

reduction factor (LRF)

LRF = 1 − 1
N

∑

i

exp

(
−G

2
i

ni

)
. (21)

Alonso et al (2004b) established a number of properties for LRF, in particular its ranging in the

unit interval, and its reduction to R2
Λ in the longitudinal and to R2

ind in the cross-sectional case.

5.2 An Information-theoretic Unification

This proposal avoids the needs for a joint, hierarchical model, and allows for unification across

different types of endpoints. The entropy of a random variable (Shannon 1948), a good measure of

randomness or uncertainty, is defined in the following way for the case of a discrete random variable

Y , taking values {k1, k2, . . . , km}, and with probability function P (Y = ki) = pi:

H(Y ) =
∑

i

pi log
(

1
pi

)
. (22)

The differential entropy hd(X) of a continuous variable X with density fX(x) and support SfX

equals

hd(Y ) = −E[log fX(X)] = −
∫

SfX

fX(x) log fX(x)dx. (23)

The joint and conditional (differential) entropies are defined in an analogous fashion. Defining the

information of a single event as I(A) = log pA, the entropy is H(A) = −I(A). No information is

gained from a totally certain event, pA ≈ 1, so I(A) ≈ 0), while an improbable event is informative.

H(Y ) is the average uncertainty associated with P . Entropy is always non-negative, satisfies

H(Y |X) ≤ H(Y ) for any pair of random variables, with equality holding under independence,

and is invariant under a bijective transformation (Cover and Tomas 1991). Differential entropy

enjoys some but not all properties of entropy: it can be infinitely large, negative, or positive, and

is coordinate dependent. For a bijective transformation Y = y(X), it follows hd(Y ) = hd(X) −

EY
(
log

∣∣∣dxdy (y)
∣∣∣
)
.

We can now quantify the amount of uncertainty in Y , expected to be removed if the value of X were

known, by I(X,Y ) = hd(Y )−hd(Y |X), the so-called mutual information. It is always non-negative,
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zero if and only if X and Y are independent, symmetric, invariant under bijective transformations

of X and Y , and I(X,X) = hd(X). The mutual information measures the information of X, shared

by Y .

We will now introduce the entropy-power (Shannon 1948) for comparison of continuous random

variables. Let X be a continuous n-dimensional random vector. The entropy-power of X is

EP(X) =
1

(2πe)n
e2h(X). (24)

The differential entropy of a continuous normal random variable is h(X) = 1
2 log

(
2πσ2

)
, a simple

function of the variance and, on the natural logarithmic scale: EP(X) = σ2. In general, EP(X) ≤

Var(X) with equality if and only if X is normally distributed.

We can now define an information-theoretic measure of association (Schemper and Stare 1996):

R2
h =

EP(Y ) − EP(Y |X)
EP(Y )

, (25)

which ranges in the unit interval, equals zero if and only if (X,Y ) are independent, is symmetric,

is invariant under bijective transformation of X and Y , and, when R2
h → 1 for continuous models,

there is usually some degeneracy appearing in the distribution of (X,Y). There is a direct link

between R2
h and the mutual information: R2

h = 1 − e−2I(X,Y ). For Y discrete: R2
h ≤ 1 − e−2H(Y ),

implying that R2
h then has an upper bound smaller than 1; we then redefine

R2
hmax =

R2
h

1 − e−2H(Y )
,

reaching 1 when both endpoints are deterministically related.

We can now redefine surrogacy, while preserving previous proposals as special cases. While we will

focus on individual-level surrogacy, all results apply to the trial level too. Let Y = T and X = S

be the true and surrogate endpoints, respectively. We consider S a good surrogate for T at the

individual (trial) level, if a “large” amount of uncertainty about T (the treatment effect on T ) is

reduced when S (the treatment effect on S) is known. Equivalently, we term S a good surrogate for

T at the individual level, if our lack of knowledge about the true endpoint is substantially reduced

when the surrogate endpoint is known.
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A meta-analytic framework, with N clinical trials, produces Nq different R2
hi, and hence we propose

a meta-analytic R2
h:

R2
h =

Nq∑

i=1

αiR
2
hi = 1 −

Nq∑

i=1

αie
−2Ii(Si,Ti),

where αi > 0 for all i and
∑Nq

i=1 αi = 1. Different choices for αi lead to different proposals,

producing an uncountable family of parameters. This opens the additional issue of finding an

optimal choice. In particular, for the cross-sectional normal-normal case, Alonso and Molenberghs

(2006) have shown that R2
h = R2

ind. The same holds for R2
Λ, defined in (14) for the longitudinal

case. Finally, when the true and surrogate endpoints have distributions in the exponential family,

then LRF P→ R2
h when the number of subjects per trial goes to infinity.

5.3 Fano’s Inequality and the Theoretical Plausibility of Finding a Good Sur-
rogate

Fano’s inequality shows the relationship between entropy and prediction:

E
[
(T − g(S))2

]
≥ EP(T )(1 −R2

h) (26)

where EP(T ) =
1

2πe
e2h(T ). Note that nothing has been assumed about the distribution of our

responses and no specific form has been considered for the prediction function g. Also, (26) shows

that the predictive quality strongly depends on the characteristics of the endpoint, specifically on

its power-entropy. Fano’s inequality states that the prediction error increases with EP(T ) and

therefore, if our endpoint has a large power-entropy then a surrogate should produce a large R2
h to

have some predictive value. This means that, for some endpoints, the search for a good surrogate

can be a dead end street: the larger the entropy of T the more difficult it is to predict. Studying

the the power-entropy before trying to find a surrogate is therefore advisable.

5.4 Application to Case Studies

5.4.1 A Meta-analysis of Five clinical Trials in Schizophernia

We will treat CGI as the true endpoint and PANSS as surrogate, although the reverse would be

sensible, too. In practice, these endpoints are frequently dichotomized in a clinically meaningful

way. Our binary true endpoint T = CGId = 1 for patients classified from “Very much improved”
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to “Improved”, and 0 otherwise. The binary surrogate S = PANSSd = 1 for patients with at least

20 points reduction versus baseline, and 0 otherwise. We will start from probit and Plackett-Dale

models and compare results with the ones from the information-theoretic approach.

In line with Section 4.1, we formulate two continuous latent variables (C̃GIij, ˜PANSSij) assumed

to follow a bivariate normal distribution. The following probit model can be fitted



µ̃Tij
µ̃Sij

ln(σ2)

ln
(

1 + ρ̃

1 + ρ̃

)




=




µ̃Ti + β̃iZij

µ̃Si + α̃iZij

cσ2

cρ̃



, (27)

where µ̃Tij = E(C̃GIij), µ̃Sij = E( ˜PANSSij), Var(C̃GIij) = 1, σ2 = Var( ˜PANSSij) and ρ̃ =

corr(C̃GIij , ˜PANSSij) denotes the correlation between the true and surrogate endpoint latent vari-

ables. We can then use the estimated values of (µ̃Si , α̃i, β̃i) to evaluate trial level surrogacy through

the R2
trial. At the individual level, ρ̃2 is used to capture surrogacy.

Alternatively, the Dale (1986) formulation can be used, based on



logit(πTij)
logit(πSij)

ln(ψ)


 =




µTi + βiZij

µSi + αiZij

cψ


 (28)

where πTij = E(CGIdij), πSij = E(PANSSdij) and ψ is the global odds ratio associated to both

endpoint. As before, the estimated values of (µSi , αi, βi) can be used to evaluate surrogacy at the

trial level and the individual level surrogacy is quantified using the global odds ratio.

In the information-theoretic approach the following three models are fitted independently

Φ(πTij) = µTi + βiZij, (29)

Φ(πT |Sij ) = µSTi
+ βSi Zij + γijSij , (30)

Φ(πSij) = µSi + αiZij , (31)

where πTij = E(CGIdij), π
T |S
ij = E(CGIdij |PANSSdij), πSij = E(PANSSdij) and Φ denotes the

cumulative standard normal distribution. At the trial level, the estimated values of (µSi , αi, βi)

obtained from (29) and (31) can be used to calculate the R2
trial, whereas at the individual level we

can quantify surrogacy using R2
h. As it was stated before, the LRF is a consistent estimator of R2

h,
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however, in principle other estimators could be used as well. We will then quantify surrogacy at the

individual level by R̂2
h = 1− exp

(
−G2/n

)
, where G2 is the loglikelihood ratio test to compare (29)

with (30) and n denotes total number of patients. Furthermore, when applied to the binary-binary

setting, Fanos’s inequality takes the form

P (T 6= S) ≥ 1
log |Ψ|

[
H(T ) − 1 +

1
2

ln(1 −R2
h)
]
,

where Ψ = {0, 1} and |Ψ| denotes the cardinal of Ψ. Here, again, Fano’s inequality gives a lower

bound for the probability of incorrect prediction.

Table 5 shows the results at the trial and individual level obtained with the different approaches

described above. At the trial level, all the methods produced very similar values for the validation

measure. In all cases, R2
trial ' 0.50. It is also remarkable that the probit approach, in spite of

being based on treatment effects defined at a latent level, produced a R2
trial value similar to the

ones obtained with the information–theoretic and Plackett-Dale approaches. However, as Alonso

et al (2003) showed, there is a linear relationship between the mean parameters defined at the

latent level and the mean parameters of the model based on the observable endpoints and that

could explain the agreement between the probit and the other two procedures. Therefore, at the

trial level, we could conclude that knowing the treatment effect on the surrogate will reduce our

uncertainty about the treatment effect on the true endpoint by 50%.

At the individual level, the probit approach gives the strongest association between the surrogate

and the true endpoint. Nevertheless, this value describes the association at an unobservable latent

level, rendering its interpretation more awkward than with information theory, since it is not clear

how this latent association could be relevant from a clinical point of view or how it could be

translated into an association for the observable endpoints. The Plackett-Dale procedure quantifies

surrogacy using a global odds ratio, making the comparison between this method and the others

more difficult. Note that even though odds ratios are widely used in biomedical fields the lack of

an upper bound makes difficult their interpretation in this setting.

On the other hand, the value of the R2
hmax illustrates that the surrogate can merely explain 39%

of our uncertainty about the true endpoint, a relatively low value. Additionally, the lower bound

for Fano’s inequality clearly shows that using the value of PANSS to predict the outcome on CGI
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would be misleading in at least 8% of the cases. Even though this value is relatively low, it is only

a lower bound and the real probability of mistake could be much larger.

At the trial level, the information-theoretic approach produces results similar to the ones from the

conventional methods, but does so by means of models that are generally much easier to fit. At the

individual level, the information-theoretic approach avoids the problem common with the probit

model in that the correlation of the latter is formulated at the latent scale and therefore less relevant

for practice. In addition, the information-theoretic measure ranges between 0 and 1, circumventing

interpretational problems arising from using the unbounded Plackett-Dale based odds ratio.

5.4.2 The Age-related Macular Degeneration Study

Consider two dichotomized outcomes: visual acuity at 6 months (S) and visual acuity at 1 year (T ),

defined as increase versus decrease of number of letters correctly read on the vision chart. Again,

(29)–(31) are fitted independently, where now Sij = vis6ij and Tij = vis12ij are the dichotomized

visual acuity, for the jth patient in the ith trial, at 6 months and one year, respectively. We also

use the notation πTij = E(vis12ij), π
T |S
ij = E(vis12ij |vis6ij), and πSij = E(vis6ij). Assuming that

the association between both variables is constant we can estimate the individual level-surrogacy

computing the R2
h = 1− e−2I(X,Y ). By way of sensitivity analysis, the assumption of a constant co-

variance structure was relaxed. The results obtained were virtually identical and therefore omitted.

The LRF is computed as in the previous section.

Table 6 shows the results at both levels. All of the estimated values are too low to make visual

acuity at 6 months a reliable surrogate. At the trial-level, R̂2
trial = 0.38, which clearly shows that

an accurate prediction of treatment effect at one year based on the treatment effect observed at 6

months is not possible. It is clear that when the outcome at 6 months is sufficiently large, then

the prediction of the month 12 outcome, together with its prediction limits, may contain useful

information. While this would hold for every R2 larger than zero, the closer it is to zero, the larger

and hence the more unrealistic will the surrogate endpoint value have to be. Switching to R2
hmax,

we do obtain some evidence of a weak association at the individual-level.
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6 Prediction and Design Aspects

An important application of surrogacy evaluation is the prediction of treatment effect on the true

endpoint without measuring the latter , supplemented with appropriate quantification of uncertainty.

We will review the work done in this respect by Burzykowski and Buyse (2006).

Two components contribute to such a prediction: (a) information obtained in the validation process

based on trials i = 1, . . . , N , used to fit model (1)–(2), and (b) the estimate of the effect of Z on

S in a new trial i = 0 providing data on the surrogate endpoint but not on the true endpoint. We

can then fit the following linear model to the surrogate outcomes S0j :

S0j = µS0 + α0Z0j + εS0j . (32)

Based on this, we observe that the treatment effect on the true endpoint, (β + b0|mS, a0), follows

a normal distribution with mean linear in µS0, µS, α0, and α, and variance

Var(β + b0|mS0, a0) = (1 −R2
trial)Var(b0), (33)

where mS0 and a0 are the surrogate-specific random intercept and treatment effect in the new trial,

respectively, and Var(b0) denotes the unconditional variance of the trial-specific random effect.

Group the fixed-effects parameters and variance components into ϑ, with ϑ̂ the corresponding

estimates. The prediction variance can then be written as:

Var(β + b0|µS0, α0, ϑ) ≈ f{Var(µ̂S0, α̂0)} + f{Var(ϑ̂)} + (1 −R2
trial)Var(b0), (34)

where f{Var(µ̂S0, α̂0)} and f{Var(ϑ̂)} are functions of the asymptotic variance-covariance matrices

of (µ̂S0, α̂0)T and ϑ̂, respectively. The third term on the right of (34), describes the prediction’s

variability if µS0, α0, and ϑ were known. The first two terms describe the contribution to the

variability due to the need for estimation. It is useful to consider three scenarios.

Scenario 1. Estimation error in both the meta-analysis and the new trial. In the realistic

case where the parameters in (1)–(2) and (32) are estimated, the prediction variance is (34), showing

that the practical variability reduction in estimating β + b0, coming from mS0 and a0, will always

be smaller than indicated by R2
trial, which measures the “potential” validity of a surrogate endpoint
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at trial level, assuming precise knowledge of the parameters in (1)–(2) and (32), e.g., obtained from

a infinite number of trials of infinite size. See also Scenario 3.

Scenario 2. Estimation error only in the meta-analysis. This theoretical construct, requiring

an infinite-sized new trial, provides information of practical interest since then the parameters of

(32) are known and (34) reduces to

Var(β + b0|µS0, α0, ϑ) ≈ f{Var(ϑ̂)} + (1 −R2
trial)Var(b0), (35)

to be interpreted as the minimum variance achievable in the prediction of β + b0. In practice, the

meta-analysis will be finite and the first term on the right hand side of (35) will be present. This

lead Gail et al (2000) to conclude that the use of surrogates, validated through the meta-analytic

approach, will always be less efficient than the direct use of the true endpoint, but then still there

can be gain in sample size, trial length, and/or number of life years.

Scenario 3. No estimation error. If the parameters of (1)–(2) and (32) were known, the

prediction variance would reduce to (33), which is clearly linked with (26). This situation is of

theoretical relevance for the insight it provides.

6.1 Surrogate Threshold Effect

We will outline the proposal of Burzykowski and Buyse (2006) for normally distributed endpoints.

Assume that the prediction of β+ b0 can be made independently of µS0, then the conditional mean

of β + b0 is a simple linear function of α0, while the conditional variance can be written as

Var(β + b0|α0, ϑ) = Var(b0)
(
1 −R2

trial(r)

)
. (36)

The R2
trial(r) in (36) is the squared correlation coefficient between bi and ai. In Scenario 2, the

prediction variance is (36). In practice, an estimate ϑ̂ is used and then prediction variance (35)

ought to be applied:

Var(β + b0|α0, ϑ) ≈ f{Var(ϑ̂)} + (1 −R2
trial(r))Var(b0), (37)

which can be approximated by a quadratic function in α0 (Verbeke and Molenberghs 2000).
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Let us consider a (1-γ)100% prediction interval for β + b0:

l(α0), u(α0) ≡ E(β + b0|α0, ϑ) ± z1− γ
2

√
Var(β + b0|α0, ϑ), (38)

where z1−γ/2 is the (1−γ/2) quantile of the standard normal distribution. One might then compute

a value of α0 such that

l(α0) = 0, (39)

and term this value the surrogate threshold effect (STE). In some settings the upper limit is needed.

The larger the prediction variance, the larger the absolute value of STE. From a clinical point of

view, a large STE points to the need for observing a large treatment effect on the surrogate endpoint,

which may cast doubts on a surrogate’s usefulness, even when its R2
trial(r) ' 1.

Both (38) and l(α0) can be constructed using the variances in either (36) or (37), producing two

versions of STE. The version obtained from (36) will be denoted by STE∞,∞, the ∞ signs indicating

that the measure assumes knowledge of ϑ and α0. It captures a surrogate’s “potential” validity.

The notation STEN,∞ is used when variance (37) is employed, with N indicating the need for

the estimation of ϑ. STEN,∞ captures the surrogate’s “practical” validity. A surrogate may be

potentially but not practically valid.

Interestingly, the STE can be expressed in terms of treatment effect on the surrogate necessary to

be observed to predict a significant treatment effect on the true endpoint. In a practical application,

one would seek a value of STE (preferably, STEN,∞) well within the range of treatment effects on

surrogates observed in previous clinical trials, as close as possible to the (weighted) mean effect.

Apart from the normal-endpoints case reviewed here, Burzykowski and Buyse (2006) derived the

STE when, perhaps for numerical convenience, the two-stage approach of Section 3.2 is used.

Furthermore, STE can be computed for any type of surrogate. To this end, one merely needs to

use an appropriate joint model for surrogate and true endpoints, capable of providing the required

treatment effect. Burzykowski and Buyse (2006) presented time-to-event applications.
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7 Concluding Remarks

Over the years, a variety of surrogate marker evaluation strategies have been proposed, cast within

a meta-analytic framework. With an increasing range of endpoint types considered, such as con-

tinuous, binary, time-to-event, and longitudinal endpoints, also the scatter of types of measures

proposed has increased. Some of these measures are difficult to calculate from fully specified hi-

erarchical models, which has sparked of the formulation of simplified strategies. We reviewed the

ensuing divergence of proposals, which then has triggered efforts of convergence, eventually leading

to the information-theoretic approach, which is both general and simple to implement. These de-

velopments have been illustrated using data from clinical trials in schizophrenia and opthalmology.

While quantifying surrogacy is important, so is prediction of the treatment effect in a new trial

based on the surrogate. Work done in this area has been reviewed, with emphasis on the so-

called surrogate threshold effect and the sources of variability involved in the prediction process.

A connection with the information-theoretic approach is pointed out.

Even though more work is called for, we believe the information-theoretic appraoch and the surro-

gate threshold effect are promising paths towards effective assessment and use of surrogate endpoints

in practice. Software implementations are available from www.uhasselt.be/censtat.
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Table 1: Schizophrenia study. Results of the trial-level (R2
trial) surrogacy analysis.

Fixed effects Random effects
Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Investigator 0.5887 0.5608 0.5488 0.5447
Trial 0.9641 0.9636 0.9849 0.9909

Bivariate approach

Investigator 0.5887 0.5608 0.9898∗
Trial 0.9641 0.9636 —

Reduced Model

Univariate approach

Investigator 0.6707 0.5927 0.5392 0.5354
Trial 0.8910 0.8519 0.7778 0.8487

Bivariate approach
Investigator 0.6707 0.5927 0.9999∗
Trial 0.7418 0.8367 0.9999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one
eigenvalue is very close to zero.The condition numbers for the three models with ill-
condition matrices, from top to bottom are 3.415E+18, 2.384E+18 and 1.563E+18
respectively.
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Table 2: Age-related macular degeneration trial. Results of the trial-level (R2
trial) surrogacy analysis

−1/+ 1 coding.

Fixed effects Random effects
Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Center 0.692 0.696 0.661 0.796

Bivariate approach
Center 0.692 0.696 0.999∗

Reduced Model

Univariate approach

Center 0.641 0.656 0.677 0.793
Bivariate approach

Center 0.641 0.656 0.999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one eigen-
value is very close to zero.The condition numbers for Full and Reduced Bivariate
random effects models are 1.109E+17 and 1.965E+18 respectively

Table 3: Age-related macular degeneration trial. Results of the trial-level (R2
trial) surrogacy analysis

0/1 coding.

Fixed effects Random effects
Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Center 0.692 0.693 0.664 0.801

Bivariate approach
Center 0.692 0.693 —

Reduced Model

Univariate approach
Center 0.776 0.758 0.659 0.786

Bivariate approach

Center 0.776 0.758 —
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Table 4: Examples of possible surrogate endpoints in various diseases (Abbreviations: AIDS = acquired immune deficiency syndrome;
ARMD = age-related macular degeneration; HIV = human immunodeficiency virus).

Disease Surrogate Endpoint Type Final Endpoint Type
Resectable solid tumor Time to recurrence Censored Survival Censored
Advanced cancer Tumor response Binary Time to progression Censored
Osteoporosis Bone mineral density Longitudinal Fracture Binary
Cardiovascular disease Ejection fraction Continuous Myocardial infraction Binary
Hypertension Blood pressure Longitudinal Coronary heart disease Binary
Arrhythmia Arrhythmic episodes Longitudinal Survival Censored
ARMD 6-month visual acuity Continuous 24-month visual acuity Continuous
Glaucoma Intraoccular pressure Continuous Vision loss Censored
Depression Biomarkers Multivariate Depression scale Continuous
HIV infection CD4 counts + viral load Multivariate Progression to AIDS Censored
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Table 5: Schizophrenia study. Trial-level and individual-level validation measures (95% confidence
intervals). Binary-binary case.

Parameter Estimate 95% C.I.

Trial-level R2
trial measures

1.1 Information-theoretic 0.49 (0.21,0.81)
1.2 Probit 0.51 (0.18,0.78)
1.3 Plackett-Dale 0.51 (0.21,0.81)

Individual-level measures
R2
h 0.27 (0.24,0.33)

R2
hmax 0.39 (0.35,0.48)

Probit 0.67 (0.55,0.76)
Plackett-Dale ψ 25.12 (14.66;43.02)

Fano’s lower-bound 0.08

Table 6: Age-related macular degeneration trial. Trial-level and individual-level validation measures
(95% confidence intervals). Binary-binary case.

Parameter Estimate 95% C.I.

R2
trial 0.38 (0.15;0.61)

R2
h 0.26 (0.22;0.37)

R2
hmax 0.50 (0.33;0.60)
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