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In this paper [1] we study the identification of sparse interaction networks, from a given set of observa-
tions, as a machine learning problem. An example of such a network is a sparse gene-protein interaction
network, for more details see [2]. Sparsity means that we areprovided with a small data set and a high
number of unknown components of the system, most of which arezero. Under these circumstances, a
model needs to be learned that fits the underlying system, capable of generalization. This corresponds to the
student-teacher setting in machine learning.

Problem setting In some engineering applications, the number of measurements M available for system
identification and model validation is much smaller than thesystem orderN, which represents the number
of components. This substantial lack of data can give rise toan identifiability problem, in which case a
larger subset of the model class is entirely consistent withthe observed data so that no unique model can
be proposed. Since conventional techniques for system identification are not well suited to deal with such
situations, it thus becomes important to work around this byexploiting as much additional information as
possible about the underlying system. In particular, we areinterested in the relation between the number of
measurements and the number of components, the sparsity of the network and the influence of noise.

Definitions and Algorithm In the first part of this paper we introduce a learning algorithm, based on
L1-minimization, to identify interaction networks from poordata and analyze its dynamics with respect to
phase transitions.

Therefore we assume that atraining set of M input/output pairsχtr = {(xm, ẋm) | m : 1, . . . ,M} is given,
wherexm, ẋm ∈ RN . The components of the input vectorsxm are independently and identically distributed so
that they are linearly independent. Since the data is assumed to be generated by some interaction network,
this network will be denoted byT = (AT , BT ) whereAT ∈ RN×N andBT ∈ RN . In this context, we refer toT
as the unknownteacher and its output ˙x on some inputx is computed as follows: ˙x = T (x) ≡ AT · x + BT .

The learning algorithm should return a networkS = (AS , BS ), referred to as thestudent, with AS ∈ RN×N

andBS ∈ RN and with as many zeros as possible. This student should be able to reproduce the training set
χtr: ẋm = AS · xm + BS for m : 1, . . . ,M and generalize beyond. The efficiency of the algorithm is measured
by the generalization errorεgen, which represents the probability that the student is a goodfit to the teacher.
Our findings illustrate that the quality of the fit depends on several factors such as the ratio of the training
set size to the system size and on the sparsity of the network.The transition towards generalization is quite
abrupt at anα-value of 0.28, indicative of a phase transition. From this training set size onwards the student
will be a good fit to the teacher, see Fig. 1. Concerning the sparsity of the network we observed that when
the number of non-zero components increases, the efficiency of the process will gradually increase. This



phenomenon is shown in Fig. 2.

Note that in this setting, it is natural to link network identification to feature selection. Only very few
components influence the expression level of any given component, so one can restate the problem as se-
lecting exactly those few among the large amount of components under consideration. Hence the results
presented here will not only be applicable to network identification, but more generally to feature selection
as well. As for network identification, we can define the generalization error for feature selectionεfsgen.

In the second part of this paper we show that from a system witha specific system size value the gen-
eralization error of other system sizes can be estimated. Suppose we have a curve forεfsgen versusα for N0,
then the curve for system sizeN can be obtained by scalingα(N) = αfs

gen+
√

N0/N (α(N0) − αfs
gen), with αfs

gen

the training set size forεfsgen=1/2. A comparison with a set of simulation experiments, Fig. 4,shows a very
good fit.
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Figure 1: The generalization errorεgen as a
function of the training set sizeα for N = 100
(◦), N = 160 (�) and N = 300 (.) for κT ≈
0.03.
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Figure 2: The generalization thresholdαgen as
a function of the sparsityκT for N = 80 (◦) and
—for comparison— a few values forN = 160
(�). The generalization threshold for feature
selectionαfs

gen (.) is given as reference.
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Figure 3: The generalization error for feature
selectionεfsgen as a function of the training set
sizeα for N = 100 (◦), N = 160 (�) andN =
300 (.) for κT ≈ 0.03.
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Figure 4: Fig. 3 using the scaling-equation for
N = 100 (◦), N = 160 (�) computed,N = 160
observed (.), κT ≈ 0.03.
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