
Sharing Visual Information in Virtual Environments using
Projective Texture Mapping

Yannick Francken, Johan Huysmans, Philippe Bekaert
Hasselt University - Expertise Centre for Digital Media

transnationale Universiteit Limburg
Wetenschapspark 2, 3590 Diepenbeek, Belgium

{yannick.francken, johan.huysmans, philippe.bekaert}@uhasselt.be

ABSTRACT
We present a method for sharing visual information in 3D
virtual environments, using a projective texture mapping
based method. Avatars can share information with other
avatars by projecting relevant information into the environ-
ment. In addition to standard projective texture mapping,
an important depth cue is added: projected light is atten-
uated in function of the light-travel distance. This is ef-
ficiently accomplished on a per vertex basis by adaptively
super-sampling under-sampled polygons. This way, the pro-
jection quality is maximized while keeping a fixed frame rate.
Our technique is implemented into the Quake III engine, ex-
tending its shading language with GLSL fragment and ver-
tex shaders.

Categories and Subject Descriptors:
H.5.1 [INFORMATION INTERFACES AND PRESENTA-
TION (I.7)]: Multimedia Information Systems, I.3.7 [COM-
PUTER GRAPHICS]: Three-Dimensional Graphics and Re-
alism

General Terms: Algorithms, Performance.

Keywords: Projective Texture Mapping, Visual Informa-
tion Sharing.

1. INTRODUCTION
Information sharing between clients in 3D virtual environ-

ments is a common problem, especially when a traditional
setup of keyboard and/or mouse is being used. Typically
client-client interaction is achieved by keyboard, where users
can type messages to other users in the virtual environment.
More recent approaches make the interaction multimodal,
for example by using speech and video. In this paper, a
new projection based interaction technique that allows for
sharing visual information among clients, is presented.

Complementary to our work, interactive lens techniques
were first introduced in the context of see-through interfaces
[1] and later applied to 3D virtual environments [2, 10]. It
allows the user to focus on certain parts of the environment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACE’07, June 13–15, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-640-0/07/0006 ...$5.00.

by utilizing a virtual lens, which annotates the data. For
example, a magnifying lens can be used to show hidden lay-
ers of the environment. Recently, lens techniques have been
extended to support convex volumes and implementation on
current graphics hardware [8].

Another see-through approach is cutting, where parts of
the geometry are cut away in order to see through it, for
example using CSG operations [3]. The region of interest can
be defined by the user, using a lathe, whereas the volume is
defined through an image-space selection technique, namely
the first intersection of a ray perpendicular to the view plane.

In the augmented reality domain projection techniques are
often used. Raskar et al. [7] tag objects in the real world
using RFIG tags in order to make the world self-describing.
Users can query the RFIG tags by using a projector to ob-
tain knowledge about the world. These techniques can be
used for inventory control as part of logistics.

Combining augmented reality with virtual interfaces, we
propose a virtual projection based approach [9]. Visual in-
formation, for example images, movies or personal informa-
tion, is projected on top of the geometry. The area of in-
terest is defined by the user through the use of a projector,
which size, shape and contents can be customized. As view-
ers in the virtual world can observe other users’ projections,
an information sharing method is achieved.

Practical applications of our approach are numerous. In
learning environments, the projector can visualize additional
information of the data being studied, for example labeling
different parts of a car engine. Our implementation is part
of a socio-cultural project, called Virtual Arts Centre of the
Future [6], where communication of visual information in
virtual environments plays a prominent role.

For our purpose, a prototype is implemented into the
Quake III engine [5]. We have extended the Quake III
shading language, Q3Radiant, with GLSL [4] fragment and
vertex shader functionality. Using these more expressive
shaders, not only the visual appearance of the game is con-
siderably enhanced, but users can also easily share content
by projecting customized shaders into the virtual world.

2. ALGORITHM
Our projective texture mapping based technique consists

of multiple stages. First, all triangles that intersect the pro-
jection frustum are collected. Then, a homogeneous triangle
mesh is generated to replace these triangles. For the result-
ing triangles, intensity attenuation values are computedper
vertex in function of depth and the affected triangles are
redrawn.

(a) Projecting player (b) Observing player (c) Shader room

Figure 1: Extended Q3Radiant shaders. (a) player projecting on a wall (b) other player observes projection
(c) bumpmapped room showing a shader projection together with other fixed shaders

Figure 2: Projection on large triangle. Intensity
attenuation by linearly interpolating assigned vertex
intensities using isolines is not allowed.

When a user utilizes a projector, it defines a projection
frustum containing a set of triangles in the world which can
possibly be affected by the projector. As the intensity of the
projection decreases with the distance from the projection
origin, a certain distance exists where the received intensity
is low enough that it becomes invisible to the observer. The
drop-off rates are typically defined by a radial attenuation
function. This maximum distance constrains the depth of
the frustum. The determined frustum will be used further in
the pipeline, during the triangle culling and clipping stages.

In order to get a realistic intensity value for every vertex,
care must be taken when processing large triangles. In case
of a typical radial attenuation function, increasing values
propagate in a spherical pattern around the projection ori-
gin, based on the isolines (Figure 2). Thus, when processing
large triangles, a simple linear interpolation of the vertex in-
tensity values will not generate correct attenuation values.
As a consequence, the triangles must be super-sampled in
all dimensions to get a homegeneous triangle mesh.

The triangle splitting heuristic aims at generating a ho-
mogeneous triangle mesh, given a certain error tolerance.

The error tolerance defines the density of the triangle mesh,
i.e., a low tolerance will result in a very dense mesh where a
larger tolerance will result in a less dense, faster generated
mesh (Figure 3). In our implementation, a greedy splitting
heuristic is used which adaptively super-samples all triangles
in their largest dimension until the specific error tolerance is
achieved. The tolerance is defined as the length of a triangle
in its largest dimension, guaranteeing a homegeneous trian-
gle mesh in every dimension. The error tolerance is adapted
at runtime, striving for a stable frame rate and a maximal
projection quality every frame.

In the next phase, every vertex is labeled based on the
projected texture coordinate (s, t, q). Per vertex exactly
one binary number is constructed, depending only on the
signs of the components s, t and q, similar to the Cohen-
Sutherland clipping algorithm. This way every single bit
defines on which side of the frustum half-spaces the vertex is
located. By applying fast binary operations, we cull the tri-
angles lying fully outside the projector frustum. Afterwards,
a more precise frustum clipping is applied (by OpenGL) on
the remaining triangles and attenuation values are calcu-
lated per vertex. The spherical intensity isovalue pattern is
approximated by piecewise linear interpolation of the ver-
tices. Then, all triangles influenced by the projection are
redrawn.

3. IMPLEMENTATION
We have extended Quake III with our projective texture

mapping based algorithm. Players can use the projector
as an ordinary, non-lethal weapon projecting the requested
data onto the world. Other players in the world can observe
the projection.

In order to get a general, dynamic system, we have ex-
tended the Q3Radiant shading language with GLSL frag-
ment and vertex shaders. The original Q3Radiant language
allows for creating animated textures using simple opera-
tions like texture blending, texture coordinate transforma-
tions, vertex deformations etc. We have added the possi-
bility to insert GLSL vertex and fragment shaders into the
different Q3Radiant shader stages, resulting in a easy-to-
use and very powerful language. Created shaders can also
be used to customize the projection content. A few different
extended shaders are shown in Figure 1.

Figure 3: Attenuation error with respect to edge length. Red lines represent the triangle edges, only the solid
pieces are lying in the projection frustum. Left: small edge length resulting in correct projection, Middle:
medium edge length resulting in a small error, Right: long edge length resulting in a large error.

0 50 100 150 200 250 300 350 400
40

60

80

100

120

140

160

Frame Group Number

F
P

S

 ADAPTIVE
variance: 26.90
average: 80.15
min: 66.90
max: 104.10

FIXED
variance: 451.31
average: 85.83
min: 51.60
max: 151.60

Figure 4: Comparison of frame rates: adaptive and
fixed triangle super-sampling (groups of 10 frames).
The average projection quality is the same for both
graphs, although the quality is better spread in the
adaptive case to keep a frame rate around 80 fps.

4. RESULTS
Figure 3 shows the effects of the homogeneousness of the

triangle mesh. The left of the figure shows a projection
with a dense enough triangle mesh which does not show
approximation errors. The middle one is visualized with a
coarser mesh, where a slight deviation in accuracy appears.
The right figure shows an even coarser approximation, where
the loss in image detail is more severe than in the previous
images.

To test the results of our splitting heuristic, we have re-
corded a demo which is both played with and without our
adaptive splitting heuristic. As can be seen in Figure 4, our
adaptive technique accomplishes a quasi-fixed frame rate for
the whole demo scene, while the non-adaptive heuristic re-
sults in greater frame rate variations. The overall frame
rate for our adaptive splitting technique is only slightly be-
low those of the fixed heuristic. In both approaches, the
mean precision of the subdivisioning technique is the same.
However, in our technique this precision is met almost for
every frame while in the fixed heuristic, this precision is met
in all frames.

Thus our approach results in an almost fixed processing
time per frame, where the precision is controllable. This

can be exploited to use the remaining CPU-time for other
processing, like physics etc.

5. CONCLUSIONS
In this paper we have demonstrated a visual information

sharing technique in 3D virtual environments, by using pro-
jective texture mapping. We have developed an adaptive
splitting heuristic, which observes both the frame rate and
splitting quality, to generate a homogeneous triangle mesh
in order to compute correct intensity values for every vertex,
resulting in a stable frame rate.

We have implemented our projective texture mapping ap-
proach in the Quake III engine, extending its shading lan-
guage with GLSL fragment and vertex shaders. This ex-
tended shading language can be used by the user to cus-
tomize his projections.

Possible future work includes an investigation of relevant
attenuation functions, with their corresponding ideal split-
ting heuristics. We believe a more advanced splitting heuris-
tic will increase the speed of our algorithm considerably. A
migration of our algorithm from CPU to graphics hardware
may also result in an overall performance speedup.

A practical extension is the integration of volumetric shad-
owing techniques to avoid projecting through the scene ob-
jects. While achieving more realistic visual quality, this
might result in performance bottlenecks in cases where many
clients are using a projector.

6. ACKNOWLEDGMENTS
The authors acknowledge financial support on a struc-

tural basis from the ERDF (European Regional Develop-
ment Fund), the Flemish Government and the Flemish In-
terdisciplinary institute for BroadBand Technology (IBBT,
Virtual Arts Centre of the Future project).

This paper is realized as a part of the Virtual Arts Centre
of the Future (VACF) project, funded by IBBT. Projector
concept by: Thomas Soetens, Kora Van den Bulcke. Re-
search and development initiated and in collaboration with
Workspace Unlimited: Thomas Soetens, Kora Van den Bul-
cke and Patrick Bergeron (www.workspace-unlimited.org).
Furthermore we would like to thank our colleagues for their
help and inspiration.

7. REFERENCES
[1] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and

T. D. DeRose. Toolglass and magic lenses: the
see-through interface. In SIGGRAPH ’93: Proceedings
of the 20th annual conference on Computer graphics

and interactive techniques, pages 73–80, New York,
NY, USA, 1993. ACM Press.

[2] P. Cignoni, C. Montani, and R. Scopigno.
Magicsphere: an insight tool for 3d data visualization.
Computer Graphics Forum, 13(3):317–328, 1994.

[3] C. Coffin and T. Hollerer. Interactive perspective
cut-away views for general 3d scenes. In VR ’06:
Proceedings of the IEEE Virtual Reality Conference
(VR 2006), page 118, Washington, DC, USA, 2006.
IEEE Computer Society.

[4] OpenGL Shading Language,
http://www.opengl.org/documentation/glsl/.

[5] Quake 3, http://www.idsoftware.com/.

[6] Virtual Arts Centre of the Future,
https://projects.ibbt.be/vacf/.

[7] R. Raskar, P. Beardsley, J. van Baar, Y. Wang,
P. Dietz, J. Lee, D. Leigh, and T. Willwacher. Rfig
lamps: interacting with a self-describing world via
photosensing wireless tags and projectors. ACM
Trans. Graph., 23(3):406–415, 2004.

[8] T. Ropinski and K. Hinrichs. Real-Time Rendering of
3D Magic Lenses having arbitrary convex Shapes. In
Journal of the International Winter School of
Computer Graphics (WSCG04), pages 379–386.
UNION Agency - Science Press, 2004.

[9] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran,
and P. Haeberli. Fast shadows and lighting effects
using texture mapping. In SIGGRAPH ’92:
Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages
249–252, New York, NY, USA, 1992. ACM Press.

[10] J. Viega, M. J. Conway, G. Williams, and R. Pausch.
3d magic lenses. In UIST ’96: Proceedings of the 9th
annual ACM symposium on User interface software
and technology, pages 51–58, New York, NY, USA,
1996. ACM Press.

