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Abstract-This paper studies topological properties of different topologies that are possible on 
the space of documents as they are induced by queries in a query space together with a similarity 
function between queries and documents. The main topologies studied here are the retrieval topology 
(introduced by Everett and Cater) and the similarity topology (introduced by Egghe and Rousseau). 

The studied properties are the separation properties To, 2’1, and Ts (Hausdorff), proximity and 
connectedness. Full characterizations are given for the diverse topologies to be To, Ti, or Ts. It is 
shown that the retrieval topology is not necessarily a proximity space, while the similarity topology 
and the pseudo-metric topology always are proximity spaces. A characterization of connectedness in 
terms of the Boolean NOT-operator is given, hereby showing the intimate relationship between IR 
and topology. 
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1. INTRODUCTION 

In [l] (see, also, [2] for a correction of this paper), the retrieval topology is defined on a set of 

documents as follows. Let DS be the set (space) of all documents and QS a set of queries. In 

Everett and Cat,er, QS consists of all possible queries; in our vision (see [3]) QS consists of only 

elementary requests, i.e., not consisting of any Boolean (or other) combinations. Right now this 

difference is not important: QS is just a set of queries. Let sim(., Q) be a function on DS into W, 

measuring the similarity sim(D, Q) between a document D and a query Q. Most commonly, its 

values are in R+ or even [O,l], but this restriction is not necessary. The retrieval topology T on 

DS is defined to be the topology generated by the sets (as a subbasis) 

R(Q,r) = {D E DS ]I sim(D, Q) > r} , (1) 

for Q E QS and T E R. These sets are called the retrievals of the system (DS, QS,sim, 7) or 

(shortly) of T. It is linked to the idea of the retrieval of documents via a threshold requirement 

on the value of the similarity measure. The set 

r&(Q) = {R(Q,r) II r E WI (2) 

is called the set of retrievals of Q E QS, or shortly the retrievals of Q (w.r.t. r). 

Also in [l], the pseudo-metric topology 7’ on DS is defined as the topology generated by the 

subbasis 

V(D,&) = {E E DS 11 ]sim(D,Q) - sim(E, &)I < E, VQ E QS} t (3) 
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for E > 0. There are several pseudo-metrics that generate T’. One of them can be given by 

if the sup is finite. If it is infinite, we can use the pseudo-metric 

d’(D, E) = sup 
I WD, Q) - sim(E, 911 

QEQS 1 f 1 sim(D, Qf - sim(E, &)I (5) 

(see [31). 
Finally, in [3], th e similarity topology r” on DS is defined as the topology on DS which makes 

the similarity functions 

simf., Q) : DS --+ R, 

D I-+ sim(D, Q), 

continuous. This topology 7” is generated by the sets (as subbasis) 

U(Q, TI,TZ) = {D E DS II ~1 < sim(D,Q) < 7-21, (6) 

Q E QS, ~1, rs E Iw, ~1 < ~2. These sets are called the retrievals of the system (DS, QS, sim, 7”) 

or (shortly) of 7”. It is linked to the idea of retrieval of documents via a “close match” of 

similarity values. The set 

reG(Q) = {U(Q,n,n) II ~1 < 4 (7) 

is called the set of retrievals of Q E QS or shortly the retrievals of Q (w.r.t. 7”). 

It is proven in [3] that T C T” C T’, and (by example) that strict inclusions can hold (i.e., the 

three topologies can be different). It is also proved there that T’ = 7” iff the set 

{sW.,Q) II Q E QSI 

is equicontinuous (e.g., when QS is finite) ([3, Theorem Ill]). 

For more information on the topological terminology and properties, we refer the reader to 

Appendix A in [3] or to the vast literature on topological spaces, e.g., [4-81. 

The following definition is taken from [l]: we say that an IR model (DS, QS, sim) separates 

the points of DS if from sim(D, Q) = sim(E, Q), V Q E QS it follows that D = E. In this case, 

T’ is a metric topology. 

It is shown in [3] that 7 as well as T” can be considered as the sets of dl possible Boolean 

retrievals (using AND and OR) based on queries Q E QS. Let us explain this for 7. Let 

(Q,j)~C=,,J’E;m=l be an array of queries in QS. The Boolean query denoted by 

is defined through its set of retrievals 

It can be shown [3] that (8) represents a general Boolean query and that the sets in (9) for all 

Qij E QS (m, n E N) form the topology r on DS when DS is finite. The same can be said for r” 
now using the sets U(Q, ~-1, ~-2). 
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This shows the intimate relationship between (Boolean) IR and topology on DS. 
In the sequel, we will show that the Boolean NOT-operator also plays an important role in the 

topological properties of DS. 
This is what this paper is all about: showing some topological properties of the spaces (DS, r), 

(DS, r”), and (DS, T’), if possible by using IR-properties or even characterise topological prop- 
erties via IR-properties. 

The next section deals with the separation properties To, Ti, and Tz of the topologies r, r”, 
and T’. We give a characterization of Te for r, and of T 0. TI , Tz, for r” and T’ in terms of the 

IR-property introduced above: the separation of the points of DS by the similarity functions 

sim(., Q), Q E QS. 
The third section deals with the question: which spaces (DS, T), (DS, r”), (DS, r’) are prox- 

imity spaces? These are spaces where there is a notion of “closeness”, important in IR. We will 

show that 7” and T! are fine enough to be proximity spaces but that r is not, in general. 

The paper closes with the study of connectivity of the topologies T, T", and 7’. A charac- 

terization of connectivity in terms of the availability of the NOT operator in QS (i.e., NOT Q 

E QS if Q E QS) is given. This is another example of a topological characterization of certain 

IR-properties (or tools). 

2. CHARACTERIZATION OF 
THE SEPARATION PROPERTIES To, Tl, AND T2 

FOR THE TOPOLOGIES 
T, #I, 8 ON DS 

Recall (see, e.g., [3,7]) that a topological space (X, 7) is called a To-space if, whenever 2, y E X, 

z # y, there exists a neighborhood of IC or of ‘y not containing the other point. It is called a 

Ti-space if there exist neighborhoods of 2 and of y not containing the other point. Finally, it is 

called a T&space (or a Hausdorff space) if, whenever 2, y E X, z # y, there is a neighborhood U 

of x, and a neighborhood V of y such that U n V = Cp. Obviously, T2 + Tr =G= TO but not 
conversely. In fact, this will also be seen in this paper. For 2 E X, let us denote Vi(z) (or simply 

V(x) if no confusion can arise), the set of neighborhoods of 2 in the topological space (X, T). We 

will now investigate (DS, T), (DS, r”), and (DS, T') w.r.t. these separation properties. 

The stronger the separation property a space has, the finer are the possibilities of retrieval 

since one can make better distinction between documents. Indeed, in the above definitions of 

the separation properties To, Ti, and T2, one can equally work with open sets (Le., sets in the 

topology) as a substitute for the neighborhoods of the points. Now, as proved in [3] and repeated 

in the Introduction, these sets represent general Boolean queries in the sense that any Boolean 

query is represented (through its retrievals) by open sets and that any open set is a retrieval of 

a certain Boolean query. Hence, in case some separation property (TO, Ti or even stronger: Tz) 

is available there exist (Boolean) techniques to limit the search to certain documents, i.e., finer 

searches are possible. 

We start with the easiest results. 

THEOREM 2.1. Let (OS, QS, sim) be any IR-model. For the simikrity topology r”, the following 

properties are equivaknt. 

(i) 7” is To. 
(ii) 7” is Tl. 

(iii) 7” is Tz . 

(iv) The retrieval model separates the points of DS. 

The proof is given in Appendix A. The same result is true for 7’. Also, this proof can be 

checked in Appendix A. 
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THEOREM 2.2. Let (DS, QS, sim) be any IR-model. For the pseudometric topology r’, the 
fotfowing properties are equivalent. 

(if ir’ is TO. 

(ii) r’ is TI. 
(iii) 7’ is ‘I;. 
(iv) T’ is a metric topology. 
(v) The retrieval model separates the points of DS. 

The analogous result for 7 (the retrieval topology) is not true. In fact, only the following result 

is true. 

THEOREM 2.3. Let (DS, QS, sim) be any IR-model. For the retrieval topology T, the following 

properties are equivalent. 

(i) r&To. 

(ii) The retrieval model separates the points of DS. 

The less trivial proof can also be checked in Appendix A. The Ti analogue of Theorem 2.3 is 

as folIows. 

THEOREM 2.4. Let (DS, QS, sim) be any IR-model. For r, the following properties are equiva- 

lent. 

(i) (DS, 7) is TI. 
(ii) For every D1, Dz E DS, Dl # D2, there exist Q, Q’ E QS such that 

sim(D2,Q) > sim(Dl,Q), sim(Dz,Q’) < sim(Di,Q’). 

The proof is very similar to the one of Theorem 2.3 and hence is omitted. 

Note in Case DS = QS 

Although it is not necessary for the above to have that DS = QS, it is an important and 

interesting case in practice! If this is so, then (b) + (a) + (ii) in Theorem 2.3: 

(a) VDI,DZ E DS, DI # Dz, 
sim(Di, 02) < max(sim(Di, Dr),sim(Dz, Dz)), 

(b) sim(Di, D2) = sim(Dr, 01) = sim(D2, Dz) implies Di = D2. 

Furthermore, (ii) of Theorem 2.4 is satisfied if 

sim(Dl,D2) 4 [SW&, DI), sim(&, &)I, 

for every D1, Da E DS, D1 # D2. We leave the easy proofs to the reader. 

Note in Case DS is Finite 

Note that if DS is finite and Tl (for any topology), then this topology is discrete, i.e., p(DS). 
This follows from the fact that every singleton is closed. 

It is already clear from Theorems 2.1-2.4 that the retrieval topology 7 plays a special role in 

the sense that for T the separation properties To, TX, and T2 seem to be different (in contrast 
to the cases of 7” and 7’). We now present concrete evidence for this. In 131, we already gave 

examples of spaces (DS, T) that are To but not Tl. Hence (because of the above results), r # 7” 

also. Now, T can be Tl without being equal to r” as the next example shows. 

EXAMPLE 2.5. There exist an IR-model (DS, QS, sim) such that (DS, T) is Tl and not T2. Hence, 

also 7 # r”. 
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PROOF. Note, that our example must be one for which DS is infinite, since otherwise (DS, T) 

will be a finite Tl-space, hence discrete (7 = p(DS)), and hence 7 = 7” = r’ (and Tz). Take 

DS = QS = H. For all, p, YZ E N, define 

nP sim(n,p) = max - - ( ) p’n 

One has that Vn E DS: 

DS \ {Tz} = R(n, 1) E T, 

since sim(n, p) 2 1 and sim(n,p) = 1 ($ n = p. Hence (DS, 7) is Tl. By Theorem 2.3, we 

hence know that the IR-model (DS, QS, sim) separates the points of DS. Hence (Theorem 2.1), 

(DS,T”) is T2. But 7 is not T2 because Qn,n’ E DS, n # n’, VU E V,(n), VV E V.(n’), 3a E N 

such that 

{mEN~/Im>a}CUnv. 

Indeed, V n, n’ E DS, V r, r’ > 0: 

R(n, r) n R(n’, r’) 31 ma.x(nr, n/7-‘), +CXI[ n N. 

Hence r # 7”. 

NOTES. 

I 

1. If we take sim(n, p) = n/p, then T is To and not T, (but in [3], we had already such an 

example). 

2. T can even be Tz and still T # I-“. We can only show this in the next section (Example 3.3). 

Interpretation of the Separation Properties To, Tl, T2 in Terms of Boolean Queries 

Let us focus on T" and Tz. If (DS,+‘) is Tz, i.e., when the retrieval model separates the 

points of DS (Theorem 2.1), then we have that, whenever D1, Dz f DS, D1 # Dz, there exist 

U, V E T”, such that D1 E U and Dft E V and such that U n V = #. Since the sets in 

form a basis for T", it follows that (cf. [8, p. 38, 5.1.1) (equivalently) there exist &I, . , . , Q,, 

Q:,..., Q&, E QS, ri”’ -=z r!‘, r:(j) < ,l(j) such that 

and such that 

Q, $1 ,ti) 

$7 1 ) 2 = $I. 

By definition, this is equivalent with the property that different documents imply the existence 

of two disjoint retrievals of Boolean AND queries such that each document belongs to one of 

these retrievals. This shows the degree of “fine-tuning” (as far as retrieval is concerned) that is 

possible in such spaces. 

Let us give another example: the Tl-property in (DS, T). First of all, the definition of Tl gives: 

V D1, D2 E DS, DI # D2, 3U,V E T such that D1 E U, Dz 4 U, D1 $! V, Dz f V. Since the 

sets in 
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form a basis for T, it follows that any of these documents can be excluded from a retrieval of 

a Boolean AND query that contains the other document: 3Qi,. . . , Qn f QS, 3rr,. . . ,r, E B 

such that (e.g., for Di) 

Di E h WQt,ri) c u and 02 6 h R(Q,,rd. 
a=1 z=l 

One can also look at TX in the following way: the Tl-property (of any topology) is equivalent 

with: every singleton is closed (cf. [S]). If DS is finite then any subset of DS is open for this 

topology (r or r” = T’). Hence, by definition of 7 (analogously for T” = r’), and by [3] (see also 

the argument around formula (9)), any subset of DS has the form 

HereQigEQS,ri3EIW,i=1 ,..., n3,j=1 ,..., m. We have proven the following result. 

THEOREM 2.6. Let (DS, T) or (DS, 7”) be a Ti-space and let DS be finite. Then any subset of 

DS can be retrieved by using a Boolean query. 

Similar, equivalent, interpretations can be given for the other separation properties in conjunc- 

tion with 7, r”, or r’. 

We now present some examples to illustrate To, Tl, and T2 in IR-models. For more information 

on these examples, see 131. 

EXAMPLES 2.7. 

EXAMPLE 2.7.1. THE VECTOR SPACE MODEL OF [3]. This example is as follows: DS = QS = 

I”, (I = [0, l]), sim(D,Q) = (D,Q), VD E DS, VQ E QS, where (D,Q) denotes the inproduct 

between the vectors D and Q. In [3], it was shown that r # #f = r’ = E, the Euclidean topology. 

It is clear that (., .) separates the points of DS, and hence, T is To (and, of course, T’ = 7” is T’). 

r is not Tl [3]. 

EXAMPLE 2.7.2. THE VECTOR SPACE MODEL OF (11. Here we have DS = QS = In \ (0) and 

QS* = DS’ = DS/%, the quotient space w.r.t. the relation DIRD~ iff D1 and 02 are situated 
on the same half line through 0. For both DS and DA’*, one uses 

sim(D, Q) = sim(D*, Q*) = cos (G), 

the cosinus of the angle between the vectors D, Q E DS (or the half lines D*, Q* E DS*). We 

have that r = rtf = r’ on DS as well as on DS*. However, points are separated in DS”, but not 

in DS, so that DS* is Tz, but DS is not even TO for any of the topologies T = T” = 7’. 

EXAMPLE 2.7.3. 

DS=QS={D1,...,D,), sim(D,, D3) = 
i+j 

2 max(i, j) ’ (10) 

gives T = r” = T’ = p(DS), the discrete topology. Hence, they are Ts. The same is true for the 

next two examples. 

EXAMPLE 2.7.4. 

DS = QS = {I&, . . . , Dta), sim(Di, Dj) = 9 Arctan 

EXAMPLE 2.7.5. 

DS = QS : any sets, sim(D, Q) 
=l, D=Q, 

= 0, D f Q, 

(11) 

(12) 
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EXAMPLE 2.7.6. AN EXAMPLE OF A SPACE (DS,T) THAT IS NOT TO. Take 

DS = {a, b, c, d}, QS = {el, 

and define 

sim(a, e) = a = sim(d, e), sim( b, e) = 1. sim(c, e) = 0. 

So the model does not separate the documents a and d. Hence, (DS, T) is not To. In fact, 

r = (4, DS, {a, b, d}, {b}} and VU E V(a), YV~V(d):Ur1V>{cz,b,d}f~4. 

These results show the real difference between the topologies 7. r”, and 7’. Especially 7 is 

shown to be the “rougher” one. Not only is it the coarsest topology of the three, it is only Te 

under the reasonable condition that the IR-model separates the points. Under this condition, 

7” as well as r’ are even Tz. This shows a big difference from the IR-point of view, a difference 

which is not revealed by just showing that the inclusions T c 7" c T' can be strict. 

The condition that the IR-model separates the points is “even more than reasonable”. Indeed, 

if it is not the case, the different documents for which all sim( ., Q)-values (Q E QS) are equal, are 

not distinguishable from the IR-point of view. Hence, an equivalence relation (and subsequent 

quotient space) can be defined so that the new “points” are indeed separated now and the 

documents in the equivalence classes are considered as the same. In these cases, 7” and r’ are 

always Tz but r is not. This shows the low separation capacity of T for documents of DS. 

3. PROXIMITY ASPECTS OF (DS, T), (DS, T”), AND (DS, 7’) 

Pseudo-metric spaces such as (DS, T’) bear in their proper definition the notion of proximity, by 

using the pseudo-metric (in the connection of (DS, T’), we will always work with d’ of formula (5) 

although other formulae are possible). 

A proximity 63 is defined between two subsets A, B of a set X and satisfies (bv definition) the 

following properties (cf. [8]): 

(Pl) A~13 _ BAJA, 

(P”) {2}&){2}, Vx E x, 

(P:3) Ap(B u C) e APB v ApC, 

(P‘i) 46-3X, 
(P5) A@B + 3 P, Q c X, P n Q = 4 such that A@PC and B@QC. 

Here 6 means the negation of p and PC the X-complement X \ P. 

p defines the notion “to be near to each other” (or not, via @). (X, p) is called a proximity 

space. Every pseudo-metric space (X, d) is a proximity space as follows: define, for A, B c X, 
ApB iff d(A, B) = 0. Here d(A,B) is defined as 

d(A, B) = inf{d(z, y) ]] r E A, y E B}. (13) 

From the above definitions, it is clear that proximity is a desirable property to have for an 

IR-model. Of course, (pseudo-)metrizability is even better, since then one can really measure 

distances between (sets of) documents. However, this cannot always be accomplished. As we will 

see in this section, (DS, 7) and (DS, 7”) are not always metrizable if the number of elementary 

requests (i.e., the cardinality of QS) is too high. In these cases, the notion of proximity is useful 

and it is worth investigating what spaces (DS, r), (DS, T”), or (DS, T’) are proximity spaces. 

Of course, since r’ is pseudo-metrizable it is always a proximity space. What about T and r”? 
We first recall a few notions that are needed in the sequel. 

DEFINITION 3.1. A topological space (X, r) is called completely regular if for every closed F C X 

and 5 E X \F, there is a r-continuous function f : X -+ [0, I] such that f(x) = 0 and f(F) = (1). 
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It is called regular if, whenever F c X is closed and 2 E X\F, there are U, V E 7, UnV = q!~ such 

that z E U and F c V. Of course, complete regularity implies regularity (use U = f-‘([O, 1/2[) 

and V = f-‘( ]1/2,1]) in the definition of complete regularity). Define a Ts-space to be a regular 

To-space and a T3 1/2-space to be a completely regular To-space. We have that T3 1,2 + T3 + Ts 

obviously and it can be shown that the topological spaces that are proximity spaces are precisely 

the completely regular spaces. 

NOTE. The notation Ts112 is a “joke” of topologists to denote a separation property that is 

logical situated between T3 (introduced here) and T4 (not introduced here). Some authors even 

use T, instead of Ts1,2 (see [4, p. 1671). 

The above definition gives another argument for the fact that finer searches are possible in 

proximity spaces. 

We have the following result. 

THEOREM 3.2. Let the I&system (DS, QS, sim) be such that the points of DS are separated 

(see the introductory section). Then 

(i) (DS, 7”) is a proximity space, 

(ii) (DS, T) is not always a proximity space. 

The proof is given in Appendix B. An example showing that (DS, r) is not always a proximity 

space (even when the points of DS are separated) is given by [3] (see also Example 2.7.1 here). 

NOTE. From the proof of Theorem 3.2(i), it is clear that (DS,7”), although it is a proximity 

space, it is not always pseudo-metrizable. Indeed, it is a subspace of flQEQsR~(R~ = R, 

VQ E QS) and the latter one is only (pseudo-)metrizable if the cardinality of QS is less than 

or equal to that of N. This is certainly not the case in the example given: here QS = In 

which has the cardinality of the continuum. It would be good to have a characterization of the 

(pseudo-)metrizability of (DS, T”) (and also of (DS, 7)). 

A new example of a (DS, T) that is not a proximity space now follows. This example, however, 

is also an example of a retrieval topology T that is T2, not Ts and r # 7”. 

EXAMPLE 3.3. There exists an IR-model (DS, QS, sim) such that (DS, T) is T2 and not T3. 

Hence, T # T” in this case. 

PROOF. (Based on [8, p. 921.) Take DS = QS = Rf. Vn E N, define 

1 
sim 0, - = 0, ( > n 

Vp E B+ and l/p 4 N: 
, 
I 

sim(O,p) = l+p7 

VP,P' E R+, P,P' # 0: * 
1 

sim(p, f-4 = 1 + ,p _ p,, . 

One readily verifies that Vr < 1, 

R(O,r)= [o,i--l[\{AllntNj, 

R(p,r)= p-i+l,p+i-1 
1 [ 

nR+. 

Based on [8, p. 92, (14.2)], we see that (DS, T) is a Ts-space but not a Ts-space (0 and the closed 

set {l/n ]] n E N} cannot be separated). Since T is T2, hence To, we have by Theorem 2.3 that 

the IR-model separates the points of DS. Hence, by Theorems 2.1 and 3.2, T” is a TO proximity 

space, hence it is T3 i/s, and hence Ts. So T # 7”. I 
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4. CONNECTIVITY OF THE SPACES 
(DS, T), (DS, T”), (DS, #) AND ITS 

RELATION TO THE BOOLEAN NOT-OPERATOR 

In this last section, we deal with the topological notion of connectivity of the different topologies 

on DS. A topological space is said to be connected if it is not disconnected. A topological space 

(X, 7) is said to be disconnected if there exist U, V E T such that C$ # U, C$ # V, U n V = 4, and 

UUV=X. 

The study of (dis)connectedness in the topological spaces (DS, T), (DS, T”), and (DS, 7’) has 

its relevance to IR in the following way: disconnected parts of DS divide the document space 

in “predefined” subsets that will mark a separation in the retrieval results: most commonly if 

documents of one part are retrieved, the ones of the other parts are not (using the same type of 

query). It is, therefore, not so surprising (intuitively) that the Boolean NOT-operator is involved 

here. As introduced in [3] and repeated in the Introduction, the general Boolean query 

was defined through its set of retrievals (e.g., in r-one can define it also in T”) 

(14) 

(15) 

In the same way, we will now define the Boolean operator NOT. Note that (14) does not 

necessarily belong to QS. The same remark will go for NOT. 

4.1 The Boolean NOT-Operator and First Topological Properties 

Let (DS, QS, sim) be any IR-system. Let Q E QS be any elementary query. Then we define 

NOT Q as a query (not necessarily belonging to QS) defined by the set of retrievals (for T): 

ret( NOT Q) = {P(Q,r) II T E Iw} (16) 

(R"(Q, T) == DS\R(Q, r), th e complement of R(Q, r)). Only in case there exists a query Q’ E QS 
such that 

{R(Q’,r) II T E W} = {R”(Q,r) (1 T E Iw} , (17) 

we can identify Q’ and NOT Q, and hence, we can then consider NOT Q E DS. 

EXAMPLE. 

QS, = {cat, dog, shoe, horse}, 

QS, = {cat, dog, honest, dishonest} 

We have 6;! E QS, + NOT Q $ QS,. For Q = “h onest” E QS,, we have that NOT Q E QS,. 

NOTE. 

(1) (17) does not imply that R(Q’,r) = RC(Q,r), 

(2) By using U(Q, ~1, ~2) instead of R(Q, T), we can define NOT Q w.r.t. r’. To be exact, we 

should have indicated in the notation of NOT Q with which topology we are working. We 
did not do so, however, since it will be clear from the context and for the sake of simplicity. 
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Let Q E QS. Let us call Q trivial (w.r.t. T) if 

{NQ, T) II ,r- E al c (4, DS). 

The same definition is possible w.r.t. I-“: we call Q E QS trivial w.r.t. 7” if 

UJ(Q, ~1, ~2) II r-1 < ~2) c (4, DS}. 

(18) 

(19) 

Both notions, however, are equivalent as the next proposition shows. 

PROPOSITION 4.1.1. Let (DS, QS, sim) be any II&model and Q E QS arbitrary. Then Q is 

trivial w.r.t. 7 iff it is trivial w.r.t. 7”. 

For the proof, we refer the reader to Appendix C. From now on, we simply call Q trivial without 

referring to r or 7”. Note that the notion of NOT Q depends on T or r” as is clear from the 

next proposition (for r) and counterexample (for r”). 

PROPOSITION 4.1.2. If Q E QS is nontrivial, then Q # NOT Q (w.r.t. 7). 

PROOF. Suppose Q = NOT Q. Then 

{WQ, ~1 II T- E RI = {WQ, T) II T E WI C (4, DS). 

Let then R(Q, re) be such that R(Q, rc) # 4, R(Q, rc) # DS. Hence D, E E DS exist such that 

D E R(Q, TO), E $ R(Q, ~0). So 

By the above equality, there is 

D $ R(Q,n) and E E R(Q, ~1). 

(20) contradicts (21). 

sim(D, Q) > re > sim(E, Q). (20) 

a ri E R such that D E R”(Q,q), E $ P(Q,q). Hence, 

so 

sim(E, Q) > r-1 2 sim(D, Q). (21) 

I 

COUNTEREXAMPLE 4.1.3. The above proposition is not true for 7”. Indeed: take DS = {a, b}, 

QS = {c}, sim(a, c) = l/4, sim(b, c) = l/2. Hence 

{U(c, ~1, r-2) II rr < ~2) = (6 DS, {a}, {b}} = p(DS). 

Hence, c is not trivial and by the above 

{UC(c,nrn) II Tl < r2) = {U(C,nrT2) II Tl < 7-z) 1 

showing that c = NOT c (w.r.t. r”). 

COROLLARY 4.1.4. There exist Q E QS such that NOT Q (w.r.t. 7) # NOT Q (w.r.t. 7”). 

This cannot lead to any confusion, since we will make it very clear whether we are working in 

a “threshold” environment (r) or a “close match” environment (7”). 

PROPOSITION 4.1.5. If QS = {Q} with Q nontrivial (w.r.t. 7). Then (DS, 7) is connected. 

PROOF. ForanyopensetsU,VE7,U,V#~,3nEN,3QiEQS,3riER,i=1,...,nsuch 
that 

4 # h R(Q,, rd c UT 
i=l 
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~~EN,~Q(,EQS,~~(,EIW,~=~ ,..., msuchthat 

Since all Q?., Qi = Q, we have, if r{ = max,=i ,__,, 7L rz, r’: = nmx3=l,. .m r_;, 

4 # NQ, 4) c U, 4 # R(Q, 6’) c V. 

Let T = max(rg,ry). Then 

4#R(Q,r) c UnV. 

So (DS, r) cannot be disconnected. I 

We will give an example in the sequel (see Counterexample 4.2.3) showing that (DS, T) can be 

disconnected as soon as QS has two nontrivial elements. 

Proposition 4.1.5 is not valid for 7”: take DS = {a, b,c,d}, QS = {e}, sim(a,e) = sim(d, e) = 

l/2, sim(b, e) = 1, sim(c, e) = 0. Then e is nontrivial w.r.t. 7” (this is clear) and 

7” = {{a, b, cl, {b), {a, c, 4, {c), Ds, 41. 

So (DS, 7”) is disconnected (by {b} and {a, c, d}). This is also an example of a space such that 

(DS, T) is connected, but (DS, I-“) is not. 

For general IR-models (DS, QS, sim), we can ask the question: when is (DS, T) or (DS, 7”) 
disconnected? This will be studied in the next section, where the NOT-operator will be the key 

element. 

4.2. Characterization of Connectivity Using the NOT-Operator 

The next proposition shows that, with our notion of the NOT-operator, we are heading in the 

right direction when we want to characterize connectivity. 

PROPOSITION 4.2.1. Let (DS, QS, sim) be any IR-model. If Q E QS is a nontrivial query such 

that (w.r.t. r) NOT Q E QS, then (DS, T) is disconnected. 

PROOF. So Q E QS is such that 

{R(Q, r) II r > 0) CZ (9. DS}. 

Hence, 

{WQ, r) II r > 0) $ {4,DS>. 

Since NOT Q E DS, there exists rl, r2 E IR such that 

4 # RC(Q, r1) = I?( NOT Q, r2) = DS. 

Hence, {R(Q, -4, R( NOT Q, 4) f orms a nontrivial r-open disconnection of DS. Hence (DS, T) 

is disconnected. I 

The same result is true for 7”. 

PROPOSITION 4.2.2. Let (DS,QS,sim) be any IR-model. If Q E QS is a nontrivial query such 

that (w.r.t. T”) NOT Q E QS, then (DS, 7”) is disconnected. 

The proof is similar to that of Proposition 4.2.1. These results do not constitute a character- 

ization of (dis)connectivity since the converses of the above theorems are not true, as the next 

example shows. 
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COUNTEREXAMPLE 4.2.3. Let DS = {a, b, c, Ca}, QS = {e, f} and 

sim(a,e) = i, 

sim(b,e) = p, 

sim(c, e) = i, 

sim(d, e) = i, 

sim(a,f) = 5, 

sim(b,f) = i, 

sim(c, f) = 1, 

sim(d, f) = i. 

Then 

It is hence clear that NOT Q 4 QS for Q E QS for T as well as T”, yet T and T” are disconnected: 

r by {{a, b, cl), {c)} and 7” by the same set and also by {{a, c, d}, {b)) and even by {{a, d], {b, c)). 

Incidentally, this example also shows, as promised, that (DS, r) can be disconnected as soon 

as QS has more than one element. 

Note also the fact that T” is “much more” disconnected than T, a logical fact. In this context, it 

is interesting to look at the connected components of the spaces (DS, T) and (DS, r”). These are 

the maximally connected subsets of DS (for 7, respectively, 7”) (see, e.g., [8, p. 1941). (DS,r) 

has onfy two components: DS = {a, b,d}ti{c) (0 denotes disjoint union) for T and three for 

T” : Dh’ = {b}O{c}ir{a, d}. 

The next theorem yields a characterization of connectivity in terms of the NOT-operator. 

THEOREM 4.2.4. Let (LAS, QS, sim) be any 1%model. For (DS, r), the following assertions are 

eququivafent. 

(i) (DS, r) is disconnected. 

(ii) There exist &~~LYS (Qz3), (Q&), (j E J, i E (1,. . . ,n$), nj f N, k E K, k E (1,. . . ,PJF}, 

pk f M) in QS and there exist retrievals (w.r.t. T) 

&j E ret(Qij), (22) 
Aik E ret( NOT Qb), (23) 

such that 

4 # U fi A+., = n b Aik # DS. (24) 
jEJi=l kEK e=1 

The proof is given in Appendix D. 

Note that (ii) is satisfied in the following cases: 

(a) 3 Q, Q’ E QS such that ret(Q) n ret( NOT Q’) # (4, DS}, 

(b) 3Q E QS, nontrivial, such that ret(Q) = ret( NOT Q), 

(c) 3Q E QS, nontrivial, such that NOT Q f QS (cfr. Proposition 4.2.1). 



Information Retrieval Systems 73 

Indeed, for (a) take J and K as singletons, n3 = pk = 1, (b) + (a). For (c), take Q’ = NOT Q 
in (a). 

THEOREM 4.2.5. Theorem 4.2.4 with r replaced by r” (and of course usingret,,, instead of ret,) 
is also valid. The proof is the same as the one of Theorem 4.2.4, and hence, is omitted. 

For finite document spaces DS, Theorems 4.2.4 and 4.2.5 have the following, rather surprising, 
consequence. 

THEOREM 4.2.6. Let (DS, QS, sim) be any JR-model. If DS is finite then the following assertions 
are equivalent (for r, respectively, 7”). 

(i) DS is connected. 
(ii) There does not exist a Boolean retrieval (other than C$ or DS) based on elementary queries 

(in QS) that is equal to a Boolean retrielral based on NOT s of elementary queries in QS. 

For the proof, we again refer the reader to Appendix D. Of course, a Boolean query based 
on NOTs of elementary queries in QS is defined in an analogous way as in the introduction: 
formulae (El) and (9) but now for NOT QL3, instead of Qzj and with R(Q,,,r,,) replaced by 
RC(Q ‘I ZJ 1 Tz3, 

PROBLEM. It remains an interesting problem to determine the connected components of the 
spaces (DS, 7) and (DS, 7”). 

REMARKS 

(1) Totally disconnected spaces are spaces in which the only connected subsets are the single- 
tons. These spaces exist, namely, for any set X, take r = p(X), the set of all subsets of X. 
In [3], several examples are given of spaces DS where r = 7’ = T” = p( DS), and hence, 
these IR-models are totally disconnected. The simplest of these models is the so-called 
discrete retrieval (see, e.g., Example 2.7.5): for any set DS, take QS = DS and 

sim(D, Q) 
=l, ifD=Q. 

=O, ifD#Q. 

(2) In the case of Theorem 4.2.6 (DS finite), we have that 7’ = r”, hence Theorem 4.2.6 
characterizes connectivity of (DS, 7’) as well! That r’ = 7” follows from (31 as mentioned 
in the introduction here. 

5. SUMMARY 

In this paper, several topological properties of the spaces (DS, T), (DS, T”), and (DS, 7-‘) are 
studied, for any IR-model (DS, QS, sim). Properties as To, Ti, and T2 are characterized as 
well as determined whether or not these spaces are proximity spaces. Also characterizations of 
connectivity in terms of the Boolean NOT-operator are given. 

In all these results, the relations between topological properties and IR-aspects are given. 

APPENDIX A 

PROOF OF THE SEPARATION PROPERTIES 

THEOREM A. 1. Let (DS, QS, sim) be any JR-model. For the similarity topology r” the following 
properties are equivalent. 

(i) T” is To. 
(ii) r” is Ti . 

(iii) 7” is Tz. 
(iv) The retrieval model separates the points of DS. 
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PROOF. (iii) + (ii) + (i) is trivial and well known. 
(iv) =+- (iii): Let Dl,Dz E DS, D1 # Dz. By (iv), there is a Q E QS such that 

sim(Dl, Q) # sim(% Q)< 

We keep the full generality by assuming 

sim(D1, Q) > sim(D2, Q). 

Take 
f = sim(D1, Q) + WD2, Q) 

2 
7 

and define 

AI = R(Q,r) = {D E DS 11 sim(D,Q) > r} f 7 c T", 

Az={DEDSII sim(D, Q) < r} E 7” 

(A2 does not always belong to T!). Then DI E AI, D2 E A2, and Al n A2 = 4. Hence 7” is T2. 
(i) =+ (iv). Let DI, D2 E DS, D1 # D2. Since (DS, 7”) is TO there exist a VI E T” such that 

Dl E VI and D2 4 VI OR there exists a UZ E rfr such that D2 E UZ and 11)~ $! U2. Let us suppose 

the first case. Since VI E T”, there is an n E N, Qi E QS, TP), T:) E R (i = 1,. . . , n) such that 

So, T:) < sim(D1, Qi) < T;) for every i = 1 , . . . , n. Since Dz $! VI, we have that there exists a 

io E (1,. . . , n} such that sim(D2, Qzo) $]rli”‘, rp’ [. Hence sim(Dl, Qg,) # sim(&, QiO). Hence 
the IR-model separates the points of DS. I 

THEOREM A.2. Let (DS, QS, sim) be any B-model. For the pseudemetric topology r’, the 
following properties are equivaien~. 

(i) 7’ is TO. 
(ii) 7’ is TI. 

(iii) r’ is T2. 
(iv) 7’ is a metric topology. 
(v) The retrieval model separates the points of DS. 

PROOF. (iv) w (iii) + (ii) + (i) is trivial and well known. 
HJ;Je=+ (iv). Let D1, D2 E DS, D1 # Dz and let Q f QS be such that sim(D1, Q) # sim(Dz, Q). 

d’(D1,Dz) = sup 
I SW&, Q) - sWh &)I 

QEQS I+ j sim(D1, Q) - SW&, Q)l ’ ” 

Hence, d’ is a metric and hence T’ is a metric topology. 
(i) + (v). Let Dl,D2 E DS, D1 # D2. Hence, there is an open d/-ball B(Dl,&) around D1 such 

that Dz 4 B(Dl,c), OR there is an open d/-ball B(Dz,&) around I)2 such that DI # B(&,E). 
In both cases, is d’(D1, D2) > 0, from which it easily follows that there exists a Q E QS such 
that 

sim(D1, Q) # sim(&, Q). 1 

THEOREM A.3. Let (DS, QS, sim) be any I&model. For the retrieval topology T, the following 
properties are equivalent. 

(i) ~isT0. 
(ii) The retrieval model separates the points of DS. 
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PROOF. (ii) =+ (if. Let DI,& f DS, i3i # Ds. By (ii), there is a Q E QS such that 

sim(&, Q) # sim(&, Q). 

(4 Suppose that sim(Ds, Q) < sim(Dr, Q). Let 

ro = sim(Di, Qf + SW&, Q) 
2 

(b) 
Hence, DI f R(Q, TO), D:! 4 R(Q, TO), and R(Q,re) E 7. Hence (i) is valid. 
Suppose that sim(Dr,Q) > sim(D2,Q). The same argument as above, but with the 
indices 1 and 2 interchanged, yields (i). 

(i) =+- (ii). For every Di,& E DS, Di # Dz, let (by (i)) V E V,(Dl) be such that DZ $ V 
OR let U E V,(&) be such that Dr 6 U. Suppose we are in the first case. By the definition of 
7, there exists n E N, Qz E QS, T, E R (i = I,. . . , n) such that 

Since & # V, there is a ie E { 1,. . . , n} such that l& # R(Q 2O, ri,,). These results show that 

sim(&,Qd > rio 2 sim(&,Qi,), 

and hence, that sim(Dr , &a,,) # sim(Ds, Qic). The same argument applies to the second case. 1 

APPENDIX B 

PROOF OF THE PROXIMITY PROPERTIES 

THEOREM B. 1. Let the I&system (DS, QS, sim) be such that the points of DS are separated. 
TJlfXl 

(i) (DS, 7”) is a proximity space; 
(ii) (DS, r) is not always a proximity space. 

PROOF. 

(i) By definition, 7” = the weak topology generated by the functions sim(., Q), Q E QS 
and these functions separate points of DS. By Theorem 8.12 in 181, p. 56 (DS, Y-“1 is 
homeomorDhic to a subsaace of 

where WQ = W for every Q E QS, equipped with the product topology, via the mapping 

D E DS --+ (sim(n, Q))QEQS. 

Now R is a completely regular (metric!) space and products of such spaces are completely 
regular ([8, p. 951) and hence they are proximity spaces. 

(ii) If (DS, 7) was always a proximity space, it would be a Ts space since separation of the 
points of DS implies that (DS,r) is To (Theorem 2.3) by the properties in Section 3. 
This is shown not always to be true: see, e.g., Example 2.7.1: the vector space model 
of 131: (DS, 7) is TO, hence the IR-system separates the points of DS but it is not Tl, let 
alone Tz. I 

PROBLEM. Characterize the Ts property as well as the proximity property for the retrieval topol- 

ogy 7. 
As a consequence of the above proof, we have the following proposition. 

PROPOSITION. Equip W with the topology generated by the set 

{Ir, fool II T E RI-. 
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Denote this topology by D. Hence, 
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Then 

0) 

(ii) 

D = {$, R,]T, t-cc+ r E w} . 

T on DS is the coarsest topology making all the sim(., Q) : DS + R, D (Q E QS) 
continuous; 
suppose that (DS, QS, sim) separates the points of DS. Then (DS, T) is homeomorphic 
with a subspace of 

where EQ = (IR, D) for every Q E QS. 

PROOF. 

(i) r is generated by the sets 

R(Q, r) = {D E DS 11 sim(D, Q) > r}. 

Hence, it is the coarsest topology making all the functions sim(.,Q) : DS -+ (W, D) 
continuous. This follows from the definition of D and the properties of the inverse relation. 

(ii) Since the IR-model separates the points of DS, we can use [8, p. 56, Theorem 8.121 again, 
yielding that (DS, T) is homeomorphic with a subspace of nQeQs EQ, where EQ = (IR, D) 

for all Q E QS. I 

COROLLARY. The above results give a second proof of Theorem 2.3, (ii) + (i). 

Indeed, by (ii) of Theorem 2.3, (DS, 7) is homeomorphic with a subspace of nQeQs EQ- Since 

all EQ = (W, D) are Ta and since subspaces and products of To-spaces are TO ([8, p. 85]), the 
result follows. 

APPENDIX C 

PROOF OF PROPOSITION 4.1.1 

PROPOSITION C.l. Let (DS, QS, sim) be any IR-model and Q E QS arbitrary. Then Q is trivial 
w.r.t. 7 iff it is trivial w.r.t. 7”. 

PROOF. 

(i) Q trivial w.r.t. r” =$ Q trivial w.r.t. 7. So, Q f QS is such that 

WtQ, ~197-2) II ~1 < 7-2) c {ADS}. 

Let r1 be fixed. We have that 

NQ, ~1) = u u(Q, n,r> E k4 DSh 
T>Tl 

for every r1 f IF!. Hence, Q is trivial w.r.t. 7. 
(ii) Q trivial w.r.t. r =+ Q trivial w.r.t. 7”. So, Q E QS is such that 

W(Q, 4 II i- E W c hh W. 
But V’rr,r2 E R, r1 < r2: 

U(Q, ~~772) = {D E DS II ~1 < sir@, 9) < ~1’) 
= {D E DS 11 sim(D,Q) > q} \ {D E DS I( sim(D,Q) L ~2) 

={D~DSII~~~(D,Q)>T~J\~~{DEDS)~~~~(D,Q)>T~-~} 
?I=1 

= R(Q, ~1) \ fi R (&,r2 - ;) E (4, DS}. 
n=l 

Hence, Q is trivial w.r.t. 7”. I 

Note, that the countable intersection of r-open sets is not necessarily open in r. This is why 
this argument cannot be used to show that V(Q, ~1, ~2) belongs to 7, in fact it is not, in general. 



Information Retrieval Systems 

APPENDIX D 
PROOF OF THE CHARACTERIZATION THEOREMS 

FOR CONNECTIVITY 

THEOREM El. 1. Let (DS, QS, sim) be any I&model. For (DS, T) the following assertions are 

equivalent. 

(i) (DS, T) is disconnected. 
(ii) There exist arrays (Qs3), (Q&) (j E J, i E (1,. . . ,n3}, n3 E N, k E K, t E (1,. . . ,pr~}, 

pn_ E N) in QS and there exist ~et~ie~~s 

A,, E ret(Qz,), (22) 
A& E ret( NOT Q;,), (23) 

(24) 

PROOF. (ii) 3 (i). Let Qi3, Qik be as given. Equations (22)-(24) imply Vi, j, 3 T,~ E R such 
that 

Aij = R(Q,J, rz)), 

and V e, k, 3 r& E W such that 

A& = R”tQ;k, r;k)v with 

4 # u fi WQ~J~.J = f-) (j R=(Q&,‘;k) # Bs. 
jEJi=l kEK &=I 

Hence 

Hence 

# # i_/ fi R(Qij, ~3~) = Ds \ u fi R&&k, 7’;,) # L)s. 
jEJ z=l kEK !=I 

forms a dis~onn~tion of (OS, T), 
(i) =+ (ii). If (DS, ) T is d isconnected then there exist G, H E r, d, # G, L3S # G, G n H = C$ 

;zh{that G U H = DS. By definition of 7, there exist (Qij), (Qi,), rzJ, T& E R, j E J, 

,“‘I nj}, nJ E N, k E K, e E (1,. . . ,pk), pk E N, such that 

jEJ i=l 

G = u fi R&&k,&). 
kEK kl 

Since H = P, we have that 
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Obviously, 
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A, = W&G, rZ3) E ret(Q,,), 

& E RC(Q&,r&) E ret( NOT Q;,). I 

THEOREM D.2. Let (DS, QS, sim) be any IR-model. If DS is finite then the following assertions 
are equivalent (for r, respectively, r”). 

(i) DS is connected. 
(ii) There does not exist a Boolean retrieval (other than 4 or DS) based on elementary queries 

(in QS) th t e a is qua1 to a Boolean retrieval based on NOT s of elementary queries in QS. 

PROOF. The proof is, in essence, a negation of Theorems 4.2.4 and 4.2.5. For finite spaces DS, 
(24) looks like (m,q E IV) 

C$ # fi fi A,, = b E A;, # DS. 
j=l z=l kc1 e=1 

Now, the lemma below allows to write 

(25) 

9 Pk 

(--) U&c= (j fiA;,v 
k=l e=i s=l r-=1 

where us, v E N and where 

{Ars 11 r = 1,. . . , us, s = 1,. . . , v} = {A& 11 e = 1,. . . ,pk, k = 1,. . . ,q} . 

So, both sides of (25) are of the form 

where Cl and Cz are finite sets and where (for 7) on the left side of (24) sets R(Qo, ri3) are 
appearing and on the right-hand side sets of the form RC(Qik, rik). So, if (24) cannot be valid 
for any array (Qz,) and (QZ) (equivalently: (DS, 7) is connected) it means that no Boolean 
retrieval, consisting of elementary queries exists that is equal to any Boolean query of NOTs of 
elementary queries. The same argument goes for 7”. In both cases, we use the fact that any 
Boolean query consisting of a finite number of ANDs and ORs can be reduced to the form: 

(cf. (8)) (or with NOT Qt3 in the other case). This was already noted in [3] and mentioned in 
the Introduction. Its proof is also based on the next lemma. I 

LEMMA. (See [5, p. 251.) Let {B, 11 (Y E A} b e a family of sets and assume that {Ax 11 X E L} is 
a partition of A with each Ax # q5. Let T = nxEr. Ax. Then 

!?e (,! Bff) = -2 (fiBtcA)) ’ x 

where t(X) E Ax and t = (t(x))x,e. By taking complements one also has 

ti k! BaJ = l?r k!B”“) x 

In other, more clear, terms: any fl U of sets A,, can be interpreted as a U n of the same sets 
(but in another order) and vise-versa. 
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