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PROPERTIES OF TOPOLOGIES OF 

INFORMATION RETRIEVAL SYSTEMS 

ABSTRACT 

This paper studies topological properties of different topologies that are 

possible on the space of documents as they are induced by queries in a query space 
together with a similarity function between queries and documents. The main 

topologies studied here are the retrieval topology (introduced by Everett and Cater) 
and the similarity topology [introduced by Egghe and Rousseau). 

The studied properties are the separation properties To, TI and T2 (Hausdorff), 
proximity, and connectedness. Full characterizations are given for the diverse 

topologies to be To, TI or T2. It is shown that the retrieval topology is not necessarily 

a proximity space while the similarity topology and the pseudo-metric topology 
always are proximity spaces. A characterization of connectedness in terms of the 
Boolean NOT-operator is given, hereby showing the intimate relationship between IR 
and topology. 



is defined through its set of retrievals 

ret OR AND Qij [ [ 1) 

It can be shown (Egghe and Rousseau (1996b)) that (8) represents a general Boolean 
query and that the sets in (9) for all Qij E QS (m,n E N) form the topology z on DS 
when DS is finite. The same can be said for T" now using the sets U(Q,r1,r2). 

This shows the intimate relationship between (Boolean) IR and topology on 
DS. 

In the sequel we will show that also the Boolean NOT-operator plays an 
important role in the topological properties of DS. 

This is what this paper is all about : showing some topological properties of 
the spaces (DS,z], (DS,tW) and (DS,zl], if possible by using IR-properties or even 
characterise topological properties via IR-properties. 

The next section deals with the separation properties To, TI and T2 of the 
topologies z, z" and t'. We give a characterization of To for z and of To, TI, T2 for z" 
and r' in terms of the IR-property introduced above : the separation of the points of 
DS by the similarity functions sim (.,Q), Q E QS. 

The third section deals with the question : which spaces (DS,z), (DS,zW), (DS,zl) 
are proximity spaces? This are spaces where there is a notion of "closeness", important 
in IR. We will show that T" and T' are fine enough to be proximity spaces but that z 

is not, in general. 

The paper closes with the study of connectivity of the topologies z, z" and z'. 

A characterization of connectivity in terms of the availability of the NOT operator in 
QS (i.e. NOTQ E QS if Q QS) is given. This is another example of a topological 
characterization of certain IR-properties (or tools). 



I. CHARACTERIZATION OF THE SEPARATION PROPERTIES To, TI AND T2 
FOR THE TOPOLOGIES T, f, T' ON DS 

Recall (see e.g. Wilansky [1970) or Egghe and Rousseau (1996b)) that a 
topological space (X,z) is called a To-space if, whenever x,y E X, x * y, there exists a 
neighborhood of x or of y not containing the other point. It is called a TI-space if 
there exist neigborhoods of x and of y not containing the other point. Finally it is 

called a T2-space (or a Hausdorff space) if, whenever x,y E X, x * y, there is a 
neighborhood U of x and a neighborhood V of y such that U n V = 4. Obviously 
T2 =, T1 * To but not conversely. In fact this will also be seen in this paper. For 
x E X let us denote V,(x) (or simply V(x) if no confusion can arise) the set of 
neighborhoods of x in the topological space (X, t ) .  We will now investigate IDS,%), 
(DS,r") and (DS,t1] w.r.t. these separation properties. 

The stronger the separation property a space has the finer are the possibilities 
of retrieval since one can make better distinction between documents. Indeed, in the 
above definitions of the separation properties To, T1 and T2 one can equally work 
with open sets (i.e. sets in the topology) as a substitute for the neighborhoods of the 
points. Now, as proved in Egghe and Rousseau (1996b) and repeated in the 
introduction, these sets represent general Boolean queries in the sense that any 
Boolean query is represented (through its retrievals) by open sets and that any open 
set is a retrieval of a certain Boolean query. Hence in case some separation property 
(To, T1 or even stronger : T2) is available there exist (Boolean) techniques to limit the 
search to certain documents; i.e. finer searches are possible. 

We start with the easiest results 

Theorem 1.1 : 

Let [DS, QS, sim) be any IR-model. For the similarity topology t" the following 
properties are equivalent : 
( i )  t" is To 
[ii) t" is T1 
(iii) T" is T, 

[iv) The retrieval model separates the points of DS. 

The proof is given in Appendix A. The same result is true for t'. Also this proof can 
be checked in Appendix A. 



Theorem 1.2 : 

Let IDS, QS, sim) be any IR-model. For the pseudometric topology t' the following 
properties are equivalent 
(i) t' is To 
(ii) z' is T1 
(iii) t' is T2 

(iv) t' is a metric topology 

(v) The retrieval model separates the points of DS. 

The analogous result for t (the retrieval topology) is not true. In fact only the 
following result is true : 

Theorem 1.3 : 
Let (DS, QS, sim) be any IR-model. For the retrieval topology t, the following 
properties are equivalent : 
(i) t is To 

(ii) The retrieval model separates the points of DS. 

The less trivial proof can also be checked in Appedix A. The TI analogue of theorem 

1.3 is as follows : 

Theorem 1.4 : 

Let (DS, QS, sim) be any IR-model. For t the following properties are equivalent : 
(i) (DS,z) is TI 

(ii) For every D1,D2 E DS, Dl f D2 there exist Q,Q' E QS such that 

sim(D2,Q) > sim(D1,Q) 
sim(D2,Q1) < sim(D1,Qf). 

The proof is very similar to the one of theorem 1.3 ad hence is omitted. 

Note in case DS = QS 

Although it is not necessary for the above to have that DS = QS it is an 
important and interesting case in practice! If this is so then (b) * (a) * (ii) in theorem 
1.3 



Furthermore (ii) of theorem 1.4 is satisfied if 

for every D1,D2 E DS, Dl t D2 
We leave the easy proofs to the reader. 

Note in case DS is finite : 
Note that if DS is finite and T1 (for any topology) then this topology is discrete i.e. 
B(DS). This follows from the fact that every singleton is closed. 

It is already clear from theorems 1.1, 1.2, 1.3 and 1.4 that the retrieval topology 
z plays a special role in the sense that for t the separation properties To, T1 and T2 

seem to be different (in contrast to the cases of t" and z'). We now present concrete 
evidence for this. In Egghe and Rousseau (1996b) we gave already examples of spaces 
(DS, z) that are To but not TI. Hence (because of the above results) z t t" also. Now 
t can be TI without being equal to z" as the next example shows. 

Example 1.5 : 
There exists an IR-model (DS, QS, sim) such that (DS, t) is T1 and not T2. Hence also 
T t z". 

Proof : 
Note that our example must be one for which DS is infinite since otherwise (DS, t) 
will be a finite TI-space, hence discrete (z = B(DS)) and hence z = z" = z' (and T2). 
Take DS = QS = N. For all, p,n E N, define 

One has that Vn E DS 

DS \ {n) = R(n,l) E r 

since sim(n,p) 1 1 and sim(n,p) = 1 o n = p. Hence (DS, t) is TI. By theorem L 3  we 
hence know that the IR-model (DS, QS, sim) separates the points of DS. Hence 
(theorem Ll), (DS, 7") is T2. But z is not T2 because Vn,nr E DS, n t n', VU E V,(n), 
VV E VJn'), 3a E N such that 



Indeed Vn,n' E DS, Vr,rl > 0 : 

R(n,r) fl ~(n' ,r?  

3 ]max(nr,n'r?, +-[ fl N . 

Hence t # t". 0 

Notes : 
1. If we take sim(n,p) = n/p then t is To and not TI (but in Egghe and Rousseau 

(1996b) we had already such an example). 
2. .t can even be T2 and still t t z". We can only show this in the next section 

(example 11.3). 

Interpretation of the separation properties To, TI, TZ in terms of Boolean queries 

Let us focus on t" and T2. If (DS,tN) is T2, i.e. when the retrieval model 
separates the points of DS (theorem 1.1) then we have that, whenever D1,D2 E DS, 
Dl * D2 there exist U,V E TI' such that Dl E U and D2 E V and such that U n V = I$. 

Since the sets in 

form a basis for T" it follows that (cf. Willard (1970), p.38, 5.1) (equivalently) there 
exist Q1 ,..., Q,,Q; ,..., Q& E QS, rf) < rg), r;(j) < r;(j) such that 

and such that 

By definition this is equivalent with the property that different documents imply the 
existence of two disjoint retrievals of Boolean AND queries such that each document 



belongs to one of these retrievals. This shows the degree of "fine-tuning" (as far as 
retrieval is concerned) that is possible in such spaces. 

Let us give another example : the TI-property in (DS,t). First of all, the 
definition of TI gives : b'D1,D2 E DS, Dl # D2, 3U,V E T such that Dl E U, D2 U, 
Dl e V, D2 E V. Since the sets in 

form a basis for t it follows that any of these documents can be excluded from a 
retrieval of a Boolean AND query that contains the other document : 3Q1, ..., Q, E QS, 
3rl ,..., r, E R such that (e.g. for Dl) 

and 

One can also look at TI in the following way : the TI-property (of any 
topology) is equivalent with : every singleton is closed (cf. Willard (1970)). If DS is 
finite then any subset of DS is open for this topology (T or T" = z'). Hence, by 
definition of t (analogously for r" = T'), and by Egghe and Rousseau (1996b) - see also 
the argument around f*mula (9) -, any subset of DS has the form 

HereQij E QS,r.. E R , i  = 1 ,..., nh j = 1 ,..., m. 
'1 

We have proved the following result : 

Theorem 1.6 : 

Let (DS,z) or (DS,rM) be a TI-space and let DS be finite. Then any subset of DS can be 
retrieved by using a Boolean query. 

Similar, equivalent, interpretations can be given for the other separation 
properties in conjunction with r, T" or T'. 



We present now some examples to illustrate To, TI and T2 in IR-models. 
For more information on these examples, see Egghe and Rousseau (1996b). 

Examples 1.7 

1.7.1. The vector space model of Egghe and Rousseau (199613) 

This example is as follows : DS = QS = In (I = [O , l ] ) ,  sim (D,Q) = <D,Q>, VD 
E DS, VQ E QS, where <D,Q> denotes the inproduct between the vectors D and Q. 
In Egghe and Rousseau (1996b), it was shown that t + t" = t' = 8: the Euclidean 
topology. It is clear that <.,.> separates the points of DS and hence t is To (and, of 
course, t' = z" is T2). t is not TI (Egghe and Rousseau (1996b)). 

1.7.2. The vector space model of Everett and Cater (1992) 

Here we have DS = QS = In \ (0) and QS* = DS* = DS/R, the quotient space 
w.r.t. the relation Dl X D2 iff Dl and D2 are situated on the same half line through 
0. For both DS and DS* one uses 

the cosinus of the angle between the vectors D,Q E DS (or the half lines D*,Q* E DS*). 
We have that t = t" = z' on DS as well as on DS*. Hoever, points are separated in DS* 
but not in DS, so that DS* is T2 but DS is not even TO for any of the topologies t = t" 
= z'. 

gives z = 7" = t' = 8(DS), the discrete topology. Hence they are T2. The same is true 
for the next two examples : 



DS = QS : any sets 

= 0 ,  D t Q  

1.7.6. An example of a space (DS,t) that is not To 
Take 

and define 

So the model does not separate the documents a and d. Hence (DS,t) is not Tg. 
In fact 

and VU E V(a), VV V(d) : 

These results show the real difference between the topologies t, t" and t'. 
Especially t is shown to be the "rougher" one. Not only is it the coarsest topology of 
the three, it is& To under the reasonable condition that the IR-model separates the 
points. Under this condition, T" as well as t' are even T2. This shows a big difference 
from the IR-point of view, a difference which is not revealed by just showing that the 

inclusions T c T" c T' can be strict. 



The condition that the IR-model separates the points is "even more than 
reasonable". Indeed, if it is not the case, the different documents for which all 
sim(.,Q)-values (Q E QS) are equal, are not distinghuisable from the IR-point of view. 
Hence an equivalence relation (and subsequent quotient space) can be defined so that 
the new "points" are indeed separated now and the documents in the equivalence 
classes are considered as the same. In these cases, t" and z' are always T2 but t is not. 
This shows the low separation capacity of t for documents of DS. 

11. PROXIMITY ASPECTS OF (DS,z), (DS,%") AND (DS,tf) 

Pseudo-metric spaces such as (DS,tl) bear in their proper definition the notion 
of proximity, by using the pseudo-metric (in the connection of (DS,tl) we will always 
work with d' of formula (5) although other formulae are possible). 

A proximity 63 is defined between two subsets A,B of a set X and satisfies (by 
definition] the following properties [cf. Willard (1970)) : 

( P l ) A @ B G B @ A  

(P2) (x) 63 (XI, 'dx x 
( P 3 ) A @ ( B u C ) o A @ B v A @ C  

(P4) 4 6 x 
(P5) A 6 B * 3P,Q c X, P n Q = 4 such that A 6 PC and B 6 Qc. 

Here 6 means the negation of @ and PC the X-complement X \ P. 

@ defines the notion "to be near to each other" (or not, via 6 ) .  (X, 63) is called 

a proximity space. Every pseudo-metric space (X,d) is a proximity space as follows : 
define, for A,B c X, A @ B iff d(A,B) = 0. Here d(A,B) is defined as 

From the above definitions it is clear that proximity is a desirable property to 
have for an IR-model. Of course, (pseudo-)metrizability is even better since then one 
can really measure distances between (sets of) documents. However this cannot 
always be accomplished. As we will see in this section, (DS,r) and (DS,tW) are not 
always metrizable if the number of elementary requests (i.e. the cardinality of QS) is 
too high. In these cases the notion of proximity is usefull and it is worth investigating 
what spaces (DS,t], (DS,tW) or (DS,zl) are proximity spaces. 



Of course, since r' is pseudo-metrizable it is always a proximity space. What 
about T and T"? 

We firstly recall a few notions that are needed in the sequel. 

Definition 11.1 : 
A topological space (X,z) is called completely regular if for every closed F c X and 
x E X \ F, there is a t-continuous function f : X + [0,1] such that f(x) = 0 and 
f(F) = (1). It is called regular if, whenever F c X is closed and x E X \ F, there are U,V 
E t ,  U V = + such that x E U and F c V. Of course complete regularity implies 
regularity [use U = f-I ([0,1/2[) and V = f-' (]1/2,1]) in the definition of complete 
regularity). Define a T3-space to be a regular To-space and a T3 1,2-space to be a 
completely regular To-space. We have that T3 * T3 3 T2 obviously and it can be 
shown that the topological spaces that are proximity spaces are precisely the 
completely regular spaces. 

Note : 

The notation T3 is a "joke" of topologists to denote a separation property that is 
logical situated between T3 (introduced here) and T4 (not introduced here). Some 
authors even use T, instead of T3 (see Csbzkr (1978), p.167). 

The above definiti on gives another argument for the fact that finer searches 
are possible in proximity spaces. 

We have the following result. 

Theorem 11.2 : 
Let the IR-system (DS,QS,sim) be such that the points of DS are separated (see the 
introductory section). Then 

(i) (DS,t") is a proximity space 
(ii) (DS,r) is not always a proximity space. 

The proof is given in Appendix B. An example showing that [DS,t) is not always a 
proximity space (even when the points of DS are separated) is given by Egghe and 
Rousseau (1996b) (see also example 1.7.1 here). 

Note : From the proof of theorem II.2(i) it is clear that [DS,?'), although it is a 
proximity space, it is not always pseudo-metrizable. Indeed, it is a subspace of 
n RQ (RQ = R, VQ E QS) and the latter one is only (pseudo-Imetrizable if the 

QEQS 



cardinality of QS is less than or equal to that of N. This is certainly not the case in the 
example given : here QS = In which has the cardinality of the continuum. It would be 
good to have a characterization of the (pseudo-)metrizability of (DS,zV) (and also of 

(DS,t)). 

A new example of a (DS, t) that is not a proximity space now follows. This 
example, however, is also an example of a retrieval topology t that is T2, not T3 and 
T t T". 

Example 11.3 : 

There exists an IR-model (DS, QS, sim) such that (DS, z) is T2 and not T3. Hence z t 
T" in this case. 

Proof : (Based on Willard (1970), p.92). 
Take DS = QS = R'. Vn E N, define 

b'p E Rt and l / p  e N : 

sim@,p? = 
1 

1 + I P  - P ' I  
One readily verifies that Vr < 1 

and Vp E Rt \ {0), Vr < 1 : 

Based on Willard (1970), p.92 (14.2) we see that (DS, t) is a T2-space but not a T3- 
space (0 and the closed set (l/nlln E N) cannot be separated). Since t is T2, hence To, 
we have by theorem 1.3 that the IR-model separates the points of DS. Hence by 
theorems 1.1 and 11.2, t" is a To proximity space, hence it is T3 and hence T3. So 
t t d'. 0 



111. CONNECTIVITY OF THE SPACES (DS,t), (DS,zN), (DS,zl) AND ITS RELATI- 
ON TO THE BOOLEAN NOT-OPERATOR 

In this last section we deal with the topological notion of connectivity of the 
different topologies on DS. A topological space is said to be connected if it is not 
disconnected. A topological space (X,t) is said to be disconnected if there exist 
U,V E z such that 4 # U, 4 # V, U n V = 4 and U u V = X. 

The study of (dis]connectedness in the topological spaces (DS,z], (DS,zW) and 
(DS,zl) has its relevance to IR in the following way : disconnected parts of DS divide 
the document space in "predefined" subsets that will mark a separation in the retrieval 
results : most commonly if documents of one part are retrieved, the ones of the other 
parts are not (using the same type of query). It is, therefore, not so surprising 
(intuitively) that the Boolean NOT-operator is involved here. As introduced in Egghe 
and Rousseau (1996b) and repeated in the introduction, the general Boolean query 

was defined through its set of retrievals (e.g. in r - one can define it also in t") 

ret [ OR [ AND , Qij )) = {jl [j, YQA+~ .I . 
In the same way we will now define the Boolean operator NOT. Note that [14) 

does not necessarily belong to QS. The same remark will go for NOT. 

11.1. The Boolean NOT-operator and first topological properties 

Let (DS, QS, sim) be any IR-system. Let Q E QS be any elementary query. 
Then we define NOT Q as a query (not necessarily belonging to QS) defined by the 
set of retrievals (for z) : 

ret (NOTQ = (R c(Q,r)llr E W} (16) 

(RC(Q,r) = DS \ R(Q,r), the complement of R(Q,r)). 
Only in case there exists a query Q' E QS such that 



we can identify Q' and NOTQ and hence we can then consider NOTQ E DS. 

Example : 

QS1 = (cat, dog, shoe, horse) 
QS2 = (cat, dog, honest, dishonest) 

We have Q E QS1 3 NOTQ e QS1. For Q = "honest" E QS2 we have that NOTQ E 

QS? 

Note : 
(1) (17) does not imply that R(Q1,r) = RC(Q,r) 
(2) By using U(Q,rl,r2) instead of R(Q,r) we can define NOTQ w.r.t. z'. To be exact we 

should have indicated in the notation of NOTQ with which topology we are 
working. We did not do so, however, since it will be clear from the context and 
for the sake of simplicity. 

Let Q E QS. Let us call Q trivial (w.r.t. .t) if 

The same definition is possible w.r.t. t" : we call Q E QS trivial w.r.t. z" if 

Both notions, however, are equivalent as the next proposition shows. 

Proposition 111.1.1 : 

Let (DS, QS, sim) be any IR-model and Q E QS arbitrary. Then Q is trivial w.r.t. .t iff 
it is trivial w.r.t. t". 

For the proof we refer the reader to appendix C. 
From now on we simply call Q trivial without referring to t or z". Note that the 
notion of NOTQ depends on z or z" as is clear from the next proposition (for z) and 
counterexample (for z"). 

Proposition 111.1.2 : 
Is Q E QS is non trivial, then Q t NOTQ (w.r.t. z). 

Proof : 
Suppose Q = NOTQ. Then 



18. 

Let then R(Q,ro) be such that R(Q,ro) + $, R(Q,ro) t DS. Hence D,E E DS exist such 
that D E R(Q,rO), E (E R(Q,rO). SO 

sim @,Q) > r, 2, sim (E,Q) . (20) 

By the above equality there is a rl E R such that D E Rc(Q,rl), E (E RC(Q,rl). 
Hence D (E R(Q,rl) and E E R(Q,rl). SO 

(20) contradicts (21). 0 

Counterexample 111.1.3 : 

The above proposition is not true for T". 
Indeed : take DS = (a,b), QS = (c), sim (a,c) = 1/4, sim (b,c) = 1/2. Hence 

Hence c is not trivial and by the above 

showing that c = NOTc (w.r.t. t"). 

Corollary 111.1.4 : 

There exist Q E QS such that NOTQ (w.r.t. t) # NOTQ (w.r.t. 7"). 

This cannot lead to any confusion since we will make it very clear whether 

we are working in a "threshold" environment (t) or a "close match" environment (7"). 

Proposition 111.1.5 : 
If QS = (Q) with Q non trivial (w.r.t. 7). Then (DS,T) is connected 

Proof : 

For any open sets U,V E t, U,V f $, 3n E N, 3Qi E QS, 3ri E R, i = 1 ,..., n such that 

grn E N, 3Q'. E QS, 3rrj E R, j = 1 ,..., m such that 
1 



Since all Qi, Qfj = Q we have, if r i  = , max ri, r'i = max 
1=1, ..., n j = l ,  ..., n 

Let r = max (ri,r';). Then 

+ # R(Q,r) c U n V . 

So (DS,%) cannot be disconnected. 0 

We will give an example in the sequel (see 111.2.3) showing that (DS,z) can be 
disconnected as soon as QS has two non trivial elements. 

Proposition 111.1.5 is not valid for z" : take DS = (a,b,c,d), QS = (e), sim(a,e) = 
sim(d,e) = 1/2, sim(b,e) = 1, sim (c,e) = 0. Then e is non trivial w.r.t. z" (this is clear) 
and 

So (DS,zN) is disconnected (by (b) and {a,c,d)). This is also an example of a space such 
that (DS,t) is connected, but (DS,z") is not. 

For general IR-models (DS, QS, sim) we can ask the question : when is (DS,t) 
or (DS,T"] disconnected? This will be studied in the next subsection, where the NOT- 
operator will be the key element. 

111.2. Characterization of connectivity using the NOT-operator 

The next proposition shows that, with our notion of the NOT-operator, we are 
heading in the right direction when we want to characterise connectivity. 

Proposition III.2.1 : 
Let (DS, QS, sim) be any IR-model. If Q QS is a non trivial query such that (w.r.t. 
T) NOTQ E QS, then (DS,.t) is disconnected. 



Proof : 
SO Q E QS is such that 

Hence 

Since NOTQ E DS, there exist rl,r2 E R such that 

Hence (R(Q,rl), R(NOTQ,r2)) forms a non trivial w p e n  disconnection of DS. Hence 

(DS,t) is disconnected. 0 

The same result is true for t" 

Proposition 111.2.2 : 

Let (DS, QS, sim) be any IR-model. If Q E QS is a non trivial query such that [w.r.t. 
t") NOTQ E QS, then (DS,zW) is disconnected. 
The proof is similar to that of proposition 111.2.1. These results do not constitute a 
characterization of (dis)connectivity since the converses of the above theorems are not 
true, as the next example shows. 

Counterexample 111.2.3 : 

Let DS = (a,b,c,d), QS = (e,f) and 



Then 

It is hence clear that NOTQ e QS for Q E QS for t as well as t", yet t and t" are 
disconnected : .t by ((a,b,d), (c)) and t" by the same set and also by ((a,c,d), (b)) and 

even by ((ad), (b,c)). 
Incidentally this example also shows, as promised, that (DS,t) can be disconnected as 
soon as QS has more than one element. 
Note also the fact that t" is "much more" disconnected than t, a logical fact. In this 
context it is interesting to look at the connected components of the spaces [DS,z) and 
(DS,tM). This are the maximally connected subsets of DS (for t resp. t") (see e.g. 
Willard (19701, p.194). (DS,t) has only two components : DS = (a,b,d) b {c) (b denotes 
disjoint union) for t and three for t" : DS = (b) u (c) b (a,d). 

The next theorem yields a characterization of connectivity in terms of the 
NOT-operator. 

Theorem 111.2.4 : 
Let (DS, QS, sim) be any IR-model. For (DS, t) ,  the following assertions are 
equivalent : 
[i) (DS,t) is disconnected 

(ii) There exist arrays (Qij), (Q'&) 
( j  c J, i E (1 ,..., nj), nj E N, k E K, P E (1 ,,.., pk), pk E N) in QS and there exist 

retrievals (w.r.t. t) 



such that 

The proof is given in Appendix D. 

Note that [ii) is satisfied in the following cases : 

(a) 3Q,Q1 E QS such that ret(Q) n ret[NOTQi) * (4,DS) 
(b) 3Q E QS, non trivial, such that ret(Q) = ret(N0TQ) 
(c) 3Q E QS, non trivial, such that NOTQ e QS 

(cfr. proposition 111.2.1). 
Indeed, for (a) take J and K as singletons, nj = pk = 1, (b) * (a). For (c), take Q' = 

NOTQ in (a). 

Theorem 111.2.5 : 
Theorem 111.2.4 with r replaced by T" (and of course using ret,. instead of ret,) is also 

valid. 
The proof is the same as the one of theorem 111.2.4 and hence is omitted. 

For finite document spaces DS, theorems 111.2.4 and 111.2.5 have the following, 
rather surprising, consequence. 

Theorem 111.2.6 : 
Let (DS, QS, sim) be any IR-model. If DS is finite then the following assertions are 
equivalent (for r resp. r") : 
(i) DS is connected. 

(ii) There does not exist a Boolean retrieval (other than 4 or DS) based on elementary 
queries [in QS) that is equal to a Boolean retrieval based on NOTs of elementary 
queries in QS. 

For the proof we again refer the reader to Appendix D. Of course, a Boolean query 
based on NOTs of elementary queries in QS is defined in an analogous way as in the 
introduction : formulae (8) and (9) but now for NOT Qij instead of Qij and with 
R(Qisrij) replaced by RC(Qij,rij). 

Problem : 
It remains an interesting problem to determine the connected components of the 
spaces (DS,T) and (DS,rM). 



Remarks : 
1. Totally disconnected spaces are spaces in which the only connected subsets are the 

singletons. These spaces exist, namely, for any set X, take z = B(X), the set of all 
subsets of X. In Egghe and Rousseau (1996b) several examples are given of spaces 
DS where T = t' = z" = B(DS1 and hence these IR-models are totally disconected. 
The simplest of these models is the so-called discrete retrieval (see e.g. example 
1.5.5) : for any set DS, take QS = DS and 

= 1 if D = Q 

= O  if D t Q .  

2. In case of theorem 111.2.6 (DS finite) we have that t' = t", hence theorem 111.2.6 
characterises connectivity of (DS,d) as well! That z' = T" follows from Egghe and 
Rousseau (1996b) as mentioned in the introduction here. 

IV. SUMMARY 

In this paper several topological properties of the spaces [DS,t), (DS,tV) and 
(DS,rl) are studied, for any IR-model IDS, QS, sim). Properties as To, TI and T2 are 
characterized as well as determined whether or not these spaces are proximity spaces. 
Also characterizations of connectivity in terms of the Boolean NOT-operator are given. 

In all these results the relations between topological properties and IR-aspects 
are given. 
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APPENDIX A 
PROOF OF THE SEPARATION PROPERTIES 

Theorem L1 : 
Let (DS, QS, sim) be any IR-model. For the similarity topology z" the following 
properties are equivalent : 
(i) t" is To 
(ii) z" is TI 
(iii) t" is T2 
(iv) The retrieval model separates the points of DS. 

Proof : 
(iii) a (ii) =1 (i) is trivial and well-known. 

(iv) * (iii) : 
Let D1,D2 E DS, Dl t D2 

By (iv) there is a Q E QS such that 

We keep the full generality by assuming 

Take 

and define 

(A2 does not always belong to t!). Then Dl E Al and D2 E A2 and A1 n A2 = 4. 
Hence 7" is T2. 

(i) (iv) : 
Let D1,D2 E DS, Dl i D2. Since (DS,tM) is To there exists a U1 E t" such that 

D, E Ul and D2 e U l  OR there exists a U2 E t" such that D2 E U2 and Dl d U2 Let 



us suppose the first case. Since U1 E t" there is a n E N, Qi E QS, rl[i),rp) E R (i = 

1, ..., n) such that 

So rl(i) < sim(D1,Qi) < r2(i1 for every i = 1, ..., n. Since D2 e U1 we have that there exists 

a io E (I, ... n) such that sim(D2,Qi ] P Hence sim(D1,Qio) # sim[DaQi I. 
0 .  

El 
0 

Hence the IR-model separates the po~nts of DS. 

Theorem 1.2 : 
Let (DS, QS, sim) be any IR-model. For the pseudo-metric topology t' the following 

properties are equivalent : 
(i) t' is To 
(ii) t' is T1 
(iii) t' is T2 
(iv) t' is a metric topology 
(v) The retrieval model separates the points of DS. 

Proof : 

(iv) o (iii) + (ii) * (i) is trivial and well known. 

(vI 3 (3 
Let D1,D2 E DS, Dl # D2 and let Q E QS be such that sim(D1,Q) * s i m ( ~ ~ , Q ) .  

Hence 

Hence d' is a metric and hence r' is a metric topology. 

(iI (vI 
Let Dl,D2 E DS, Dl e D2. Hence there is an open dl-ball B[D,,c) around Dl 

such that D2 e B(D1,&) OR there is an open dl-ball B(D2,e) around D2 such that Dl 
e B(D2,&). In both cases is d'(DI,D2) > 0 from which it easily follows that there exists 
a Q E QS such that 



Theorem 1.3 : 
Let (DS, QS, sim) be any IR-model. For the retrieval topology z, the following 

properties are equivalent : 
(i) z is To 
(ii) The retrieval model separates the points of DS. 

Proof : 
(ii) d (i) 

Let D1,D2 E DS, Dl t D2. By (ii) there is a Q E QS such that sim(D1,Q) z 

sim(D2,Q). 

(a) Suppose that sim(D2,Q1 < sim(D1,Ql 
Let 

Hence Dl E R(Q,rO) and D2 e R(Q,rO) and R(Q,ro) E T. Hence (i) is valid. 

(b) Suppose that sim(D1,Q) > sim(D2,Q) 
The same argument as above, but with the indices 1 and 2 interchanged, yields 

(i). 

(i) 2 (ii) 
For every D1,D2 E DS, Dl z D2, let (by (i)) V E V,(D1) be such that D2 e V 

OR let U E V,(D2) be such that Dl e U. Suppose we are in the first case. By the 

definition of r there exists n E N, Qi E QS, ri E R (i = 1, ..., n) such that 

Since D2 e V, there is a io E (1, ..., n) such that D2 e R ( Q ~ r i J .  These results show that 

and hence that sim(D1,Qio] # sim(D2,QiJ. 

The same argument applies to the second case. 



APPENDIX B 
PROOF OF THE PROXIMITY PROPERTIES 

Theorem 11.2 : 
Let the IR-system (DS, QS, sim) be such that the points of DS are separated. Then 

(i) (DS,zV) is a proximity space. 
(ii) (DS,z) is not always a proximity space. 

Proof : 

(i) By definition, z" = the weak topology generated by the functions sim(.,Q), Q e QS 
and these functions separate points of DS. By theorem 8.12 in Willard (19701, p.56, 
(DS,zn) is homeomorphic to a subspace of 

where RQ = R for every Q QS, equiped with the product topology, via the 

mapping 

D E DS+ (sim@,Q))Qas . 

Now R is a completely regular (metric!) space and products of such spaces are 
completely regular (Willard (1970), p.95) and hence they are proximity spaces by 

property 11.2. 

(ii) If (DS,z) was always a proximity space it would be a T2 space since separation of 
the points of DS implies that (DS,r) is To (theorem 1.3) by the properties in 11.1. 
This is shown not always to be true : see e.g. the example 1.7.1 : the vector space 
model of Egghe and Rousseau (1996b) : (DS,z) is To, hence the IIhystem separates 
the points of DS but it is not TI, let alone T2. 0 

Problem : 
Characterise the T2 property as well as the proximity property for the retrieval 
topology t. 

As a consequence of the above proof we have the following proposition 

Proposition : 
Equip R with the topology generated by the set 



Ilr,+-[llr E Rl  . 
Denote this topology by D. Hence 

D = [+,B,]r,+m[,r E B] . 
Then 
(i) z on DS is the coarsest topology making all the sim(.,Q) : DS + R,D (Q E QS) 

continuous. 

(ii) Suppose that (DS, QS, sim) separates the points of DS. 
Then (DS,z) is homeomorphic with a subspace of 

where EQ = (R,D) for every Q G QS. 

Proof : 
(i) z is generated by the sets 

R(Q,r) = [D E DSllsim@,Q) > r] . 

Hence it is the coarsest topology making all the functions sim(.,Q) : DS + (R,D) 
continuous. This follows from the definition of D and the properties of the inverse 
relation. 

(ii) Since the IR-model separates the points of DS we can use Willard, p.56, theorem 
8.12 again, yielding that (DS,?) is homeomorphic with a subspace of Il EQ, 
where EQ = (R,D) for all Q E QS. 0 QEQS 

Corollary : 
The above results give a second proof of theorem 1.3, (ii) [i). 
Indeed, by (ii) of theorem 1.3, (DS,T) is homeomorphic with a subspace of n EQ. 

QEQS 
Since all EQ = (R,D) are To and since subspaces and products of To-spaces are To 

(Willard (1970), p.851, the result follows. 



APPENDIX C 
PROOF OF PROPOSITION 111.1.1 

Proposition 111.1.1 : 
Let (DS, QS, sim) be any IR-model and Q E QS arbitrary. Then Q is trivial w.r.t. T iff 
it is trivial w.r.t. t". 

Proof : 
(i) Q trivial w.r.t. t" * Q trivial w.r.t. z. 

So Q E QS is such that 

~ Q , l , 2 1 1 1 2  t ( $PSI 

Let rl be fixed. We have that 

for every rl E R. Hence Q is trivial w.r.t. t. 

(ii) Q trivial w.r.t. t * Q trivial w.r.t. T". 
So Q E QS is such that 

Hence Q is trivial w.r.t. t". 0 

Note that the countable intersection of t apen  sets is not necessarily open in t. 
This is why this argument cannot be used to show that U(Q,r1,r2) belongs to z; in 
fact it is not, in general. 



APPENDIX D 
PROOF OF THE CHARACTERIZATION THEOREMS FOR CONNECTIVITY 

Theorem 11.2.4 : 
Let (DS, QS, sim) be any IR-model. For (DS,z), the following assertions are 

equivalent : 
(i) (DS,z) is disconnected. 
(ii] There exist arrays (Qij], (Q'&) 

n.) n E N, k E K, P (1 ,..., pk), pk [j g k i E L.., , E N) in QS and there exist 

retrievals 

such that 

Proof : 

(ii) (i) 
Let Qis QtPk be as given. (22), (23) and (24) imply Vi,j, 3rij E R such that 

4, = R(Qi > rul) 

and VP,k, 3r'& E R such that 

with 

Hence 

Hence 



forms a disconnection of [DS,t), 

(i) * (ii) 
If (DS,t) is disconnected then there exist G,H E z, (I + G, DS t G, G n H = (I 

such that G u H = DS. By definition of t ,  there exist (Qij), (Q1&), rijl r'& E R, j E J, 

i E (1 ,..., nj), nj E N, k E K, P E {I ,..., pk), pk E N, such that 

Since H = GC we have that 

Obviously 

Theorem 111.2.6 : 
Let (DS, QS, sim) be any IR-model. If DS is finite then the following assertions are 
equivalent (for z resp. t") : 
(i) DS is connected. 
[ii) There does not exist a Boolean retrieval (other than (I or DS) based on elementary 

queries (in QS) that is equal to a Boolean retrieval based on NOTs of elementary 
queries in QS. 



Proof : 
The proof is, in essence, a negation of theorems 111.2.4 and 111.2.5. 
For finite spaces DS, (24) looks like (m,q E N) : 

Now, the lemma below allows to write 

where us, v E N and where 

So, both sides of (Dl) are of the form 

where C1 and C2 are finite sets and where (for t) on the left side of (24) sets R(Qij > 

rij) are appearing and on the right hand side sets of the form RC(QIPk > 'Im(). SO if 
(24) cannot be valid for any array (Qij) and (QtPk) (equivalently : (DS,t) is connected) 
it means that no Boolan retrieval, consisting of elementary queries exists that is equal 
to any Boolean query of NOTs of elementary queries. The same argument goes for t". 
In both cases we use the fact that anv Boolean query consisting of a finite number of 
ANDs and ORs can be reduced to the form : 

(cf (8)) (or with NOT Qij in the other case). This was already noted in Egghe and 
Rousseau (1996b) and mentioned in the introduction. Its proof is also based on the 
next lemma. 0 

Lemma (Dugundji (1966), p.25) 
Let (B,lla E A) be a family of sets and assume that (Ahllh E g) is a partition of A with 
each Ah -i. 4. Let T = Il Ah. Then 

h e 9  



where t(h) E Ah and t = (t(h))A,p By taking complements one also has 

In other, more clear, terms : any nu of sets Aij can be interpreted as a u n of 
the same sets (but in another order] and vise-versa. 


