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In this paper [1] we study the identification of sparse int&oa networks, from a given set of observa-
tions, as a machine learning problem. An example of suchwanktis a sparse gene-protein interaction
network, for more details see [2]. Sparsity means that wepereided with a small data set and a high
number of unknown components of the system, most of whictzare. Under these circumstances, a
model needs to be learned that fits the underlying systeraptapf generalization. This corresponds to the
student-teacher setting in machine learning.

Problem setting In some engineering applications, the number of measureriveavailable for system
identification and model validation is much smaller thangiistem ordeN, which represents the number
of components. This substantial lack of data can give risgnt@dentifiability problem, in which case a
larger subset of the model class is entirely consistent thighobserved data so that no unique model can
be proposed. Since conventional techniques for systentifidation are not well suited to deal with such
situations, it thus becomes important to work around thigkgloiting as much additional information as
possible about the underlying system. In particular, wergszested in the relation between the number of
measurements and the number of components, the spardity nétwork and the influence of noise.

Definitions and Algorithm In the first part of this paper we introduce a learning al¢yonit based on
Li-minimization, to identify interaction networks from podata and analyze its dynamics with respect to
phase transitions.

Therefore we assume thatraining set of M input/output pairgee = {(Xm, Xm) | M: 1,..., M} is given,
wherexm, Xn € RN. The components of the input vectogsare independently and identically distributed so
that they are linearly independent. Since the data is as$tonge generated by some interaction network,
this network will be denoted by = (AT, BT) whereAT € RNN andBT € RN. In this context, we refer t&
as the unknowteacher and its outpuk on some inpuk is computed as followsx = T(x) = AT - x + BT.

The learning algorithm should return a netw&k (AS, BS), referred to as thetudent, with AS € RN<N
andBS € RN and with as many zeros as possible. This student should be@tgproduce the training set
Ytr: ¥m = AS - xqn + BSform: 1,..., M and generalize beyond. Théieiency of the algorithm is measured
by the generalization errege,, which represents the probability that the student is a dibdéal the teacher.
Our findings illustrate that the quality of the fit depends ewesal factors such as the ratio of the training
set size to the system size and on the sparsity of the netWbektransition towards generalization is quite
abrupt at arv-value of 0.28, indicative of a phase transition. From thaining set size onwards the student
will be a good fit to the teacher, see Fig. 1. Concerning thestipaf the network we observed that when
the number of non-zero components increases, fil@escy of the process will gradually increase. This



phenomenon is shown in Fig. 2.

Note that in this setting, it is natural to link network idiication to feature selection. Only very few
components influence the expression level of any given compty So one can restate the problem as se-
lecting exactly those few among the large amount of compisn@mder consideration. Hence the results
presented here will not only be applicable to network idaraiion, but more generally to feature selection
as well. As for network identification, we can define the gafieation error for feature selectimgsen.

In the second part of this paper we show that from a systemaviipecific system size value the gen-
eralization error of other system sizes can be estimateppd&e we have a curve fegen versusa for Np,
then the curve for system sidécan be obtained by scalingN) = af5,,+ VNo/N (@(No) — af,), with o,
the training set size fm‘fgsen: 1/2. A comparison with a set of simulation experiments, Figghbws a very

good fit.
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Figure 1: The generalization errege, as a
function of the training set size for N = 100
(0), N = 160 @) andN = 300 ¢) for k1 =
0.03.

Figure 3: The generalization error for feature

selectionsgsen as a function of the training set
sizea for N = 100 (), N = 160 @) andN =
300 ¢) for kit ~ 0.03.
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Figure 2: The generalization threshalgk, as

a function of the sparsityy for N
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Figure 4: Fig. 3 using the scaling-equation for
N =100 (), N = 160 @) computedN = 160

observedx), «t ~ 0.03.
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