
DELIVERING MULTI-DEVICE SYNCHRONISED INTERACTIVE SERVICES IN A

BROADCASTING ENVIRONMENT THROUGH UIML DEPLOYMENT

P. Leroux, V. Verstraete, F. De Turck, P. Demeester K. Thys, K. Luyten

 Ghent University -IBBT Hasselt University - IBBT

Department of Information Technology Expertise Centre for Digital Media

 Gaston Crommenlaan 8 bus 201 Wetenschapspark 2

 9050 Gent, Belgium 3590 Diepenbeek, Belgium

 philip.leroux@intec.ugent.be kris.luyten@uhasselt.be

Abstract - As the variety in network service platforms and end

user devices grows rapidly, content providers must constantly

adapt their production system to support these new technologies. A

factor that highly complicates this process is the need for

interactivity. In the Multimedia Content Distribution Platform

(MCDP) Project, an architecture for deploying highly interactive

and synchronised television programs over a diverse collection of

broadcast networks and end user devices was developed. It

consists of a middleware platform with pluggable support for new

broadcast networks and end-user devices, whilst preserving

synchronised interactivity. In order to support a maximum of

functionality and use cases; downloadable applications are used to

provide the interactive services. As the user interface of such

applications may vary depending on the capabilities of the

different target devices, the MCDP middleware uses UIML for the

description of generic user interfaces: The MCDP middleware is

also used as the main platform for the delivery of synchronized,

interactive services in a IP Datacasting system combining DVB-H

and UMTS.

I. INTRODUCTION

Two trends are clearly visible for the current consumption

of digital information. On the one hand, the number and

diversity of digital services is rapidly increasing as

interactive services are added to the digital multimedia. On

the other hand, more and more telecommunication and

broadcast networks are being built up. These networks may

have very different characteristics (low vs. high bandwidth,

unidirectional vs. bidirectional, wireless vs. wired, reliable

vs. best-effort, etc.) This huge variety in available networks

and related business models has also led to significant

differences in end-user devices. These range from fixed

devices such as a high-end PC or set-top box to wireless,

portable or handheld devices. All these devices have very

different characteristics in terms of screen size, network

interface, user interaction model, etc.

This diversity exists nowadays and is expected to keep

growing in the forthcoming years. This has a great influence

on content providers. It will become more and more difficult

to continuously adapt their production system to the

increasingly complex world of heterogeneous digital

networks and the associated service platforms.

The MCDP project [1] has been defined to study the

possible architectures for a multimodal multimedia content

distribution system that can cope with this complexity today

and in the near future. One of the main questions is how to

preserve interactivity and the associated synchronisation,

defined once at the content provider and delivered to a

multitude of end-user devices over a variety of broadcast

networks.

Strongly related to our research are the standardisation

efforts in different domains. These standards are often

related to each other. In the MCDP platform, we make an

attempt to reuse the common strengths of certain standards.

Two important related standards are e.g. MHP and OCAP

[2]. A lot of the concepts behind these standards are

incorporated in MCDP. When it comes to generic user

interfaces, two approaches are common: model-based user

interface development (MBUID [3]) or High Level User

Interface Description Languages (HLUID) such as UIML

[4]. In the MCDP middleware solution, we focused on the

integration of a HLUID in order to describe a device

independent user interface.

Currently, in a new project, the MCDP middleware is

used as the main platform for the integration of

synchronized, interactive services into an IP Datacasting

system that combines a broadcast network (DVB-H) with a

bidirectional unicast network (UMTS). Strong focus is also

on the integration of new (mobile) application platforms

into the MCDP middleware architecture. A good example of

such an application platform is the embedded Rich Client

Platform (eRCP) [5].

The rest of the paper is organized as follows. In section 2,

we give an overview of the system architecture of MCDP.

Sections 3 and 4 present the use case that was chosen to

illustrate the operation of the MCDP platform, and the

evaluation architecture on which the interactive quiz was

deployed. In section 5, the results are presented. In section 6,

we will introduce how we are currently integrating the

MCDP middleware into a IP Datacast set-up. Finally,

section 7 states our conclusions and future work.

II. SYSTEM ARCHITECTURE

A. MCDP Server Architecture

The functional design of the MCDP server is presented in

figure 1. Content is ingested by the Content Provider in a

well-specified format. This content consists of four basic

parts:

� Multimedia - The video & audio content of the

television or radio program.

� App - An interactive application, possibly

synchronised with the television program.

� UIML - The user interface of the interactive

application, where every page is described with UIML.

� Metadata - The glue to bind these three elements

together.

Figure 1: The MCDP server architecture.
It is important to notice that the interactive services are

handled by application logic that has to be sent to, and

installed on the end user’s device. The main advantages of

using downloadable applications are the support of a

maximum of functionality and the unlimited and

middleware version independent number of use cases that

may be implemented. In this version of the MCDP

middleware, Java application logic is used.

The content that is ingested by the content provider, is

saved in a database, and retrieved when the Electronic

Programming Guide (EPG), generated by the content

provider or the service provider, indicates that the specified

television program is to be broadcasted. When this happens,

several other functional blocks come into play.

The Multimedia, Application and Event/Trigger

Conversion Modules convert the multimedia, applications,

events and triggers to a suitable format for the targeted

devices, thus providing the user-device independence of

both the multimedia content and the interactivity related

data. An Event is the description of a specific action that can

be executed by a downloaded application. A Trigger will

inform the application logic on the client device when a

specific event needs to be executed. There are two types of

triggers:

� Do-It-Now (DIN) Event Triggers, where the associated

event occurs immediately.

� Scheduled Event (SE) Triggers, these triggers contain a

clock value that indicates when the event has to occur.

They are sent in advance, and possibly more than once.

The Event & Timeline Generation Module handle the

synchronization and on-time delivery of events to the clients.

The Event/Trigger mechanism and the timeline generation

are discussed in more detail in section 2.D. Return Channel

Management collects and processes all the incoming return

data and finally the Network Module will send the

multimedia, the applications and the generated descriptors

over the network to the clients. These Network Modules
may support both unicast and broadcast scenarios.

B. MCDP Client Architecture

On the end-user device, a middleware framework should

be installed that can handle all the extra functionality that is

provided through the MCDP server middleware. The

implementation of the client middleware may vary based on

the terminal’s capabilities, however the general architecture

and functionality should be the same on all terminals.

As already mentioned, Java application logic is used to

provide the interactive services. This requires the dynamic

installing and management of Java software components on

a device, which is exactly where OSGI[6] comes into play.

Our client middleware layer is thus developed on top of the

OSGI framework, while using the provided functionality of

the OSGI framework in order to install and manage extra

Java application logic on the end user’s device. The client’s

middleware architecture is shown on Figure 2.

The initialization, starting, stopping and destroying of the

Applications is handled by the Application Manager. The

Event Manager provides the dynamic definition of events,

and the delegation to the correct Applications. The Return

Channel Manager provides an interface for the Applications

to the (IP) Unicast Return Channel module (if available).

The Display module renders the UIML pages on the screen

and the User Input module handles the user input. The

Timeline module is used in order to synchronize the

Scheduled Events with the broadcasted media content.

Finally, a Context Manager module is implemented to store

the current context (which channel is currently watched,

which applications are running, etc.).We will now discuss

the user-device interaction and the client-server

synchronised event triggering mechanism in more detail.

C. User-Device Interaction

The User Interface Markup Language (UIML [7]) is used

to support user-device interaction on a variety of devices

and platforms with a minimum of effort from the content or

application provider. UIML is a high-level XML-based user

interface description language that facilitates user interface

creation and portability.

Figure 2: The MCDP client architecture.

A UIML document consists of four distinctive parts that

allow to specify different aspects of the user interface

independently:

1. structure: defines the different parts of the user

interface and their hierarchical structure

2. style: describes properties of the parts defined in the

structure. These properties can be both device

specific properties (use device specific capabilities)

or generic properties (reusable for a range of

devices).

3. content: separates the content of the interface from

the other parts, e.g. to create language independent

user interfaces

4. behavior: defines a rule-based system with actions

that are triggered when a certain condition is met.
In order to generate the actual user interface, the UIML

document is linked to a vocabulary. This vocabulary defines

how generic user interface parts (button, label) are mapped

to widgets from a specific widget set (JButton, JLabel). This

mapping is done by a UIML renderer, described in section

4.

The main benefit of this approach is its flexibility: since

the user interface is not hard-coded on the device and the

application logic is invoked remotely, new consumer

devices that become available are easily integrated (e.g. new

types of mobile phones or set-top boxes). The content

provider can also update the user interface without requiring

the user to install software updates. This flexibility is

exactly what is required by the MCDP platform.

D. Synchronised Client-Server Interaction

In order to support full-fledged interactivity, the client

framework must be able to dynamically load and unload

applications, and to dynamically specify event types to

which these applications can react. This allows for the most

basic form of interactivity: DIN Event triggering.

An occurence of an event has to be triggered. In the DIN

case, such a trigger is generated once on the server, sent

over the network and processed by the client, resulting in

the event occurence. This is a best-effort system, but

provides no guarantee on the timely occurence of the event.

DIN triggering is sufficient for a wide range of services,

and is the degree of interactivity that quite a few interactive

television providers support. If, however, we want timely

and possibly frame-accurate occurence of events to be

guaranteed, we must go one step further, and relate the

triggers to a timeline that is linked with the multimedia

timeline. This can either be the multimedia timeline itself

(e.g. the System Time Clock or STC in MPEG-2) or a

derived timeline.

A derived timeline that is used in several widespread

specifications (e.g. MHP and OCAP) is the Normal Playing

Time (NPT). This notion is defined in the DSM-CC

extensions to MPEG-2 [8]. The NPT is based on the STC

but adds an extra level of abstraction. While the STC always

increments by 1, the NPT can be used to reflect pausing,

fast forwarding, rewinding and discontinuities in the

multimedia stream.

At the client side, the NPT timeline is built and

maintained based on NPT descriptors. In a non-broadcasting

environment, it is sufficient to provide a descriptor for every

change (e.g. resuming a paused NPT). In a broadcasting

environment however, it is not known when the user will

tune in on the channel, thus intermediate descriptors have to

be generated by the server. If not, an NPT will only be

started at the next change. The finer the granularity of the

intermediate descriptors, the sooner the user will be able to

enjoy the associated interactive services.

In order to add synchronised interactivity to the MCDP

platform, we have chosen to use the NPT, and to relate the

SE Triggers to this timeline. The Event & Timeline

Generation Module generates NPT descriptors, both

predefined and intermediate, and Scheduled Event Triggers.

These descriptors and triggers are then sent to the different

clients over the connected networks. It is important to note

that the choice to use the NPT standard is not limiting.

When support is needed for another synchronisation method,

the generated NPT descriptors can dynamically be

translated.

III. USE CASE

The final goal of the MCDP project is an interactive,

synchronised user experience over several devices and

networks. As a proof-of-concept for the MCDP platform we

selected a quiz application. In this quiz format, users are

able to participate in an existing television show (“Test the

nation”) using digital television or a mobile device which

allows the participants to test their I.Q. based on questions

asked by a quiz master.

In MCDP, this quiz application is reused and extended as

synchronisation of the questions with the televisions show is

added to the picture. When the quiz master asks a specific

question, a dynamic overlay interface (rendered at the user’s

device) is presented to all the viewers who want to

participate. Depending on the target device, this interface

may contain the possible answers, a repetition of the

question, extra related media,etc. The viewer can then

answer the questions by pressing on the correct

colour-button of their remote control or by selecting the

correct answer on the screen. Synchronised with the quiz

master giving away the correct answer, all the participants

receive an evaluation of their answer at the same time. Note

that only the correct answer has to be send to the end user’s

terminal, as the evaluation of the user’s answer is evaluated

by the interactive application logic that has been

downloaded to the end devices. The same application logic

also keep track of the user’s score and finally the return

channel is used in order to give the user feedback on how

well he performed in relation with the other participants.

During this use case, targeting two mutual very different

end user devices, all the necessary synchronisation

parameters had only to be defined once as the MCDP

middleware handled all the device dependencies..

Furthermore, the effort of generating different user

interfaces for all the supported end-user devices is reduced

by using a User Interface Description Language (UIDL).

These two extensions make the synchronised

define-once-play-everywhere scenario of MCDP possible.

IV. EVALUATION SETUP

In order to evaluate the MCDP platform, we plugged in

two very different types of clients (see figure 3):

� a set-top box (STB), connected through an IP multicast

network over Ethernet, and

� a mobile phone (GSM) with constrained resources,

more specifically a Nokia 6680 mobile phone.

Interaction with the MCDP server is established via an

IP unicast connection over UMTS.

On neither of these platforms, middleware software was

available that supports synchronised interactivity nor UIML.

Therefore, on the set-top box we developed an OSGi based

framework in Java that supports the NPT. We also

implemented a similar (but currently non-OSGi) framework

on the mobile phone using the J2ME technology, more

specifically the MIDP 2.0 Profile [9]. Concurrently, a device

independent UIML renderer was developed [10].

Combined with the device-specific widget sets, this

allows us to render UIML pages on both the set-top box and

the MIDP mobile phone. For both systems, we also

integrated an emulator in the evaluation architecture. This

allowed us to monitor device-specific influences. Finally, a

multimedia server is used to stream the A/V content to the

set-top box and its emulator. The synchronisation between

the MCDP server and the multimedia server is done by

means of the Network Time Protocol (NTP) [11] and a

common EPG.

Figure 4 shows how the quiz applications finally looked

on both the end-user devices. As you can see, the rendered

content is specifically adapted to the hardware parameters of

the end device (of which the screen size is definitely one of

the most important parameters).

Figure 3: MCDP evaluation setup.

UIML

Page

UIML

Page

Figure 4: The MCDP use case.

V. EVALUATION RESULTS

When deploying the interactive quiz on the evaluation

architecture, we measured two delays that have a big

influence on the synchronisation: DIN delay & Rendering

time. The results of these measurements are presented in

figure 5.

SE triggers are being sent in advance to the client devices,

resolved and added to the NPT timeline. When their trigger

point is reached, they can be delegated almost instantly to

the application. This is not the case for DIN triggers. When

generated at the server, they have to be sent over the

network, analysed and resolved. We can make an

abstraction of the network delay as the multimedia will (in

most cases) suffer the same network delay, but not of the

processing time. As our graph shows, this has a rather

limited influence that is device-dependent.

The rendering time is the amount of time it takes for the

UIML renderer to build and display a page on screen. We

have calculated this time span for all the quiz and result

UIML pages, and set out the mean value for the four types

of clients. As can be seen, rendering may take up to 1-2s,

especially on devices with limited resources. Another factor

that comes into play is the complexity of the UIML pages.

The pages on the set-top box and emulator contained a large

background image (see figure 4), which is why they took

longer to render compared to the mobile phone and its

emulator. 1-2 seconds compares to 25-50 frames (on a 50Hz

PAL system), so extensive measures (caching, rendering in

advance, etc.) will have to be taken in order to support

(nearly) frame-accurate interactivity.

VI. INTEGRTEGRATING THE MCDP MIDDLEWARE IN A IP

DATACAST ARCHITECTURE

The Digital Video Broadcast-Handheld (DVB-H)

standard [12] provides an efficient way of carrying

multimedia services over digital terrestrial broadcasting

networks to handheld terminals. IP Datacast (IPDC) over

DVB-H integrates DVB-H in a hybrid network structure

consisting of both a mobile communications network such

as GPRS or UMTS and an additional DVB-H downstream.

As the MCDP middleware was designed with network

and device independence in mind, it forms an ideal basis for

the integration of synchronised, interactive services in a

IPDC set-up. Only some IP Datacast specific issues have to

be taken care of. The most important issue to be resolved, is

related to the synchronisation mechanism.

Figure 5: Rendering and DIN delays.

As a standard IPDC protocol stack prescribes the

embedding of audio and video into Real-Time Transport

Protocol (RTP) [13] packets, a dynamic translation should

be made of the NPT descriptors to the RTP timestamp

values. This mapping [14] can be done by analyzing the

output (i.e. the RTP streams and the related RTCP Sender

Reports) of the encoders that are located in a typical IP

Datacast headend. Thus, the most important component that

should be added to the existing MCDP middleware

framework is a component that is able to analyze the output

of the DVB-H headend’s encoders in order to remap the

MCDP synchronization mechanism to the RTP timestamp

values of the multimedia content that is broadcasted over

DVB-H.

Besides the translation module, 2 new Network modules

should be developed. The first Network module is a typical

multicast module for popular interactive services that are

broadcasted via the DVB-H network. The second Network

module is a unicast module that is able to send (less popular)

interactive services to the same (IP Datacast) clients, but

this time over a UMTS connection. The client middleware

that has to be installed on a DVB-H terminal doesn’t differ

from the client middleware architecture that was introduced

in section 2.B.

We can conclude that the effort that is needed to add

synchronized interactivity to a new network or handheld

device has been greatly reduced thanks to the MCDP

middleware platform.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a middleware framework

system (as part of the MCDP platform) to facilitate

distribution of rich interactive multimedia content to a

variety of end-user devices using heterogeneous network

infrastructures, whilst preserving synchronisation between

the application and the associated multimedia. The

implementation of a proof-of-concept quiz application

illustrates the feasibility of this platform and allows to

evaluate the performace of the platform. In the near future,

research will be done on how to reduce this rendering time

(caching, pre-rendering, etc.) and adapt it to the

requirements of different applications.

Currently we have integrated the MCDP middleware

architecture into an IP Datacasting set-up. Only few

extensions to the existing MCDP middleware are made in

order to support this new set-up. As DVB-H is especially

targeting mobile devices, we also focus more on the client

middleware integration on mobile devices. As MIDP 2.0

currently does not have the right capabilities in order to add

new application logic to an already installed framework, we

focus now on new technologies such as the embedded Rich

Client Platform (eRCP).

eRCP has a Core Runtime that provides OSGi support, a

generic workbench which manages the launching and

display of eRCP applications and also provides eSWT, a

subset of the desktop Standard Widget Toolkit (SWT) API.

The MCDP middleware may be applied to such a new

platform when a mapping can be made of UIML

descriptions to eSWT graphical components and when an

eRCP bundle is used for the rendering of these eSWT

related UIML pages. The downloadable application logic

that is responsible for the interactive services are thus small

eRCP bundles that can easily be installed and managed on

the embedded target devices.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Siemens for the

definition of the MCDP and MADUF [15] projects, which

allowed us to do this research, and for their hardware

support. Part of the research at EDM and IBCN is funded by

EFRO (European Fund for Regional Development), the

Flemish Government, the Flemish Interdisciplinary institute

for Broadband technology (IBBT) and the industrial

partners in MCDP (VRT, Siemens, Belgacom) and MADUF

(VRT, Siemens, Belgacom, Telenet, Option).

REFERENCES

[1] MCDP, Multimedia Content Distribution Platform,

“http://projects.ibbt.be/mcdp/”, 2007.

[2] J. Piesing. The DVB Multimedia Home platform (MHP)

and Related Specifications. Proceedings of the IEEE,

94(1), 2007.

[3] F.Paterno, C.Santoro. A Unified Method for Designing

Interactive Systems Adaptable to Mobile and Stationary

Platforms. Interacting with Computers, 15(3), 2003.

[4] M. Abrams and J. Helms. User Interface Markup

Language (UIML) Specification version 3.1. Technical

report, Oasis UIML TC, 2004.

[5] eRCP, embedded Rich Client Platform,

“http://www.eclipse.org/ercp/”, 2007.

[6] OSGi, ”http://osgi.org/”, 2007.

[7] M. Abrams and J. Helms. User Interface Markup

Language (UIML) Specification version 3.1. Technical

report, Oasis UIML TC, 2004.

[8] ISO/IEC 13818-6 Internat. Standard. Generic Coding of

Moving Pictures and Associated Audio: Digital Storage

Media Command and Control. Technical report, 1996.

[9] MIDP 2.0, JSR-118 Mobile Information Device Profile

2.0, “http://jcp.org/en/jsr/detail?id=272“, 2007.

[10] K. Luyten, K. Thys, J. Vermeulen and K. Coninx. A

Generic Approach for Multi-Device User Interface

Rendering with UIML. Computer-Aided Design of

UserInterfaces, 2006.

[11] Network time protocol (version 3) specification,

implementation and analysis,” 1992, RFC 1305. ETSI

EN 302 304 V1.1.1,

[12] Digital Video Broadcasting (DVB), Transmission

System for Handheld Terminals (DVB-H) ,2004-11.

[13] IETF RFC 3550: RTP, A Transport Protocol for

Real-Time Applications, July 2003.

[14] P. Leroux, V. Verstraete, F. De Turck and P.

Demeester,”Synchronized Interactive Services for

Mobile Devices over IPDC/DVB-H and UMTS”, Proc.

IEEE Broadband Convergence Networks,

Munchen,2007

[15] MADUF, Maximizing DVB Usage in Flanders,

“http://projects.ibbt.be/maduf/”, 2007.

