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Abstract

In this paper, we propose a system for finding partial pos-
itive and negative coregulated gene clusters in microarray
data. Genes are clustered together if they show the same
pattern of changing tendencies in a user definied number of
condition pairs. It is assumed that genes which show sim-
ilar expression patterns under a number of conditions are
under the control of the same transcription factor and are
related to a similar function in the cell. Taking positive and
negative coregulation of genes into account, we find two
types of information:(1) clusters of genes showing the same
changing tendency and (2) relationships between two such
clusters whose respective members show opposite changing
tendency.

Because genes may be coregulated by different transcrip-
tion factors under different environmental conditions, our
algorithm allows the same gene to fall into different clus-
ters. Overlapping gene clusters are allowed because coreg-
ulation normally takes place in only a fraction of the in-
vestigated condition pairs, and because the gene expression

data is noisy so that the approach should be tolerant to er-
rors. In a first step, the gene expression matrix is trans-
formed to a binned matrix of changing tendencies between
all condition pairs. For the binning of the gene expression
levels, a statistical technique is used, for which no arbitrary
threshold needs to be chosen, which automatically corrects
for multiple testing, and which is able to handle replicates
for the different conditions, immediately accounting for the
random variability of gene expression data. To present the
results of a clustering a new structure called coregulation
graph is proposed.

1. Introduction

The metabolism of all organisms is tightly controlled by
internal and external conditions so that not all proteins are
produced under all circumstances. Products which function
together in the cell are often under common regulatory con-
trol and expressed coordinately [2]. Because many gene
products have multiple roles in the metabolism, genes may
be coexpressed with different other genes under different
environmental conditions. A clustering to find coregulated



genes should therefore allow for a gene to be a member of
different clusters under different conditions.

There are different patterns of coregulated genes sug-
gested by [4, 10]. Lee at al. [4] mention different loops
of regulatory networks found in Yeast cells, e.g. the regu-
latory chains with at least three regulators where the prod-
uct of one regulator binds to the promoter sequence for the
next regulator. Examples of other motifs mentioned are the
single input motif, where a single regulator binds to the the
promoter of a set of genes, and a multiple input motif where
a set of regulators bind to a set of genes. Yu and coworkers
[10] relate these motifs to different time patterns of gene
expression. They point out that there are 4 different rela-
tionships of gene expression which are coregulated, time
shifted coregulated, negative and negative time shifted.

To find interesting coregulated genes, the gene expres-
sion matrix is transformed into a binned matrix which
captures changing tendencies between condition pairs (in-
crease, decrease or no change) [3]. In our approach, a
threshold arbitrarily to decide if a gene is differently ex-
pressed and needs to chosen by the user ahead of time
([3, 11]), is avoided. Instead we use a statistical technique
called SAM by Tusher et al. [7], that only needs a prespec-
ified significance level (usually 5%). SAM also automat-
ically corrects for multiple testing (since many genes and
conditions are involved in this process), and it can handle
replicates for the different conditions, meanwhile account-
ing for the random variability present in gene expression
data. Clustering methods which use the normalised gene
expression levels directly often have the problem that they
mistake small fluctuations in gene expression levels as sig-
nificant. This can result in clusterings with little or no bio-
logical meaning.

Our clustering is based on finding similar patterns of
changing tendencies, not on finding similar absolute val-
ues of gene expression. Genes which have different gene
expression values in some condition pairs may still show
the same changing tendency between these condition pairs.
These shift based clusters will be missed by methods based
on distance measures [9]. Because for microarray data with
many condition pairs it is unlikely that all condition pairs
of the two genes are coregulated and because of the intrin-
sic noise of the data, our algorithm allows to find clusters
with matches in only a part of consecutive condition pairs.
Because we are also looking for genes with the opposite
changing tendency, our approach is able to find the negative
gene expression motifs as well.

The outcome of the clustering is visualised in a coreg-
ulation graph. In this graph, positively coregulated genes
are found in the same vertex of the graph. Negative coreg-
ulation between gene clusters can be recognised by edges
which connect two (positive) clusters that show opposite
changing tendencies and therefore are negatively coregu-

lated. Clusters which show no negative coregulation with
any other cluster of the graph are not connected.

2. Related Work

There are different clustering methods with different dis-
tance measures used for finding groups in gene expres-
sion data. Fuzzy k-means clustering is used by Eisen and
coworkers [2]. In contrast to k-means clustering where
genes are partitioned into a defined set of discrete clusters
attempting to maximize the expression similarity in each
cluster, each gene belongs to every cluster with a variable
degree of membership using the fuzzy k-means method. To
overcome the seeding problem where the random initialisa-
tion of the centroids of the clusters can have an impact on
the results, they seed prototype centroids with eigen vectors
identified by PCA. To identify patterns missed in the first
round, they continue the clustering on a subset of the data
in a second and third round. While this approach allows
genes to be assigned to more than one cluster, it does not
address the issue of negative coregulation.

Clustering approaches finding objects based on similar
patterns which might not be close concerning distances like
Euclidian distance are proposed by Wang et al. [9, 8]. Their
algorithm, which finds pclusters [9], groups objects that
exhibit a coherent pattern on a subset of dimensions. This
is interesting for gene expression data, because the magni-
tude of the expression levels might not be close although the
two genes show a similar pattern of expression. They intro-
duce the pscore and a user defined threshold δ and cluster
together two objects if their pscore is less than δ.

As this approach does not scale well to large data sets,
they proposed an extension suitable for larger data sets [8].
They introduce a distance measure to decide whether two
objects are similar in a subspace. Again, both methods do
not address the issue of negative coregulated genes.

An algorithm to extract clusters of coregulated genes was
proposed by Ji and Tan [3]. They introduce the concept
of positive and negative coregulated gene clusters to cover
positive and negative gene regulation. Positive coregulated
gene clusters are defined as clusters which show a similar
behaviour under a number of condition pairs, whereas neg-
ative coregulated gene clusters are defined to show the op-
posite behaviour in a number of condition pairs. However,
their definition of positive and negative coregulated clusters
is not symmetrical, which means that under the same condi-
tions two genes may be identified as coregulated in one case
and may not be identified as such if the genes are processed
in a different order. This is due to their precision threshold
which is the dependent probability of genei being upregu-
lated given genej is upregulated, which may lead to differ-
ent clusters if either genei or genej is taken as a reference
gene to form the cluster.



They transform the gene expression data in a binned ma-
trix with pairwise changing tendencies for all conditions.
For the decision if a gene is up- or downregulated or not
differentially expressed, the user has to choose an arbitrary
normalisation threshold. The outcome of the clustering is
depending on this threshold. With a low normalization
threshold, lots of genes will be classified as significantly
expressed which leads to more clusters. With a higher nor-
malization threshold, on the other hand, many genes are
classified as not significantly expressed which leads to less
clusters. Their algorithm is proposed as an improvement
over the support confidence framework used in A-priori-
based data mining methods which reduces the large num-
ber of rules that may be generated by uncorrelated genes.
Their negative clusters are based on one reference gene
which shows the opposite behaviour compared to a posi-
tive cluster. The output of their algorithm is gene-centered,
where positive and negative clusters are reported for each
gene. This leads to multiple appearences of positive clusters
in their output if the cluster contains more than one gene,
which makes it hard to read the clustering result.

An approach also able to detect negative coregulation be-
tween genes was proposed by Zhao et al. [11]. They use a
model based on so called g-cluster to find positive and neg-
ative coregulation between genes. They allow partial coreg-
ulation of genes by taking into account submatrices of con-
ditions. For finding significant up- or downregulated neigh-
bour conditions, they check if the difference of the absolute
gene expression values of conditions c1 and c2 is larger than
δ× expression c1, where δ is chosen by the user and is re-
stricted to values between 0 and 1. By restricting the thresh-
old to 1, only cases with a 2-fold up- or downregulation can
be taken into account, whereas in gene expression data, of-
ten up- or downregulations higher than 3-fold are taken as
significant. Again this static choice of a threshold can lead
to certain regulation patterns being missed.

3. Methods

The goal of the coregulated gene mining process is to
construct a coregulation graph for a given microarray exper-
iment. In this graphical representation, genes with a similar
gene expression pattern are clustered together at a vertex of
the graph making it easy to see which genes share a similar
expression pattern and therefore might be regulated by the
same transcription factors. In addition, edges in the graph
indicate which gene clusters show opposite expression pat-
terns and are negatively coregulated.

3.1 Binning of the Gene expression ma-
trix

In a first phase of the algorithm, the gene expression ma-
trix is transformed into a binned matrix showing the pair-
wise changing tendency between conditions. We assume
that there are n genes in total on a microarray, that m con-
ditions need to be considered, and lj > 1 replicates (arrays)
are available for each condition j. The gene expression ma-
trix Y then has n rows and

∑m
j=1 lj columns with elements

Yijk, where Yijk is the measured gene expression of gene i
(i = 1, . . . , n) in condition j (j = 1, . . . ,m) for replicate
k (k = 1, . . . , lj). From the matrix Y we want to produce
a binned matrix, which will have n rows and m(m − 1)/2
columns, corresponding to the pairs of conditions. The cre-
ation of the binned matrix will be based on the SAM method
by Tusher et al. [7], which is used to analyse microarray ex-
periments and detect significant genes.

For each gene i and pair of conditions j1, j2 with j1 <
j2, the score

dij1j2 =
rij1j2

sij1j2 + s0

is calculated. It is based on the difference in average gene
expression rij1j2 = Y ij1. − Y ij2. between conditions j1
and j2, relative to its standard deviation sij1j2 , augmented
by a small positive constant s0, called a fudge factor. This
fudge factor ensures that the variance of the difference is
independent of the mean gene expression level. Its value is
chosen to minimize the coefficient of variation of the test
statistic dij1j2 .

Determining whether the value of dij1j2 is significantly
different from zero is not straightforward because one
should control for multiple testing, and, due to the small
numbers lj of replicates, the test statistic dij1j2 cannot be
assumed to be normally distributed. In SAM, both prob-
lems are solved. Since SAM needs to use all dij1j2 for
all genes i and all pairs of conditions j1, j2 simultaneously,
we will simplify notation to dp, with p = 1, . . . , N , where
N = n×m(m− 1)/2.

The idea is to use a number B of arbitrary permutations
of the columns of the matrix Y (recall that these columns
represent all replicates of all conditions). For each permu-
tation b, we recalculate dp but on the permuted matrix Y b,
denoted by db

p. For each b, we sort the values db
1, . . . , d

b
N ,

resulting in the order statistics db
(1) ≤ . . . ≤ db

(N). We now
determine, for each p, the average of db

(p) over all b’s, de-
noted by d̄(p). We also sort the original values d1, . . . , dN ,
resulting in the order statistics d(1) ≤ . . . ≤ d(N).

Now, for a fixed threshold ∆ > 0, all gene – condition
pair combinations for which d(p)−d(p) > ∆ are called “sig-
nificant positive”. Similarly, all gene – condition pair com-
binations for which d(p) − d(p) < −∆ are called “signifi-
cant negative”. This is repeated for a grid of ∆ values, and a
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Figure 1. Row of the binned matrix for one
gene in triangular matrix form.

list of significant gene – condition pair combinations is ob-
tained for each value. Moreover, the False Discovery Rate
(FDR) is estimated for each ∆. FDR is the expected pro-
portion of false positive gene – condition pair combinations
among all gene – condition pair combinations called signif-
icant. Based on an a priori chosen level for FDR (mostly
5%), the corresponding ∆ value is chosen, and the signif-
icant gene – condition pair combinations are listed. More
details can be found in Chu et al. [1].

Finally, when, based on the analysis of the test statistic
dij1j2 , the average change rij1j2 in gene expression for gene
i between conditions j1 and j2 is determined to be signif-
icantly different from zero, the value Oij1j2 in the binned
matrix is taken to be equal to 1 when rij1j2 > 0, and equal
to −1 when rij1j2 < 0. For all other genes and pairwise
comparisons, Oij1j2 = 0.

3.2 Clustering

After the gene expression matrix has been binned, we
use a clustering technique to identify groups of similarly ex-
pressed and hence coregulated genes within the matrix. Our
goals with our new approach where to identify coregulated
as well as negative coregulated genes and present them in
an easy, human-readable form. To achieve those goals, we
first need to define what we mean by the terms ”similarly
expressed” or ”coregulated” in a clustering sense.

One aspect important for clustering expression data is
the fact that a gene can be coregulated with different other
genes under different conditions. Consequently, the expres-
sion behavior of two coregulated genes is usually not the
same for all conditions within one microarray experiment.
To take this into account, the clustering technique should
not be partitioning, i.e. assign an object to exactly one clus-
ter. On the contrary, a gene could be part of different clus-
ters, depending on the conditions under which they were
expressed.

As described above, each gene in the microarray ex-
periment is represented in the binned matrix by a row of
m(m−1)

2 values indicating the pairwise changing tendency
between the m conditions of the original microarray data.
One such row in the binned matrix can itself be viewed as
an upper triangular matrix. The first entry of the first row
in the binned matrix for a gene denotes the change of ex-

pression behavior when transitioning from condition C1 to
Condition C2 during the microarray experiment. The next
entry in the first row denotes the overall change in expres-
sion behavior when transitioning from condition C1 to C3.
The values change for a transition from C2 directly to C3 is
then stored in the next row of the triangular view. Figure 1
illustrates the principle and Figure 2 shows an example for
two genes. It should be noted that for a microarray experi-
ment with m conditions, there are exactly (m − 1) rows to
such a triangular matrix.

For microarray data with a natural order within the con-
ditions, not all parts of the binned matrix do have the same
importance for answering the different questions posed to
gene expression data. Examples for commonly used mi-
croarrays with such an order are time series experiments
where conditions are time points and dose response mi-
croarrays where the effect of different doses of a substance
are tested. For time series data, the change between non-
consecutive time points which are not on the diagonal of the
triangular matrix provides additional information about the
course of the gene expression over longer time spaces, but
the main trend can be seen by comparing the values on the
diagonal. The same applies for dose response data, where
the diagonal values describe the effect on gene expression
from one amount of the substance given to the next higher
amount of the substance (e.g. from amount 0 to 2 or from
amount 2 to 4 in Figure 2). The off-diagonal values of the
matrix describe the effect on the gene expression between
different amounts of the substance which are not consec-
utive. Using this additional information in Figure 2, it can
e.g. be seen that concerning dose 6, gene 1 and gene 2 show
a different behaviour. For gene 2, dose 6 has the same ef-
fect as giving dose 0, whereas for gene 1 there is clearly
an effect for this dose of the substance, although the trend
in both genes (the diagonal values) are the same. How this
information can be used for filtering clusters is explained
below. While the algorithm described in this paper is fo-
cused on such data with a natural order in the conditions, it
can easily be adapted to data sets where all positions of the
binned matrix are of equal importance.

Zeros in the binned matrix indicate that the gene did not
show any significant change in expression level between the
condition pair for this cell. This is normally due to the fact
that the gene is not part of the specific cell reaction under
investigation. Therefore, genes which exhibit a large num-
ber of zeros in the binned matrix should be excluded from
the investigation because they do not belong to the differ-
entially expressed genes for the investigated condition. A
certain number of zeros should be tolerated in the clusters
in contrast to the Ji and Tan algorithm [3], since even a gene
which shows a specific reaction under the investigated con-
ditions does not necessarily show it for each condition pair.
For example, this can happen due to the intrinsic noise of
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Figure 2. Dosage response of two genes

the gene expression data, which makes it difficult to decide
whether a gene is differentially expressed. The number of
accepted zeros in a cluster is a parameter of the clustering
algorithm which can be easily adopted by the user.

Considering all of the above, we define genes as being
coregulated in the following way:

Definition 1 (coregulated and negative coregulated genes)
Let S = {g1, g2, . . . , gi} be a set of genes, each represented
by a sequence of (m − 1) expression level change values.
The genes in S are (k, l)-coregulated if there exists a sub-
sequence of at least k ≤ (m − 1) consecutive components
common to all genes in S and this subsequence contains at
most l < k zeros.

Two genes g1 and g2 are negative coregulated if they are
coregulated after all values for g1 in the binned matrix have
been inverted. The value in the binned matrix are inverted
by changing each value 1 to -1 and vice versa.

Two points have to be noted about this definition. One
is that a coregulation relationship between two genes as de-
fined above is symmetrical contrary to the definition in [3].
Another important point is that the definition covers the fact
that a gene can be coregulated with different and even the
same genes under different experimental conditions. Con-
sequently, any clustering algorithm used to identify coreg-
ulated genes has to allow a gene to be assigned to several
clusters based on the different condition subsets.

With the above definition, we can now describe our al-
gorithm for finding all cluster of coregulated genes from a
microarray experiment. The algorithm consists of four main
steps: binning, preprocessing, clustering coregulated genes,
detecting inverse coregulations.

After the binning described in section 3.1, the resulting
matrix is subject to a pre-processing step. As discussed ear-
lier, there should not be too many cases for a gene in which
no change in expression behavior happens between condi-
tion transitions. Otherwise, the gene can not be assumed to
be part of the cell specific answer to the different conditions
tested in the experiment. For genes with are always up- or
downregulated, the same assumption holds for some cases
as well. Genes which react with an up- or downregulation
to each change of the conditions during the experiment do
not belong to the specific response tested in the microarray
and are therefore normally not interesting for the researcher
who is interested in this specific response to the conditions
applied. Therefore, we remove all genes whose expression
behavior always stays the same or is always up-regulated or
always down-regulated from the binned matrix and cluster
only the remaining genes. If the user is interested in these
genes as well, the preprocessing step can be omitted.

After the binning and preprocessing of the gene expres-
sion data, all clusters of coregulated genes are detected.
This is done in an iterative manner. As a first step for the
clustering, a gene is chosen and its entry removed from the
matrix. For this gene all possible subsequences which ful-
fill the clustering condition, i.e. have length k and contain
at most l zeros, are generated. For each one of those sub-
sequences a new cluster is created and all remaining genes
from the matrix which show this subsequences are assigned
to the respective cluster. After all subsequences have been
processed, a new gene from the matrix is chosen and the
process repeats.

As the next step of the clustering, the inverse coreg-
ulation relationships are detected. For all clusters found
in the previous step, the inverted coregulated clusters are
searched. One cluster is chosen and the associated subse-
quence is inverted. Coregulated clusters with a subsequence
equal to the inverted sequence are noted to be inverse coreg-
ulated.

Since the number of clusters found with the above ap-
proach is potentially very large, we propose a new structure
to visualize the clusters and the negative coregulation rela-
tionships between them. This structure is called the coreg-
ulation graph. This graph consists of nodes which each are
one of the clusters of coregulated genes found in the first
step of the clustering process. There exits an edge between
two nodes in the coregulation graph, if the cluster in the
adjacent nodes are in a negative coregulation relationship.
Presenting the clustering results as a coregulation graph al-
lows to quickly visually identify which groups of genes are
negative coregulated to each other.

Filtering Cluster. Displaying the clustering result as
a coregulation graph improves the readability significantly
and thereby eases interpretation of results. But still, the
number of clusters deduced from a large microarray exper-
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Figure 3. Binned expression profile of a gene
in triangular matrix form.

iment can be very large. To identify promising clusters for
further investigation, a ranking based on the quality of the
clusters would be needed. So far we have only used the val-
ues for changes between immediately adjacent conditions in
the microarray experiment for our clustering. While these
are the most important ones to describe the change of ex-
pression behavior of a gene under the different conditions of
the experiment, changes between not directly adjacent con-
ditions can provide additional insight. These values refine
the information about the details of the changes between the
values along the main diagonal as illustrated by the exam-
ple in Figure 3. In this example, the upregulation shown
on position C2 indicates that the downregulation in C3 is
smaller than the preceding upregulation in B2. Therefore,
genes agreeing on the values in positions B2, C2 and C3
can be seen as stronger coregulated than genes only agree-
ing on positions B2 and C3. We propose two measures to
be used for filtering the clustering result and reducing its
size to the most interesting structures. Both measures are
based on the number of values off the main diagonal which
also support the coregulation relationship among the cluster
members. Which off-diagonal elements have to be consid-
ered, depends on which elements on the diagonal are taken
into account to define the respective cluster.

As an example consider again the situation depicted in
Figure 3. If the diagonal elements A1, B2 and C3 establish
a coregulation relationship between the genes of a cluster,
the values in cells B1, C1 and C2 provide additional infor-
mation about the change of expression levels between the
conditions represented by the diagonal elements. Therefore,
we count the number of those additional elements on which
the genes in the cluster also agree. In the following, we
denote the the number of cells on the diagonal, which es-
tablish the coregulation relationship, with λ and the number
of corresponding cells off the diagonal on which the genes
of a cluster agree κ. We use the following two numbers to
filter and rank cluster:

• m1 = κ
κ+λ

• m2 = κ
ρ , with ρ the number of cells in a row of the

binned matrix.

Both measures are normalized allowing the user to
choose values applicable to a wide range of data sets. For

Figure 4. Part of the coregulation graph ob-
tained from the GEO data set.

both measures higher values indicate a stronger correlation
between the values of the genes in the cluster. While m1

favours stronger correlations of shorter subsequences, m2

gets largest for longer subsequences. Depending on the mi-
corarray experiment and the user intentions, one or the other
will be more favorable for limiting the size of the clustering
result and support the evaluation purposes. An example of
a coregulation graph is shown in Figure 4.

4 Experiments

The binning part of the algorithm was compared to the
binning of the Ji-Tan algorithm. We use a data set of 500
genes for which gene expression levels are measured un-
der 3 conditions. There are 20 replicates for condition 1
and 15 replicates for condition 2 and 3 in the data set. This
data set is part of the SAM plugin for Excel which can be
downloaded at http://www-stat.stanford.edu/
∼tibs/SAM/. To be able to compare the performance of
the binning with the Ji-Tan algorithm [3], we need to sum-
marise the replicates into a single observation per condition,
such as the mean value and use the input for the Ji-Tan al-
gorithm [3]. Using the mean values, we found 388 positive
and negative coregulated gene clusters taking a normalisa-
tion threshold of 0.3, a frequency threshold of 0 and a pre-
cision threshold of 0.8. Using our algorithm and allowing a
false discovery rate of 5%, we found 38 gene clusters which
are not at all a subset of the 388 clusters of Ji and Tan. This
is due to the fact that multiple gene expressions are sum-
marised into a single value, not taking into account the vari-
ability of the data. This might result in assuming a different
gene expression level while it is not differentially expressed
or in the assumption of no difference when the difference is



Figure 5. Part of the coregulation graph obtained from the GEO data set.

significant.

The clustering part of the algorithm is tested on 2
different data sets of Yeast cell cycle data which are
both parts of the Spellman data set [6]as well as a data
set from the GEO database http://www.ncbi.nlm.
nih.gov/geo/. As first data set, the 17 time points for
Yeast synchronised in the cell cycle by alpha-factor were
taken. This test set contains 6178 Yeast genes. As second
data set, a subset of this data of 2884 genes used by Ji and
Tan for their clustering algorithm was taken [3]. This data
can be downloaded at http://www.comp.nus.edu.
sg/∼jiliping/p1/Yeast%20Matrix.txt. Be-
cause this data does not contain replicates, it was binned
using the first phase of the Ji and Tan algorithm with a nor-
malisation threshold of 0.3. The third data set is freely avail-
able Gene expression data from the GEO database. The data
set downloaded here was the GDS1804 data set containing
16 microarray experiments with expression levels from E.
coli K12 cells at different time points after inducing an al-
ternative sigma factor (Sigma32) which plays a role in tran-
scriptional regulation during stress (heat shock). For this
data set, replicates for different time points are available so
that the new binning method could be used. Because there
are many genes where at least one condition in one of the
microarray experiments is a NULL value, these genes are
excluded leading to a data set with 3766 genes instead of
the original 6400 genes (including controls). The clusters
are interpreted biologically using textual description from
http://db.yeastgenome.org/ for yeast ORFs and
the E.coli K12 Genome Annotation from the EBI http:
//www.ebi.ac.uk/GOA/proteomes.html.

Our clustering algorithm finds 436 positive clusters for

the first Yeast test set containing 6178 genes matching a
subsequence of length 15 and allowing one position to be
zero within this subsequence. Because of the graph struc-
ture which facilitates the examination, interesting clusters
can be easily identified. Some examples for interesting clus-
ters found are given below. Closer examinations of the re-
sults are still work in progress.

We could identify an interesting cluster in the second
data set, i. e.the smaller Yeast data set with 2884 genes, con-
taining two genes involved in the linkage of transcriptional
regulation to RNA Polymerase II (Gene 432 (YCR081W)
and Gene 2870 (YPR168W)). Both genes are annotated
with the same GO-term (GO : 0016455) for biological
function and interact both with the same mediators (Med2
and SRB6). Using the larger first data set, meaningful clus-
ters were found as well. An example is a cluster with 4
genes where 3 encode for structural protein of ribosomes
are found (Gene 879 (YDL130W), Gene 2777 (YHR203C)
and Gene 4781 (YNL067W)). For the fourth gene, no infor-
mation in the used annotation was available.

Another very interesting relationship can be found in the
clustering obtained form the third data set from E. coli (cf.
Fig. 5). Gene 3025 has a very central role repressing many
other clusters. This gene is the arcA Gene, which is one
of the main regulators in the E. coli metabolism. The pro-
tein coded by this gene is a sensor for oxygen in the en-
vironment. It represses many genes involved in anaerobic
metabolism of E.coli. In cells, different metabolic pathways
are activated in the presence or absence of oxygen. This
gene is negatively co-regulated with gene number 3080,
which is a Lactat Dehydrogenase (ldhA). Lactat DH is used
under anaerobic conditions to gain energy from Pyruvate.



This enzyme is known to be repressed under aerobic condi-
tions. These examples show that our found clusters can be
interpreted biologically. Using the binning of the Ji-Tan al-
gorithm on this data set (normalisation threshold 0.3) leads
to different clusters. The central genes number 3025 and
3080 do not appear in our clusters using this binned matrix.

As Sigma32 was induced during the the experiment for
the third data set, we also looked for cluster containing at
least two genes that are known to be regulated by Sigma32.
The Sigma regulated genes were downloaded from the Reg-
ulon DB [5]. Using our binning on this dataset, we could
find clusters for 20 of these genes looking for 3 consecu-
tive matches on the diagonal and allowing at most 2 zeros
per match. We were able to identify 20 genes in 4 clusters.
The first cluster contained 9 Sigma32 regulated genes in 40
genes, a second smaller cluster contained 13 genes whereof
7 were Sigma32-regulated. In the last two clusters 3 out of
14 genes and 2 out of 4 genes share the property of being
Simga32 regulated. Due to the lack of reliable ground truth
information we could not determine statistical significance
measures for our clusterings. But the above ratios suggest
that the clusters found are indeed of high significance.

We also clustered the same data after binning it with the
method of Ji and Tan with thresholds 0.2 and 0.3. In nei-
ther case could any of the 29 above mentioned Sigma32-
regulated genes be clustered together. This underlines that
coregulated genes can be found using the combination of
our new binning and clustering technique were competing
methods fail.

5. Conclusion

Detecting coregulated genes is an important task in mi-
croarray data analysis. In this paper, we presented a new
approach to detecting coregulated genes in time-series mi-
croarray data, using clustering techniques. We proposed a
new approach to discretize expression data in order to detect
the changing tendency between conditions. We formalized
the notion of positive and negative coregulated genes and
presented an algorithm to find all such relationships among
the genes present on a microarray. Finally, we introduced
the concept of a coregulation graph to present the cluster-
ing results in a visual and human-readable from. In several
experiments, we showed that our approach produces bio-
logically meaningful results.

A more thorough investigation of the obtained clusters of
coregulated genes and their part in the regulatory network
of the respective organism remains for the future. Another
open question is how to integrate also time-shifted coregu-
lation patterns into our approach.
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