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1 Introduction

Analysis of protein content of samples can play an importatg in disease di-
agnostics. For instance, Petricahal. (2002) used SELDI TOF mass spectra to
discriminate between ovarian cancer and normal samplesy fdported a con-
struction of a proteomic pattern that provided 100% sensjitand 95% specificity.
The estimated values of sensitivity and specificity werergspive and the results
deservedly attracted a lot of attention. In 2004 the sanmma faablished results of
an additional analysis of the data, using a higher resalugohnique called hybrid
guadrupole time-of-flight (QqTOF) mass spectrometry (@dset al., 2004). Us-
ing the same biological samples as Petricial. (2002), they constructed a pattern
capable of achieving a 100% sensitivity and 100% speciffoitydentifying cancer
from normal.

Reports as those just mentioned increase the interest usthef protein mass
spectrometry for classification and diagnostic purposesveyer, there are poten-
tial pitfalls. Baggerlyet al. (2004), (2005) re-examined the data of Petriogtiral.
(2002) and Conradst al. (2004) and encountered problems with the reproducibil-
ity of the results. One of the issues was that the classificatile constructed by
Petricoinet al. (2002) used features (intensity measurements at pantiocckations)
of the mass spectra found in the regions likely to be stroaffiscted by random
noise. Moreover, problems with baseline correction anibiation of the spectra
were discovered, that might have influenced the constmiaifathe rule and the
reproducibility of its findings.

This example clearly illustrates the need for a careful igaent of methods
that would allow use of mass spectrometry data for classificgpurposes. An
exercise like that proposed by the organizers of the “Cliaasion Competition on
Clinical Mass Spectrometry Proteomic Diagnosis Data” isweresting step in this
direction.

Analyses performed by Baggerst al. (2004), (2005) also clearly underline
the importance of pre-processing of mass spectra, aimedeatemoval of sys-
tematic effects, before the use of the data for classifinatkollowing this logic,
we attempted to pre-process the training mass spectromatay provided by the
organizers of the competition, before constructing a diaation rule. Our aim
was to select features of the spectra that are likely dueut kifological signals
(i.e., peptides). As a result, we selected a sedDfeatures. Next, to construct
the classification rule, we considered usthgethods of choosing a subset of the
features, combined with classification methods. We assessed the performance of
the7 x 8 = 56 combinations by using a cross-validation procedure. Tiséresult,
as indicated by the lowest overall misclassification rais wabtained for the use of
the whole set 0f)2 features as the input for a support-vector machine (SVMp) wit
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Figure 1. Baseline correction. Panel a) shows an arbitrz@gtsum of the provided
data. Panel b) shows a histogram which indicate a low bas#iintuation.

a linear kernel. This method was therefore used to condtneatlassification.

Our report is organized as follows. In Section 2 we describ@ore detail the
pre-processing strategy and the approach used to seleoptimeal classification
procedure. Section 3 presents the results of the crossatiain study undertaken
to select the classification procedure, and the resultseddpiplication of the chosen
procedure to the calibration dataset provided by the orgasiof the competition.
Section 4 closes the report with some concluding remarks.

2 Methodology

In this section we describe the pre-processing strategytlam@pproach used to
select the optimal feature selection/classification sgyat

2.1 Pre-processing

The importance of pre-processing was already motivatetaniritroduction. We
used baseline correction, dimensionality reduction,telisg for feature selection,
and intensity normalization.



2.1.1 Baseline correction

The intensity values measured in a spectrum are used as améaisthe relative
abundance of a peptide in a sample. However, before thesityeneasurements
can be used, the baseline shift should be removed, so thag¢strbt influence the
analyte intensity. A rigid baseline correction was alrepdyformed on the data by
the organizers of the competition. Figit@shows an example of how the provided
data look like. The).6 offset is an artefact from a log-transform of a preprocessin
step and should not be confused with the baseline. Howewecowld still detect
small baseline fluctuation around this offset as indicatdeigure 1(b). Regardless
the magnitude of the baseline variability, we choose to renitbis effect from the
data before attempting any further analysis. In this cdse baseline was found
by calculating (and subtracting from the intensity measiaets) the median value
of the observed local minima in a spectrum. All negative galwere truncated
to zero. If the small baseline fluctuations affected thesifestion rule was not
investigated, however we argue that removing baselinetsffe good practise.

2.1.2 Dimensionality reduction and noise filtering

The provided spectra containéd, 205 intensity measurements obtained by using
a variable binning window on a grid of roughdg, 000 bins. This is still a large
number of potential variables that could be used in a classifin procedure. Some
of the measurements are likely to be noise-generated, thdwyeduce the dimen-
sionality of the problem, and in an attempt to filter out npise first selected all
the local maxima in a spectrum (indicated in Figure 2 by reds3t Figure 2(b)
shows that there were many low intense local maxima. Thesd tbaxima were
assumed to be most likely due to noise and were removed frerddta by using a
threshold 00.005.

A disadvantage of this method is that it only captures infation about the
height of peaks in the mass spectrum. Information about hlapes of the peaks
is removed during this process and thereby we can possitdyg peptides which
might be hiding in the shoulders of larger peaks.

It would be desirable to improve the resolution of the MAL&{periments,
such that information about the isotopic variants becomagable. Then, a more
meaningful peptide selection algorithm could have beetiegh(Breenet al., 2000;
Valkenborget al,,2007; Valkenborgt al,,2008). The algorithm uses the fact that the
height of peaks depends on the proportional distributicat@mic isotopes compos-
ing a peptide. Prior chemical knowledge about the distitlytand hence about the
expected height of the peaks, can be used to reduce the danality of the data
and discriminate between a valid peptide peak and peakiatiigg from noise.



Unfortunately, as already mentioned, this procedure cooldbe applied to the
data at hand because for this form of MALDI-experiments,ghids were chosen
fairly rough due to the poor resolution. Thus, an additiora@be-filtering step was
implemented, as described in the next section.
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Figure 2: Baseline corrected spectrum with the local maximilécated by a red
star. Panel a) shows an arbitrary baseline corrected speaciver its entire range.
Panel b) shows a close-up of the spectrum from panel a) in #ss megiory400
Da to8200 Da.

2.1.3 Feature extraction

To additionally distinguish noise-generated peaks froos¢hthat might be due
to valid peptides, we assumed that the latter would manifestselves as peaks
consistently appearing around the same mass-to-chargesalue, for (almost) all
spectra from a specific group. Figure 3 shows a heatmap ofSityemeasurements,
with mass-to-charge on the horizontal axis and an arbispegtrum number on the
vertical axis. Many apparent long stretches of high intgnsieasurements across
the ordinate can be observed. We assumed that these stretehe likely due to
peptides. In order to define the/z location of the peptides, a bi-dimensional
clustering algorithm was used. It consisted of two indeeandteps:

e First, all points in the heatmap as in Figure 3, were progecte them/ z-
axis.The resulting projections were well separated owenth:-axis because
of the selection of local maxima, as described in SectiorR2Hence, on the
m/z-axis, clustering was performed using a window2oba. That is, the
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Figure 3: Heatmap of the local maxima. The ordinate repteséme spectrum
number and the abscis indicates the mass. The intensityedbtial maximum is
indicates by a color (reg- high intense, blue= low intense)

maximum distance from a projection point to a cluster wasiassl to be
equal to2 Da. The threshold was chosen empirically; lower valuesltegu
in too many small clusters in a heatmap, while larger thrieishoere yielding
stretches with too muchu/z variability. In other words, the outcome of the
first step is a set of clusters with the locations of the spébcal maxima
across the samples on the'z axis.

e Second, each cluster of spectral local maxima obtainedeifirtst clustering
step are now projected on the vertical “heatmap” axis. Thamam distance
of a projection point to a cluster was assumed td haits (spectra). The
threshold was again chosen empirically to arrive at a setodfteo small
clusters.

Only clusters (stretches) that contained less th@npoints and more thar) point
were included in the feature list. This choice was made basethe idea that
peptide-related peaks should be seen in many spectra. Ipteddpevere present
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Figure 4: Clusters found in the heatmap of local maxima. Panghows the clus-
ters between a mass range7h0 and8200 Da. Panel b) shows a close-up of a
cluster at7765 Da.

in all spectra, the cluster (stretch in a heatmap) shouldatoraboutl153 points
(some duplicates were allowed by taking the thresholtl76j. On the other hand,
it should be present at least in about h&lf)(of the spectra. Note that, if a pep-
tide were present in almost all spectra from only one groupanfiples (cases or
controls), the cluster (stretch) would contain abdupoints.

The result of this clustering step is illustrated in Figu@)4 Note that the
clusters correspond to the spectral peaks observed ind=&{bj. It is worth men-
tioning that even the small local maxima on the shoulder efiak at765 Da are
detected.

When the clustering procedure was applied to the calibwvast# of153 spectra,
92 clusters (stretches) were selected. The outcome of theréextraction proce-
dure were then/z intervals corresponding to the resulting clusters. Thetvals
defined a region along the/z-axis, wherein a spectral local maxima, possibly re-
lated to a peptide, can be found. The intensity values offieetsal local maximum
found in the defined interval are kept across the samples anel to be used in a
classification method.

Note that some of th@2 clusters could miss a point for a spectrum, because
a peak was not present in the spectrum in the cluster-defininginterval. In
such cases, the missing intensity value for the spectrummjasted directly as the
largest baseline-corrected intensity measure withimilie interval. On the other
hand, if two or more points for a particular spectrum werduded in a cluster, the



intensity value of the peak with the /> coordinate closest to the mean value of
m/z coordinates of all points in the cluster was selected. Ttexvals specified by
the calibration set are also used to classify a new sample.

2.1.4 Peptide quantification and normalization
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Figure 5: Possible plate or pin tip effect. Note, thadistinct regions with fluc-
tuating intensities can be identified (indicated by bladlked). Panel a) shows the
fluctuation of the total ion count across th&3 mass spectra. Panel b) shows a
heatmap of the local maxima in the lower mass region.

Intensity measurements in a MALDI-TOF mass spectrum camfigeinced by
many factors, like sample degradation, plate effect, lasensity, matrix crys-
tallization, ionization efficiency of a peptide, and the @lbge abundance of the
peptide in a sample. The latter is the main effect of interdghere is a higher
abundance of a peptide then we want it to be reflected by tightef a peptide
peak. However, even for a constant peptide abundance, dlimts in the other
factors can influence the value of the intensity measureniéris is illustrated in
Figure 5 as fluctuation in the total ion count (TIC, the sum|lbiraensity values)
of the baseline corrected spectra. The higher TIC for soreetemight be due to,
e.g., a higher amount of biological material spotted on &epl@his in turn might
bias the comparison of peptide abundance across specteambie 5(b) displays
the effect of these fluctuations as intensity differencesttie selected candidate
peptide peaks.



To correct for the TIC fluctuations, the intensity valuesaied for thed2 fea-
tures found by the clustering algorithm described in theipres section were stan-
dardized by using the total ion count of a spectrum. More ifipalty, feature in-
tensity F;; of the jth measuremenyi(= 1,...,92) in baseline-corrected spectrum
(:=1,...,153) was standardized by re-weighting it as follows:

-1 -1
-, el S LS 1)
” ’ Zf:l EZL:I Tri ’ Zf:l TIC;,

whereL = 11205 is the number of intensity measuremehts a baseline-corrected
spectrum, and’ = 153 is the number of spectra in the calibration (training) dettas

The same procedure is used for the classification of a newlsarpe factor
S i TIC, is unchanged and is reused for the standardization of thefeeture
intensities.

2.2 Selection of the classification procedure

In this section we describe the approach that was applidutose the classification
procedure that would perform best for the type of data at hand

We considered using a two-stage classification procedutré¢heAfirst stage, a
subset (or all) of thé&2 available features, found by the clustering algorithm de-
scribed in Section 2.1.3, would be selected. At the secaagksta classification
rule would be constructed using the selected subset ofri=atu

We considered using one 8fdifferent selection criteria (statistics) at the first
stage of the procedure. Additionally, we allowed for theesgbn of a subset df0,

20, 30, 50, or all features. For the second stage, we considered using ahelas-
sification methods. This resulted into< 5 x 7 = 280 possible approaches. All the
approaches were applied 1600 re-sampled data sets, and their misclassification
error rate was estimated.

The choice of methods for the use at the first and second stagpavtially mo-
tivated by the results of simulations performed in a mia@aasetting (Van Sanden
et al,, 2007).

In most cases existing R functions were used for the impleéatien of the
different methods. In what follows the necessary packaggesiell as the parameter
settings of the particular functions, are indicated.

2.2.1 Feature-subset selection criteria

We considere@ statistics for selecting a subset of features for the pwmdshe
construction of a classification rule. For each statigtifeatures with the highest



values are selecteg (= 10,20, 30, 50). Several methods were proposed for the
purpose of analysing microarrays. For these methods we tkeegescription in
terms of genes and gene-expression.

Wilcoxon rank sum (Wilc)

We considered the basic non-parametric test statistieifoitm of the Wilcoxon
rank sum test (Wilc). It was applied with the help of the Rdtion wilcox.testfrom
thest at s package.

Significance Analysis of Microarrays (SAM)

SAM is a method for analysing microarray experiments aneéatetg signifi-
cant genes. It was proposed by Tuskeal. (2001). A score is assigned to each
gene based on change in gene expression relative to theastadelviation aug-
mented by a small positive constant. This constant enshag¢she variance of the
score is independent of gene expression. Its value is ctosemimize the coef-
ficient of variation of the test statistic. The t-statistoc the case of two unpaired
classes was calculated by themrfunction from theSAMR package.

Prediction Analysis for Microarrays (PAM)

PAM fits a nearest shrunken centroid classifier to microadeag. The method,
also referred to as soft-thresholding, was introduced bgfiraniet al. (2002). It
provides a list of significant genes whose expression bestcterizes each class.
The functiongpamr.trainandpamr.listgenefrom thePAMR package implement the
method.

Extreme-value-distribution-based gene/feature selean (Extval)

Li et al. (2004) introduced gene selection based on the comparisthe ohax-
imum likelihood of a logistic regression model applied te triginal data and per-
mutation datasets. To avoid using computational intenmigeedures they propose
to take advantage of the extreme-value distribution forltigelikelihood ratios.
From there a ranking of the genes follows, that can be usedl¢atsa predefined
number of genes with the highest ranks (extval). AlterredyivLi et al. (2004)
also suggest two criteria to determine the number of genbs 8elected from the
ranking list. One is based on the expected val&esr{terion) and the other one is
based on p-value$*(criterion). We applied both criteria. A self-written codas
used to implement the method in R.

Between-within ratio (BW)

The between-within (BW) ratio was used for ranking and s&acf genes in
a microarray context by, e.g., Dudat al. (2002). The BW ratio is the ratio of
the between-treatment sum of squares and the within-tesdteum of squares of
gene-expression values. In a two group setting it reducgetsame statistic as the



t-test. A self-written code was used to implement the methdrl

Prediction strength (PS)

The prediction strength (PS) (Xioreg al, 2001) of a certain gene is defined
as the ratio of the difference in mean log expression leveléen the two groups
and the sum of the variances of the two classes. A self-writtele was used to
implement the method in R.

Normal mixture (Mix)

The distribution of intensity measures for an individuatiee (peptide) is as-
sumed to come from a mixture of two normal populations witlbmon variance.
Assuming the true class of the spectrum is unknowris an indicator variable that
equalsl or 0 if spectrum: is obtained for a case or control sample, respectively,
given featuregj. Let F}; denote the standardized intensity of featjine spectrum.

The normal mixture model can be formulated as

Fj ~ 2N (pz,05) + (1= 2i5) N (o, 07). (2)

z;; is a latent classification variable assumed to be Berndigtiributed with mixing
probabilityr; (Congdon 2003).
The model was fitted using a Bayesian approach with the fahligyriors:

o2 ~ gamma(0.0001, 0.0001), ju; ~ N(0,0%),

on ~ gamma(0.0001,0.0001), m; ~ U(0,1).

A spectrum is assigned to the class more frequently repiesgen the posterior
distribution of z;;. This can be seen as corresponding to the choice of the class
according to whether the posterior mean of the probabiljtys larger or smaller
than 50%.

The ranking of the features is based on misclassificaticor eptained from
comparing, for each feature, the true and predicted cladsthe training spectra.
The model was fitted in R and WinBugs by using the packii)& nBugs.

Statistical impurity measures (Gini)

In contrast to determining a test statistic, we can atterafingd a feature-
specific threshold in the intensity range. If a measuredevadua particular feature
is larger (resp. smaller) than this threshold, the specisuassigned to, for instance,
class one (resp. two). Statistical impurity measures giyaht effectiveness of this
method. There are several ways this can be done, leadingltipl@umpurity mea-
sures. We focus on the Gini index (Gini). A full descriptiande found in Murthy
et al. (1994) and Swet al. (2003). A self-written code was used to implement the
method in R.



2.2.2 Classification methods

The class prediction procedures investigated in our stadded classical dis-
criminant analysis techniques, tree methods, and mackaraihg methods.

Discriminant analysis

Linear discriminant analysis (LDA), a classical discrimuitt method, estimates
linear discriminant functions for decision boundariesdabsn assumptions of Gaus-
sian distribution and equal covariance matrices for theiged data. Diagonal
linear discriminant analysis is a variant of the LDA methddassumes a diago-
nal structure for the covariance matrix. If the matricesassumed equal for the
considered classes, a linear discriminant rule is obtajbédA). Otherwise, one
obtains a quadratic discriminant rule (DQDA). In a sensePBland DQDA ig-
nore the correlation structure between variables (feajuhe our study we included
LDA and DLDA based on their performance in a microarray cehfgan Sanden
et al. 2007). LDA is implemented as the functitoha in the MASS package, while
stat.diag.ddrom thesma package is used for DLDA.

Classification tree

A classification tree is a binary recursive partitioning hoet developed by
Breimanet al. (1984). In each step a subset of training samples is spliva) t
based on the intensity value of one particular feature. Tieevis chosen to ob-
tain an as homogeneous set of labels as possible in eactigoémty. The subsets
remaining at the final stage are assigned to a certain clasgne which is most
frequently represented in the subset. In a way, the methsdtrawn feature se-
lection procedure. It determines which feature to use (ftbengiven set) at each
splitting node in order to get the best classification. Thetdire makes them quite
robust to the presence of classification noise.

Aggregated classifiers combine tree classifiers to imprbgeatcuracy of the
class prediction. One such method is calegjging(Breiman, 1996). Bootstrap
replicates (in our case 100) are taken from the trainingsgta# tree is constructed
for each replicate and the final classification is determimgdajority vote. That
is, the sample is assumed to belong to the class to which ib& frequently as-
signed by the different trees. Bagging is said to be a vaeiaeduction technique,
designed to stabilize trees. It is implemented by the foumépredbagg.factofrom
thei pr ed package.

Boosting proposed by Schapire and Freund (1999) is another formgreggt-
ing classifiers. A series of classification trees is proddoedhe training dataset,
each time with different weights assigned to the samples. idéa is to give sam-
ples misclassified in the previous step more weight in theectirone. The final
outcome is a weighted majority vote of all created treess believed that bag-



ging is much better than boosting in situations with suldgthalassification noise.
Boosting is however expected to reduce both the varianceiasdf unstable trees.
It is implemented as the functiomgpmand gbm.morein the gbmpackage. The
gbmfunction is first applied to the data in order to create 108grn@ the manner
described above. When applying the function, a shrinkaganpeter of 0.001, the
fraction of randomly selected observations for buildinges tof 0.5, and Bernoulli
distribution were used. Thgbm.morefunction is used to create 1000 additional
trees.

Random forest@Breiman, 2001) are formed by a combination of tree predscto
Subsets of spectra and peptides are obtained by indepgndesiving samples
with replacement from the training dataset and by sele@ingmber of features at
random. A classification tree is estimated for each of thelymwéwmed datasets.
A new spectrum is allocated to the class with the most votes ail the trees
in the forest. The method is implemented as the functeordomForesfrom the
r andontor est package. The number of samples drawn at random is set at 63%
of the total number. This is the default value in R. For theuess it is determined
by a function specified in the help file thkhndomForest The method was applied
with the number of trees equal to 500 and 1000. Results adatdior 1000 trees
were very close to those obtained for 500. Therefore, or@\dtter are reported.

Machine learning

Support vector machines (SVM), first introduced by Cortes émpnik (1995)
in the machine learning theory, are used to solve two-gréagsiication problems.
The idea behind them is the following: the samples from tHibdion data are
non-linearly mapped to a very high-dimensional featurecspén this space a hy-
perplane is designed that provides an optimal separatitwelea the two groups.
The support vectors are the samples which lie closest toggh@rating hyperplane.
In the input space this hyperplane corresponds to a noasliahecision boundary.

To classify a sample a decision value is calculated. Thisevguantifies the dis-
tance between a sample and the decision boundary. The stha décision value
determines the class label. Furetyal. (2000) give an overview of the calculations
involved. Note that SVM does not provide probabilities fesigning individual
observations to classes.

SVM are characterized by the regularization parameter haduse of linear,
polynomial, radial, splines, and other kernels to solveoibtémization problem. For
our analysis only the linear and radial kernel were consideil he regularization
parameter was set equal to one. The other parameters wetdtsetefault value of
the R-function (shrinking was allowed, epsilon=0.1, taleze=0.001). The method
is implemented as th8VMfunction in the packagel1071.



2.2.3 Cross-validation study
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Figure 6: Features found in re-sampled datasets. Panebajssihe number of
features (clusters) found for tH&00 resampling exercises. Panel b) indicates the
location of the features found from the resampling exerbiselue dots. The red
dots are the features found for the whole datas&i §pectra)

In order to choose the best combination of a feature-selectiethod and a
classification procedure, we applied all the combinatienf)00 re-sampled data
sets, and we evaluated the misclassification error rate.

Each re-sampled dataset contaihédpectra from the case-group asitispec-
tra from the control-group, randomly selected (withoutaepment) from the com-
plete set ofl53 spectra. For thesB)0 spectra, treated as a training set, the prepro-
cessing steps described in Section 2.1 were applied.

Figure 6 shows the number and location of clusters found ah ed the re-
sampled datasets. On averagefeatures were selected (Figure 6, panel (a)). The
heatmap in panel (b) shows that in the majority of cases, dheesclusters (blue
dots) were consistently found in tH®00 re-sampled datasets. Note that, for the
whole set ofl53 spectra92 features were selected. Their meariz location is
indicated by red dots at the top of panel (b) of Figure 6.

Once the features were selected for the set(of spectra by the clustering
algorithm, corresponding intensity values were obtaimedife53 remaining spec-
tra, that were treated as the test set. (Note that the tespiagira were also pre-
processed; for the intensity standardization, the ternménnumerator of (1) was
based only onk’ = 100 training spectra.) The misclassification error for each



classification procedure was computed using the test set.

3 Results

In this section we present the results of the cross-vabdasiudy undertaken to
select the classification procedure, and the results ofgpgcation of the chosen
procedure to the calibration dataset provided by the orgasiof the competition.

3.1 Cross-validation study

The estimates of total misclassification error obtainedter80 combinations of
feature-subset selection and classification methods blyiagpthem to the1000
re-sampled datasets are displayed in Table 1. For each chéftbanean misclassi-
fication rate and its standard deviation (on parenthese® @aculated.

Instead of using the pre-determined numpesf “best” scoring feature, one
could use the E- or P-criterion to select it automaticalge(Section 2.2.1). Table 2
presents the results obtained using the two criteria foclafisification procedures
listed in Table 1.

It is worth noting that for the vast majority of the considém@@pproaches the
misclassification error decreases with the increasing murabselected features,
and it achieves its minimum (except for LDA and DLDA) if all= 92 features are
selected for building a classification rule. Based on a sitmuh study in a microar-
ray context, Van Sandeet al. (2007) reported that, for the methods considered
in our study, there was a clear dependence of the averagéassgication rate on
p, the number of selected features. Using too few or too maatyfes increases
the misclassification. This is most likely due to the fact tiging too few features
does not allow to discriminate between the classes, evha fgatures are truly dif-
ferentiating. On the other hand, asncreases, more and more non-differentiating
features enter the subset selected for building the cleasdn rule and make the
classification more difficult. Hence, there might be an optiwalue ofp that might
lead to the best performance of a classification procedure.

From this point of view, Tables 1 and 2 suggest that the optirahoice is the
selection of all thed2 features. In this case, the choice of the method of feature-
subset selection is irrelevant. It is worth noting, thoutiat in general, different
methods of feature-subset selection give similar resaltech classification pro-
cedure.

Furthermore, when aj) = 92 features are considered for building a classifi-
cation rule, the minimum misclassification error is obtdirfier the linear kernel



SVM. This approach was therefore selected to be appliedettettt data provided
by the organizers of the competition.

In the case of the linear kernel SVM, the use of PAM for a subsgb features
might have been also considered. However, given the aforeomed argumenta-
tion for choosing all the features, confirmed by a slightiywéo misclassification
error, we decided not to use PAM &0 features.



Table 1: Mean misclassification error rate (standard devian parentheses) for the
method selection. Abbreviations: RF — random forest; LDAnear discriminant
analysis; DLDA — diagonal LDA; SVMIin — support vector machiwith a linear
kernel; SVMrad — SVM with a radial kernel.

Classification | Selection Number of selected features

procedure criterion 10 | 20 | 30 | 50 | all
Bagging wilc 2357 (.0511)[ .2147 (.0512)[ .2116 (.0510)] .2041 (.0508)| .1952 (.0528)
Bagging sam .2385(.0511)| .2135(.0517)| .2049 (.0510)| .1925 (.0524)| .1952 (.0528)
Bagging pam .2352 (.0541)| .2127 (.0523)| .2022 (.0516)| .1933 (.0517)| .1952 (.0528)
Bagging ps .2383 (.0510)| .2122 (.0538)| .2073 (.0516)| .1960 (.0525)| .1952 (.0528)
Bagging bw .2389 (.0513)| .2165 (.0543)| .2087 (.0522)| .1952 (.0518)| .1952 (.0528)
Bagging gini .2346 (.0535)| .2085 (.0523)| .1975 (.0531)| .1930 (.0532)| .1952 (.0528)
Bagging extval .2364 (.0510)| .2138(.0536)| .2087 (.0524)| .1960 (.0521)| .1952 (.0528)
Bagging mix .2204 (.0553)| .2088 (.0550)| .2049 (.0558)| .1970 (.0538)| .1952 (.0528)
Boosting wilc .2104 (.0490)| .2062 (.0499)| .2037 (.0497)| .2005 (.0508)| .1994 (.0512)
Boosting sam .2152 (.0494)| .2049 (.0507)| .2013 (.0507)| .1996 (.0514)| .1994 (.0512)
Boosting pam .2323 (.0535)| .2232(.0552)| .2034 (.0516)| .1991 (.0510)| .1994 (.0512)
Boosting ps .2109 (.0488)| .2050 (.0504)| .2012 (.0513)| .1991 (.0509)| .1994 (.0512)
Boosting bw .2118 (.0494)| .2064 (.0506)| .2016 (.0504)| .1991 (.0513)| .1994 (.0512)
Boosting gini 2113 (.0497)| .2018 (.0510)| .1993 (.0516)| .1996 (.0515)| .1994 (.0512)
Boosting extval .2106 (.0487)| .2052 (.0505)| .2015 (.0511)| .1995 (.0515)| .1994 (.0512)
Boosting mix .2321 (.0586)| .2277 (.0595)| .2206 (.0595)| .1980 (.0508)| .1994 (.0512)
RF wilc 2211 (.0468)| .1981 (.0476)| .1940 (.0471)| .1877 (.0483)| .1800 (.0477)
RF sam .2232 (.0485)| .1990 (.0485)| .1902 (.0468)| .1824 (.0466)| .1800 (.0477)
RF pam .2196 (.0521)| .1997 (.0503)| .1899 (.0453)| .1830 (.0464)| .1800 (.0477)
RF ps 2219 (.0471)| .1993 (.0490)| .1911 (.0483)| .1830 (.0473)| .1800 (.0477)
RF bw .2229 (.0485)| .2025 (.0498)| .1927 (.0491)| .1835 (.0468)| .1800 (.0477)
RF gini .2207 (.0508)| .1914 (.0488)| .1833 (.0484)| .1813 (.0473)| .1800 (.0477)
RF extval .2204 (.0478)| .1989 (.0495)| .1918 (.0487)| .1830 (.0476)| .1800 (.0477)
RF mix .2071 (.0528)| .1938(.0512)| .1896 (.0523)| .1781 (.0469)| .1800 (.0477)
LDA wilc .2068 (.0491)| .2132(.0528)| .2104 (.0603)| .2074 (.0590)| .3111 (.0709)
LDA sam .2067 (.0502)| .1980 (.0519)| .1893 (.0551)| .1957 (.0572)| .3111 (.0709)
LDA pam .1879 (.0468)| .1886 (.0531)| .1856 (.0521)| .1948 (.0573)| .3111 (.0709)
LDA ps .2071 (.0497)| .1992 (.0534)| .1964 (.0555)| .2020 (.0578)| .3111 (.0709)
LDA bw .2107 (.0499)| .2020 (.0537)| .1973 (.0555)| .2019 (.0573)| .3111 (.0709)
LDA gini .2068 (.0508)| .1966 (.0537)| .1783 (.0568)| .1953 (.0562)| .3111 (.0709)
LDA extval .2065 (.0492)| .2024 (.0538)| .1959 (.0563)| .2029 (.0578)| .3111 (.0709)
LDA mix .2083 (.0573)| .2022 (.0565)| .1968 (.0550)| .2121 (.0590)| .3111 (.0709)
DLDA wilc .1967 (.0512)| .2016 (.0532)| .2083 (.0543)| .2033 (.0507)| .2046 (.0512)
DLDA sam .2045 (.0508)| .2008 (.0520)| .1964 (.0516)| .2005 (.0500)| .2046 (.0512)
DLDA pam .2134 (.0513)| .1976 (.0529)| .1945 (.0511)| .2000 (.0498)| .2046 (.0512)
DLDA ps .1942 (.0505)| .2011 (.0539)| .2035 (.0537)| .2009 (.0509)| .2046 (.0512)
DLDA bw .1995 (.0520)| .2044 (.0546)| .2049 (.0537)| .2010 (.0509)| .2046 (.0512)
DLDA gini .2055 (.0536)| .1927 (.0539)| .1971 (.0542)| .2007 (.0514)| .2046 (.0512)
DLDA extval .1922 (.0502)| .2013 (.0536)| .2040 (.0536)| .2012 (.0511)| .2046 (.0512)
DLDA mix .2308 (.0587)| .2253 (.0575)| .2149 (.0588)| .2123 (.0548)| .2046 (.0512)
SVMIin wilc 2048 (.0470)| .1921 (.0521)| .1776 (.0517)| .1748 (.0518)| .1540 (.0492)
SVMlin sam .2055 (.0480)| .1810 (.0509)| .1693 (.0502)| .1583 (.0488)| .1540 (.0492)
SVMIin pam 1977 (.0476)| .1728 (.0496)| .1698 (.0494)| .1561 (.0484)| .1540 (.0492)
SVMIin ps .2041 (.0474)| .1862 (.0501)| .1772 (.0495)| .1615 (.0499)| .1540 (.0492)
SVMlin bw .2052 (.0477)| .1893 (.0514)| .1780 (.0508)| .1626 (.0508)| .1540 (.0492)
SVMIin gini .2065 (.0485)| .1831 (.0525)| .1581 (.0506)| .1599 (.0494)| .1540 (.0492)
SVMlin extval .2041 (.0476)| .1859 (.0503)| .1762 (.0494)| .1609 (.0506)| .1540 (.0492)
SVMIin mix .2040 (.0550)| .1880 (.0551)| .1786 (.0542)| .1788 (.0525)| .1540 (.0492)
SVMrad wilc 2078 (.0495)| .1976 (.0500)| .1895 (.0511)| .1795 (.0491)| .1709 (.0464)
SVMrad sam .2124 (.0508)| .1871 (.0500)| .1767 (.0485)| .1715 (.0456)| .1709 (.0464)
SVMrad pam .2114 (.0515)| .1862 (.0492)| .1725 (.0453)| .1699 (.0458)| .1709 (.0464)
SVMrad ps .2076 (.0492)| .1894 (.0520)| .1819 (.0497)| .1721 (.0467)| .1709 (.0464)
SVMrad bw .2096 (.0502)| .1937 (.0530)| .1841 (.0506)| .1726 (.0465)| .1709 (.0464)
SVMrad gini .2130 (.0524)| .1801 (.0526)| .1680 (.0494)| .1695 (.0451)| .1709 (.0464)
SVMrad extval .2054 (.0489)| .1903 (.0521)| .1834 (.0511)| .1727 (.0467)| .1709 (.0464)
SVMrad mix .2115 (.0552)| .1933 (.0520)| .1767 (.0498)| .1678 (.0459)| .1709 (.0464)




Table 2: Mean misclassification error rate (standard diewidah parentheses) for
theE- andP-criteria of the extreme-value-distribution-based géalre selection.
Abbreviations as in Table 1.

Classification procedure E-criterion P-criterion
Bagging 0.2016 (0.0506) 0.2224 (0.0498)
Boosting 0.2008 (0.0506) 0.2097 (0.0485)
RF 0.1896 (0.0468) 0.2102 (0.0458)
LDA 0.1933 (0.0567) 0.2037 (0.0511)
DLDA 0.2039 (0.0529) 0.2000 (0.0536)
SVMlin 0.1720 (0.0498) 0.1960 (0.0478)

SVMrad 0.1780 (0.0475) 0.1995 (0.0495)




3.2 Training data and leave-one-out cross-validation

The linear kernel SVM was applied to the pre-processeditrgidataset ofi53
spectra. Forty-eight spectra (24 of each class) wheretsdles support vectors.
When the classifier was then applied to the whole sébdfspectra of the calibra-
tion data, a perfect classification was reached. The totaf esite was therefore 0
and both the sensitivity and the specificity of the classifiere estimated at 100%.

The error rate was also estimated using leave-one-out-gedgkation. That
is, each spectrum was removed from the dataset, the classificnethod was
applied to the remaining spectra, and the class predictias @btained for the
removed spectrum. Results are provided in Table 3. The ¢otal rate was es-
timated to equak4/153 = 0.1569, with the sensitivity and specificity equal to
67/77 = 0.8701 and62/76 = 0.8158, respectively. Note that the estimated error
rate is very close to the estimate reported in Table 1.

Table 3: Classification results for leave-one-out crosglafaon.

Predicted class True class

0 1
0 67 14
1 10 62

4 Discussion

As mentioned in the Introduction, classification of sampissg mass spectra re-
quires a careful consideration of various sources of ngisand error. For instance,
a removal of systematic effects like, e.g., a varying basetin the intensity scale,
or miscalibration of mass-to-charge coordinates, need®tperformed. An im-
portant step is also a selection of features of the specataatie likely due to true
biological signal (peptides). To this aim, chemical-knedde-based peak finding
methods might be used (Valkenbatyal., 2007; Valkenborget al., 2008). In this
way, the selection of noise-generated spectrum featurdmifling a classification
rule might be avoided.

We believe that a careful pre-processing of mass spectriaag o developing
a successful classification procedure. From this pointefyone should start from
raw data and apply the methods of choice aimed at removakofahous nuisance
effects and additional error processes present within pleetsal data. Note that



some methods (e.g., non-linear removal of baseline) makgpibssible to retrieve
raw data from the pre-processed ones (Baggsrhi., 2004). This was the case for
the data made available to the participants of the comgetitt would be of interest
to investigate whether using the raw data might improve ¢perted results.

Another important issue is the choice of the classificatimtedure. This issue
also applies to other complex experimental technique gs, microarrays. Given
the complexity of data produced by such techniques, onegpitglshould not ex-
pect that a single classification method will always outperf all the others. It
is therefore paramount to investigate relative merits iétent procedures to see
which methods, and in which settings, might be expected td& weasonably well.
In the current study we attempted to achieve it by estimatiegmisclassification
error rate for the considered classification approachepplyimg the approaches to
1000 re-sampled datasets. The results were pointing favorablgrds linear kernel
SVM, with radial kernel SVM and RF as the next best alterrestivinterestingly,
for a microarray context, Van Sandenhal. (2007) reported DLDA, RF, and radial
SVM as the best performing approaches. Good performance.DAland RF in
the microarray context was also reported by, e.g., Dwtait. (2002) and Leet al.
(2005). It would be of interest to check whether these digtifferent conclusions
can be confirmed and related to the different nature of thesrspsctrometry and
microarray data.
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