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ABSTRACT

In virtual, augmented and mixed reality applications, the posi-
tion and orientation of the participating people or objects is often
needed. In most cases this problem is solved by using expensive -
and not always that accurate - special-purpose hardware. We pro-
pose an alternative position and orientation tracking system that
only uses cheap off-the-shelf components like cameras and LED
ropes. The construction of the scene doesn’t require any off-line
calibration or absolute positioning, which makes it easy to build
and indefinitely scalable. There is also no restriction on the number
of cameras participating.
We will show that we can calculate the orientation independent
from the translation or position by using vanishing points of par-
allel lines. We also propose a new parameterization of the Hough
transformation to make the calculations of the line detector suffi-
ciently fast.
The proposed algorithms have been implemented and tested in a
virtual set-up. The first results from our tracker are promising and
can compete with many (expensive) commercial trackers. The con-
struction of a room-sized lab set-up is in progress.

Keywords: Wide-area tracking, vanishing points, optical tracking
system, computer vision.

Index Terms: I.4.1 [Computing Methodologies]: Digitization and
Image Capture—Camera calibration I.4.8 [Computing Methodolo-
gies]: Segmentation—Edge and feature detection I.4.8 [Computing
Methodologies]: Scene Analysis—Tracking

1 INTRODUCTION

A major step towards the immersive feeling in virtual reality is the
ability to walk through the virtual environment instead of pushing
buttons to move. This requires a wide-area tracking system. But
many commercial systems (acoustic, mechanic, magnetic,...) don’t
support this kind of scalability.
The optical tracking system HiBall [13] is designed for this task
and provides great speed and accuracy. The HiBall tracker uses a
special-purpose optical sensor and active infra-red LEDs. Their
use of specially designed hardware probably explains why the
system is so expensive.
Our main goal is to build an optical wide-area tracking system at
a low cost using only off-the-shelf components. We also don’t
expect the position of each LED to be known or calibrated, which
makes the construction of the set-up fast and easy. By using only
passive markers, we can support an indefinite number of cameras
to be tracked because there is no synchronization required between
them and each camera is a self-tracker [2]. It also makes it very
easy to expand the working volume indefinitely provided you have
sufficient ceiling space.
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This paper is organized as follows: Section 2 categorizes
other tracking systems and related work. Section 3 gives an
overview of the tracking system. In the next sections the major
steps of the system are explained in detail, namely the detection
of the LED ropes (§4), calculating orientation from vanishing
points (§5) and calculating position with known orientation (§5).
In section 7, we describe our implementation of the virtual set-up
and discuss the measured performance. Finally, in section 8 we
will discuss our tracking system and future directions to improve
the performance of our system.

2 RELATED WORK

Tracking of participating persons has been a fundamental problem
in virtual immersive reality from the very beginning [10]. In most
cases, special-purpose hardware trackers were developed with
usually a small (accurate) working area. Most trackers are used to
track the head of a person wearing a head mounted display (HMD)
to generate the virtual world from their point of view. Many
different technologies have been used to track HMDs: mechanical,
magnetic, acoustic, inertial, optical, ... and all kinds of hybrid
combinations.
The first HMD by Ivan Sutherland [10] used a mechanical linkage
to measure the head position. Mechanical trackers are very fast
and accurate, but suffer from a limited range because the user is
physically attached to a fixed point.
Magnetic-based systems on the other hand don’t have a physical
linkage with the magnetic source, in fact they don’t even need
a line-of-sight between its source and receiver. But they suffer
from a limited range (as do all source-receiver systems that use
only 1 source) and are not very scalable. Also metal or other
electromagnetic fields cause distortions in the pose measurements.
Thus not really ideal for our studio with a metal cage to attach
cameras.
Acoustic tracking systems use ultrasonic sounds to triangulate its
position. This system does require a line-of-sight between source
and receiver and also suffers from a limited range. The accuracy of
the system also depends on the ambient air conditions.
A relatively new system uses inertia to sense position and orienta-
tion changes by measuring acceleration and torque. This system
doesn’t require any source or markings in the environment and
therefore has an unlimited range. However this also means that
there is no absolute position given and the measured position
quickly drifts from the exact position. Inertial self-trackers are
often combined with vision systems (optical trackers) to counteract
the weak points of each other. An example of such a hybrid tracker
is the VIS-Tracker [6].
With the rapid rise of CPU speeds and advances in affordable
camera systems, computer vision based tracking systems can
operate in real-time. But the best vision based systems, like the
HiBall tracker [13], still are very expensive and require special
hardware. Optical systems need line-of-sight to detect feature
points in the world, but can have a great accuracy and update rate
with hardly any latency as shown by the commercially available
HiBall tracker.



More information about all these techniques can be found in
the course ”Tracking: Beyond 15 Minutes of Thought” by Gary
Bishop, Greg Welch and B. Danette Allen [1].

Our goal is to make a wide-area tracking system that allows
the user to walk around in a building. Most systems discussed
above only have a limited range and therefore aren’t really suited
for this task. Only the HiBall tracker was specially designed for
the same goal. In fact their set-up shows similarities in that way
that we also chose an inside-looking-out system with markers on
the ceiling.
The HiBall system uses a specially designed sensor with multiple
photo diodes that measures the position of each sequentially flashed
infra-red LED in the specially designed ceiling. The system uses
the 2D-3D correspondences of each LED to accurately estimate the
position and orientation of the HiBall as discussed by Wang [11]
and Ward [12]. The final version of the HiBall tracker uses a
single-constraint-at-a-time approach or SCAAT tracking [14].
We take a different approach to estimate rotation and position.
We calculate the orientation, separate from the position, from the
vanishing points of the constructed lines parallel to the X- and
Z-directions. Camera calibration from vanishing points isn’t a new
technique. Caprile [3] used vanishing points for off-line calibration
of a stereo pair of cameras. Cipolla [4] used a similar technique
to calibrate images of architectural scenes for reconstruction
purposes.

3 OVERVIEW TRACKING SYSTEM

3.1 The ceiling

In our test set-up, we have constructed a grid of LED ropes to iden-
tify the parallel lines in both the X and Z direction on the ceiling.
We consider the distance between LEDs in a rope known which is
needed for position tracking. This assumption is realistic because
the LEDs inside the ropes are placed with a machine at predeter-
mined distances with small deviances. Figure 1 shows a segmented
input image of our virtual test set-up.
The person or object that needs to be tracked will have a camera
placed on top of it pointing upwards. We will consider the intrinsic
parameters of the camera known. Those values are constant if we
assume that the camera does not have a variable zoom or focus.
We choose to use LED ropes instead of ordinary markers because
it makes the construction and detection in a real lab set-up eas-
ier. Choosing a LED rope saves a lot of time because we don’t
need to attach each LED separately and minimal extra wiring is
required. Mass production of LED ropes also reduces production
costs, which makes them relatively cheap. By using light sources
instead of markers, we can decrease the shutter time of our cameras.
This means we can have a higher camera frame rate, less back-
ground noise and motion blur in our images. This increases the
performance and robustness of our tracking system.

3.2 Overview Algorithm

Our tracking algorithm gets the images of the camera as input. The
extrinsic parameters will be estimated in the following steps:

• Detection of the LED ropes

• Calculating orientation from vanishing points

• Calculating position with known orientation

These steps will be explained in detail in the following sections.

Figure 1: Segmented input image of our virtual test set-up. The
lighter dot and line overlays indicate the detected markers and line
patterns respectively.

4 DETECTION OF THE LED ROPES

Our first task is the detection of our constructed grid in the input
image. We first segment the individual LEDs by evaluating the hue
value of each pixel. Then we use a simple ’flood fill’ algorithm to
cluster the pixels corresponding to a LED and retain only its center.
That way we speed up the line detection considerably and eliminate
a lot of random noise.
Secondly we will estimate LED image correspondences with the
previous frame. We use the temporal correlation between suc-
cessive frames and the image velocities in the previous frames to
make a fast estimate of the optical flow. These correspondences are
needed to determine the translation between frames, but we also use
them to speed up line detection. Because each LED corresponding
to a line in the previous frame, will most likely still be part of the
same line in the next frame.
Last step in the detection of the LED ropes is the line pattern recog-
nition in the collection of detected LEDs. A mature technique for
line pattern recognition is the patented Hough Transform [8].

4.1 Hough Transformation
In general the Hough transformation is a mapping of the input
points to a curve in a dual parameter space. The parameterization
of the pattern (in this case a line) determines the used parameter
space and the shape of the dual curves. The most common used
parameterization maps an input point (xi,yi) to a sinusoidal curve
in the ρθ -plane with equation:

xi cosθ + yi sinθ = ρ (1)

The geometrical interpretation of the parameters (θ ,ρ) is illustrated
in figure 2.
The Hough algorithm [7] attains its computational attractiveness
(O(N)) by subdividing the parameter space into so-called accumu-
lator cells (Figure 2). Each input point generates votes for every ac-
cumulator cell corresponding to its mapped sinusoid in parameter
space. Finally the accumulator cells with the highest amount of



Figure 2: Left: Geometrical interpretation of the (θ ,ρ) parameteriza-
tion of lines. Right: Subdividing the parameter space into accumula-
tor cells. (Image courtesy: [7])

votes (most intersections) represent the line patterns in the input
space.
Although the Hough algorithm has a linear time complexity, it
has a high constant cost of ’drawing’ and searching for ’high-
lights’. Therefore most Hough transformations cannot be per-
formed in real-time. Although we only have a small number of
input points, the high constant cost weighed heavily on the track-
ers speed. Therefore we propose an other line parameterization to
speed up the calculations with a relatively small amount of input
points.

4.2 Line parameterization with circles
To increase the speed and accuracy of the line detection, we propose
to calculate the intersections in the Hough parameter space analyt-
ical. But this isn’t trivial with sinusoidal curves (eq. 1). There-
fore we propose a new parameterization that maps each input point
(xi,yi) to a circle in the XY -plane with equation:
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with (Cx,Cy) a fixed point in the image, like (0,0). This means that
for every point (xi,yi) we will construct a circle with the midpoint
between (xi,yi) and (Cx,Cy) as center and radius equal to half the
distance between these two points. The geometrical interpretation
of this parameterization is shown in Figure 3.
The analytic intersection point of 2 circles is much easier to calcu-
late than with 2 sinusoids. Given 2 circles with centers C0 and C1
and radiuses r0 and r1 and the fixed point C, we can calculate the
second intersection point P (first intersection point is C) as follows:

P = (C0 +C1)+
r2

0 − r2
1

d2 (C1 −C0)−C

with d the distance between C0 and C1.
Noise and measurement errors cause the intersection points to
slightly vary their position. This means that we must define a dy-
namic error bin around possible intersection groups. The bins with
the most intersection points in it will represent the line patterns. By
choosing the initial position of the bins well, like the intersection
of two circles whose points were closest together or from previ-
ous frames, the algorithm has an average complexity of O(N2). In
applications with a small set of input points -like our tracker- our
Hough algorithm greatly outperforms the standard algorithm.

Figure 3: Geometrical interpretation of the circle parameterization of
lines. Each line L through input point (xi,yi) is characterized by a
point (x,y) ∈C

5 CALCULATING ORIENTATION FROM VANISHING POINTS

The lines detected in the previous step are the projections of the
constructed parallel lines. Therefore we know that each set of lines
corresponding to one axis (one color of LEDs) intersects in a sin-
gle point, the vanishing point. In our system we calculate the best
fit intersection point with the numerical algorithm suggested by
Collins [5].
The vanishing point corresponds with a point at infinity (intersec-
tion of parallel lines) and therefore is unaffected by translation.
This means that we can calculate the rotation independent from the
translation [3, 4]. We can see this clearly in the projection equation
of the vanishing point Vi = (ui,vi,wi), the projection of the point at
infinity Di = (xD,i,yD,i,zD,i,0) (direction of the parallel lines):
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with λi a scale factor, K the calibration matrix with the intrinsic pa-
rameters, R the rotation matrix and T the translation vector. Which
gives us:

λiK−1Vi = RDi (4)

The only unknown factor λi can be calculated using the fact that the
inverse of a rotation matrix is its transpose (so RT R = I) [9] and Di
is a normalized direction vector (so DT

i Di = 1):

λi = ± 1
|K−1Vi| (5)

By using the coordinates of the found vanishing points with their
corresponding directions (X-,Y-,Z-axis), the rotation matrix can be
calculated from Equation 4. Because of the uncertainties of the
sign of λi, the orientation is ambiguous but this can be solved by
looking at previous frames or adding an extra marker.
The calculation of the 9 unknowns of the 3x3 rotation matrix
seems to require 3 vanishing points. But knowing that the 3
rows of the matrix form an orthogonal base [9], we only need 2
correspondences and therefore only 2 axis must be visible at all
times (in our case the X- and Z-axis, the ceiling).



6 CALCULATING POSITION WITH KNOWN ORIENTATION

Given the rotation matrix and point correspondences between
frames, the direction of the translation can be recovered [3]. The
length of the translation is impossible to determine without a refer-
ence distance in the input image. In our system we choose to use
the known distances between neighboring LEDs.
Caprile [3] demonstrates that by using 2 image points (with camera
directions �D1 and �D2) and known length γ and orientation �D be-
tween the world coordinates of LEDs P1 and P2, we can calculate
the distances to both LEDs (α and β ) by triangulation (see Figure
4). Thus we have the following system of linear equations with
unknowns α and β :

γ�D = β �D2 −α �D1 (6)

Figure 4: Depth estimation (α,β ) of two adjacent LEDs P1 and P2 can
be done by a simple triangulation given the distance γ and spatial
orientation �D of the LEDs from construction.

We now know the distance to each visible LED, but we don’t expect
the world coordinates of each LED to be known. If we use the algo-
rithm proposed by Caprile [3], calculating the translation between
successive frames, the measuring errors quickly accumulate and a
lot of drift can be expected.
Instead we will estimate and remember the relative position of each
LED to the start position. If we assume that we start from posi-
tion P ((0,0,0) or an other user defined or calibrated position), we
calculate and remember the position of LED Li as follows:

Li = P+RT (λi�Di) (7)

with λi the depth of LED i (calculated by triangulation) and �Di
the corresponding camera direction of the image coordinates
(�Di = K−1(ui,vi,1)T ).
The positions of the LEDs are then located onto a grid at known
distances from each other. This step reduces position errors and
jitter because it enforces the relation of the LEDs to each other
and tries to average out the deviances from the grid model. All
positions are kept in memory until the corresponding LED isn’t
visible anymore.
Every visible LED that already has a relative position assigned
to it in a previous frame, can vote on the current camera position
by estimating P in Eq. 7 with Li the remembered position. A
median filter is than applied to the result to decrease the influence
of outliers. Because the translation isn’t calculated relative to the
previous frame but relative to the first time the LED was visible,
the drift and jitter of the system is greatly decreased.

7 RESULTS

The proposed algorithms have been implemented and tested in a
virtual set-up (see Figure 5). The virtual scene consists of a 8 by

Figure 5: Implementation of the virtual set-up. Left: viewpoint of the
user. Right: viewpoint of the tracker camera and input of the tracking
system.

10 meters room and about 2.5 meters in height. The ceiling of this
room consists of a 2D grid of markers (LEDs) in 2 colors: red LEDs
to indicate the lines parallel to the X-axis and green to indicate those
parallel to the Z-axis. The distance between 2 adjacent LEDs is 10
cm and the parallel lines are constructed 40 cm from each other.
A virtual test set-up has the advantage of knowing the exact position
and orientation of the user. We use this data to evaluate our tracking
system. The test consists of a path trough the virtual environment
while looking around. The run has been performed on a standard
home pc (2 GHz CPU, 1 GB RAM, NVidea Geforce4 Ti4400) and
consists of about 720 frames at a resolution of 500x500. The mea-
surements of the tracking system are not (yet) smoothed out, so no
delay (except processing time) has been introduced.
Figure 6 shows the results of the measured orientation compared to
the actual orientation. We immediately see that the yaw component
is more accurate than the pitch or roll. This makes sense because
yaw measures the rotation parallel to the ceiling. In Table 1 we even
see that the average error value of the yaw component is about 0.03
degrees. This kind of absolute accuracy is highly accurate, but even
the pitch and roll reach an accuracy of about 0.14 degrees. However
there are some outliers that are wrong by more than 1 degree.

Yaw Pitch Roll
Mean 0.0319 0.1322 0.1412
Max 1.1530 4.4951 4.1242

X Y Z
Mean 0.0377 0.0461 0.0202
Max 0.1428 0.1603 0.1409

Table 1: Average absolute error values of the orientation (yaw, pitch,
roll in degrees) and position (X, Y, Z in meters) tracking.

Due to the limited assumptions about the scene, position can not
be absolutely recovered unlike the orientation. The calculated po-
sition will be estimated relative to the start position and drift can
be expected if we move farther away. We can also see this in the
results of the position tracker as shown by Figure 7. There is no
real difference in the results of the X, Y and Z components. How-
ever one would expect the Y component (height) to experience less
drift (because of absolute depth estimation to plane), but less ac-
curate results because of the perpendicular triangulation. But this



Figure 6: Orientation tracking results. Top row: Measured rotation subdivided into its Yaw, Pitch and Roll components. Bottom row: Error value
of the measured orientation compared to the actual orientation.

Figure 7: Position tracking results. Top row: Measured position subdivided into its X, Y and Z components. Bottom row: Error value of the
measured position compared to the actual position.



Figure 8: Processing time required to process each frame of the
tracking system (in milliseconds).

isn’t clear in the absolute error values shown in Table 1. Each com-
ponent shows an absolute accuracy of about 3-4 cm and a drift that
in this short run could reach about 14 cm.
Finally we also need to take a look at the speed of our proposed
tracking system. In contrast to other vision tracking systems who
barely reach interactive speeds of 20-25 fps, our system only re-
quires on average 1.9379 milliseconds to process 1 frame. This
does not include the time needed to grab a frame from the camera.
Figure 8 also shows us that no more than 3.5 milliseconds was re-
quired to process any frame in this test run. The speed of the system
depends for the most part on the amount of pixels to process and the
number of LEDs visible in the image. If we assume that we get im-
ages from the camera at a rate of 30 fps and every frame takes no
more than 3.5 seconds to process, the CPU will be idle for more
than 90% of the time. That means that no dedicated tracking com-
puter is required and other ’more useful’ tasks can be done using
the estimated pose data.

8 CONCLUSION AND FUTURE WORK

In this paper we have proposed our low-cost wide-area optical
tracking system using regular cameras and LED ropes. Our pro-
posed real-time orientation tracking algorithm using vanishing
points has been shown to be very accurate and very fast. This could
be accomplished using a new parameterization of the Hough trans-
form for detecting line patterns.
The position tracking addition has been shown to work very fast
and with relative good accuracy. However more work is needed
to increase accuracy from centimeters to millimeters, so jitter seen
when inspecting an object at close range should be reduced signifi-
cantly. A possible approach to accomplish this is to use an iterative
algorithm.
We are currently working on a real room-sized lab set-up to test our
tracking system processing real camera images. An other issue we
will look into is the difficulty of detection separate LEDs if the dis-
tance to the LEDs becomes to large. A possible way to solve this
is to detect the line patterns directly from the detected pixels and
use the intersection of lines as feature points instead of the separate
LEDs. To solve certain ambiguities and occasionally correct the
relative position to an absolute position, extra LEDs or markings
could be introduced, for example a point of origin.
The first results from our tracking system are very promising for
a build-it-yourself wide-area tracker and can compete with many
expensive commercially available tracking systems on the market.
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