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1 Introduction

Analysis of protein content of samples can play an importantrole in disease di-
agnostics. For instance, Petricoinet al. (2002) used SELDI TOF mass spectra to
discriminate between ovarian cancer and normal samples. They reported a con-
struction of a proteomic pattern that provided 100% sensitivity and 95% specificity.
The estimated values of sensitivity and specificity were impressive and the results
deservedly attracted a lot of attention. In 2004 the same team published results of
an additional analysis of the data, using a higher resolution technique called hybrid
quadrupole time-of-flight (QqTOF) mass spectrometry (Conradset al., 2004). Us-
ing the same biological samples as Petricoinet al. (2002), they constructed a pattern
capable of achieving a 100% sensitivity and 100% specificityfor identifying cancer
from normal.

Reports as those just mentioned increase the interest in theuse of protein mass
spectrometry for classification and diagnostic purposes. However, there are poten-
tial pitfalls. Baggerlyet al. (2004), (2005) re-examined the data of Petricoinet al.
(2002) and Conradset al. (2004) and encountered problems with the reproducibil-
ity of the results. One of the issues was that the classification rule constructed by
Petricoinet al. (2002) used features (intensity measurements at particular locations)
of the mass spectra found in the regions likely to be stronglyaffected by random
noise. Moreover, problems with baseline correction and calibration of the spectra
were discovered, that might have influenced the construction of the rule and the
reproducibility of its findings.

This example clearly illustrates the need for a careful development of methods
that would allow use of mass spectrometry data for classification purposes. An
exercise like that proposed by the organizers of the “Classification Competition on
Clinical Mass Spectrometry Proteomic Diagnosis Data” is aninteresting step in this
direction.

Analyses performed by Baggerlyet al. (2004), (2005) also clearly underline
the importance of pre-processing of mass spectra, aimed at the removal of sys-
tematic effects, before the use of the data for classification. Following this logic,
we attempted to pre-process the training mass spectrometrydata, provided by the
organizers of the competition, before constructing a classification rule. Our aim
was to select features of the spectra that are likely due to true biological signals
(i.e., peptides). As a result, we selected a set of92 features. Next, to construct
the classification rule, we considered using8 methods of choosing a subset of the
features, combined with7 classification methods. We assessed the performance of
the7×8 = 56 combinations by using a cross-validation procedure. The best result,
as indicated by the lowest overall misclassification rate, was obtained for the use of
the whole set of92 features as the input for a support-vector machine (SVM) with
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Figure 1: Baseline correction. Panel a) shows an arbitrary spectrum of the provided
data. Panel b) shows a histogram which indicate a low baseline fluctuation.

a linear kernel. This method was therefore used to constructthe classification.

Our report is organized as follows. In Section 2 we describe in more detail the
pre-processing strategy and the approach used to select theoptimal classification
procedure. Section 3 presents the results of the cross-validation study undertaken
to select the classification procedure, and the results of the application of the chosen
procedure to the calibration dataset provided by the organizers of the competition.
Section 4 closes the report with some concluding remarks.

2 Methodology

In this section we describe the pre-processing strategy andthe approach used to
select the optimal feature selection/classification strategy.

2.1 Pre-processing

The importance of pre-processing was already motivated in the introduction. We
used baseline correction, dimensionality reduction, clustering for feature selection,
and intensity normalization.



2.1.1 Baseline correction

The intensity values measured in a spectrum are used as a measure for the relative
abundance of a peptide in a sample. However, before the intensity measurements
can be used, the baseline shift should be removed, so that it does not influence the
analyte intensity. A rigid baseline correction was alreadyperformed on the data by
the organizers of the competition. Figure??shows an example of how the provided
data look like. The0.6 offset is an artefact from a log-transform of a preprocessing
step and should not be confused with the baseline. However, we could still detect
small baseline fluctuation around this offset as indicated in Figure 1(b). Regardless
the magnitude of the baseline variability, we choose to remove this effect from the
data before attempting any further analysis. In this case, the baseline was found
by calculating (and subtracting from the intensity measurements) the median value
of the observed local minima in a spectrum. All negative values were truncated
to zero. If the small baseline fluctuations affected the classification rule was not
investigated, however we argue that removing baseline effects is good practise.

2.1.2 Dimensionality reduction and noise filtering

The provided spectra contained11, 205 intensity measurements obtained by using
a variable binning window on a grid of roughly30, 000 bins. This is still a large
number of potential variables that could be used in a classification procedure. Some
of the measurements are likely to be noise-generated, though. To reduce the dimen-
sionality of the problem, and in an attempt to filter out noise, we first selected all
the local maxima in a spectrum (indicated in Figure 2 by red stars). Figure 2(b)
shows that there were many low intense local maxima. These local maxima were
assumed to be most likely due to noise and were removed from the data by using a
threshold of0.005.

A disadvantage of this method is that it only captures information about the
height of peaks in the mass spectrum. Information about the shape of the peaks
is removed during this process and thereby we can possibly miss peptides which
might be hiding in the shoulders of larger peaks.

It would be desirable to improve the resolution of the MALDI-experiments,
such that information about the isotopic variants becomes available. Then, a more
meaningful peptide selection algorithm could have been applied (Breenet al., 2000;
Valkenborget al.,2007; Valkenborget al.,2008). The algorithm uses the fact that the
height of peaks depends on the proportional distribution ofatomic isotopes compos-
ing a peptide. Prior chemical knowledge about the distribution, and hence about the
expected height of the peaks, can be used to reduce the dimensionality of the data
and discriminate between a valid peptide peak and peaks originating from noise.



Unfortunately, as already mentioned, this procedure couldnot be applied to the
data at hand because for this form of MALDI-experiments, thegrids were chosen
fairly rough due to the poor resolution. Thus, an additionalnoise-filtering step was
implemented, as described in the next section.
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Figure 2: Baseline corrected spectrum with the local maximaindicated by a red
star. Panel a) shows an arbitrary baseline corrected spectrum over its entire range.
Panel b) shows a close-up of the spectrum from panel a) in the mass region7400
Da to8200 Da.

2.1.3 Feature extraction

To additionally distinguish noise-generated peaks from those that might be due
to valid peptides, we assumed that the latter would manifestthemselves as peaks
consistently appearing around the same mass-to-chargem/z-value, for (almost) all
spectra from a specific group. Figure 3 shows a heatmap of intensity measurements,
with mass-to-charge on the horizontal axis and an arbitraryspectrum number on the
vertical axis. Many apparent long stretches of high intensity measurements across
the ordinate can be observed. We assumed that these stretches were likely due to
peptides. In order to define them/z location of the peptides, a bi-dimensional
clustering algorithm was used. It consisted of two independent steps:

• First, all points in the heatmap as in Figure 3, were projected on them/z-
axis.The resulting projections were well separated over them/z-axis because
of the selection of local maxima, as described in Section 2.1.2. Hence, on the
m/z-axis, clustering was performed using a window of2 Da. That is, the
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Figure 3: Heatmap of the local maxima. The ordinate represents the spectrum
number and the abscis indicates the mass. The intensity of the local maximum is
indicates by a color (red= high intense, blue= low intense)

maximum distance from a projection point to a cluster was assumed to be
equal to2 Da. The threshold was chosen empirically; lower values resulted
in too many small clusters in a heatmap, while larger thresholds were yielding
stretches with too muchm/z variability. In other words, the outcome of the
first step is a set of clusters with the locations of the spectral local maxima
across the samples on them/z axis.

• Second, each cluster of spectral local maxima obtained in the first clustering
step are now projected on the vertical “heatmap” axis. The maximum distance
of a projection point to a cluster was assumed to be5 units (spectra). The
threshold was again chosen empirically to arrive at a set of not too small
clusters.

Only clusters (stretches) that contained less then170 points and more than70 point
were included in the feature list. This choice was made basedon the idea that
peptide-related peaks should be seen in many spectra. If a peptide were present
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Figure 4: Clusters found in the heatmap of local maxima. Panel a) shows the clus-
ters between a mass range of7600 and8200 Da. Panel b) shows a close-up of a
cluster at7765 Da.

in all spectra, the cluster (stretch in a heatmap) should contain about153 points
(some duplicates were allowed by taking the threshold of170). On the other hand,
it should be present at least in about half (70) of the spectra. Note that, if a pep-
tide were present in almost all spectra from only one group ofsamples (cases or
controls), the cluster (stretch) would contain about70 points.

The result of this clustering step is illustrated in Figure 4(a). Note that the
clusters correspond to the spectral peaks observed in Figure 2(b). It is worth men-
tioning that even the small local maxima on the shoulder of the peak at7765 Da are
detected.

When the clustering procedure was applied to the calibration set of153 spectra,
92 clusters (stretches) were selected. The outcome of the feature extraction proce-
dure were them/z intervals corresponding to the resulting clusters. These intervals
defined a region along them/z-axis, wherein a spectral local maxima, possibly re-
lated to a peptide, can be found. The intensity values of the spectral local maximum
found in the defined interval are kept across the samples and were to be used in a
classification method.

Note that some of the92 clusters could miss a point for a spectrum, because
a peak was not present in the spectrum in the cluster-definingm/z interval. In
such cases, the missing intensity value for the spectrum wasimputed directly as the
largest baseline-corrected intensity measure within them/z interval. On the other
hand, if two or more points for a particular spectrum were included in a cluster, the



intensity value of the peak with them/z coordinate closest to the mean value of
m/z coordinates of all points in the cluster was selected. The intervals specified by
the calibration set are also used to classify a new sample.

2.1.4 Peptide quantification and normalization
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Figure 5: Possible plate or pin tip effect. Note, that4 distinct regions with fluc-
tuating intensities can be identified (indicated by black lines). Panel a) shows the
fluctuation of the total ion count across the153 mass spectra. Panel b) shows a
heatmap of the local maxima in the lower mass region.

Intensity measurements in a MALDI-TOF mass spectrum can be influenced by
many factors, like sample degradation, plate effect, laserintensity, matrix crys-
tallization, ionization efficiency of a peptide, and the absolute abundance of the
peptide in a sample. The latter is the main effect of interest: if there is a higher
abundance of a peptide then we want it to be reflected by the height of a peptide
peak. However, even for a constant peptide abundance, fluctuations in the other
factors can influence the value of the intensity measurement. This is illustrated in
Figure 5 as fluctuation in the total ion count (TIC, the sum of all intensity values)
of the baseline corrected spectra. The higher TIC for some spectra might be due to,
e.g., a higher amount of biological material spotted on a plate. This in turn might
bias the comparison of peptide abundance across spectra. Heatmap 5(b) displays
the effect of these fluctuations as intensity differences for the selected candidate
peptide peaks.



To correct for the TIC fluctuations, the intensity values obtained for the92 fea-
tures found by the clustering algorithm described in the previous section were stan-
dardized by using the total ion count of a spectrum. More specifically, feature in-
tensityFij of thejth measurement (j = 1, . . . , 92) in baseline-corrected spectrumi
(i = 1, . . . , 153) was standardized by re-weighting it as follows:

F ′

ij = Fij

(

∑L

l=1
Iil

∑K

k=1

∑L

l=1
Ikl

)

−1

= Iij

(

TICi
∑K

k=1
TICk

)

−1

, (1)

whereL = 11205 is the number of intensity measurementsI in a baseline-corrected
spectrum, andK = 153 is the number of spectra in the calibration (training) dataset.

The same procedure is used for the classification of a new sample. The factor
∑K

k=1
TICk is unchanged and is reused for the standardization of the newfeature

intensities.

2.2 Selection of the classification procedure

In this section we describe the approach that was applied to choose the classification
procedure that would perform best for the type of data at hand.

We considered using a two-stage classification procedure. At the first stage, a
subset (or all) of the92 available features, found by the clustering algorithm de-
scribed in Section 2.1.3, would be selected. At the second stage, a classification
rule would be constructed using the selected subset of features.

We considered using one of8 different selection criteria (statistics) at the first
stage of the procedure. Additionally, we allowed for the selection of a subset of10,
20, 30, 50, or all features. For the second stage, we considered using one of7 clas-
sification methods. This resulted into8× 5× 7 = 280 possible approaches. All the
approaches were applied to1000 re-sampled data sets, and their misclassification
error rate was estimated.

The choice of methods for the use at the first and second stage was partially mo-
tivated by the results of simulations performed in a microarray setting (Van Sanden
et al., 2007).

In most cases existing R functions were used for the implementation of the
different methods. In what follows the necessary packages,as well as the parameter
settings of the particular functions, are indicated.

2.2.1 Feature-subset selection criteria

We considered8 statistics for selecting a subset of features for the purpose of the
construction of a classification rule. For each statistic,p features with the highest



values are selected (p = 10, 20, 30, 50). Several methods were proposed for the
purpose of analysing microarrays. For these methods we keepthe description in
terms of genes and gene-expression.

Wilcoxon rank sum (Wilc)
We considered the basic non-parametric test statistic in the form of the Wilcoxon

rank sum test (Wilc). It was applied with the help of the R-functionwilcox.testfrom
thestats package.

Significance Analysis of Microarrays (SAM)
SAM is a method for analysing microarray experiments and detecting signifi-

cant genes. It was proposed by Tusheret al. (2001). A score is assigned to each
gene based on change in gene expression relative to the standard deviation aug-
mented by a small positive constant. This constant ensures that the variance of the
score is independent of gene expression. Its value is chosento minimize the coef-
ficient of variation of the test statistic. The t-statistic for the case of two unpaired
classes was calculated by thesamrfunction from theSAMR package.

Prediction Analysis for Microarrays (PAM)
PAM fits a nearest shrunken centroid classifier to microarraydata. The method,

also referred to as soft-thresholding, was introduced by Tibshiraniet al. (2002). It
provides a list of significant genes whose expression best characterizes each class.
The functionspamr.trainandpamr.listgenesfrom thePAMR package implement the
method.

Extreme-value-distribution-based gene/feature selection (Extval)
Li et al. (2004) introduced gene selection based on the comparison ofthe max-

imum likelihood of a logistic regression model applied to the original data and per-
mutation datasets. To avoid using computational intensiveprocedures they propose
to take advantage of the extreme-value distribution for thelog likelihood ratios.
From there a ranking of the genes follows, that can be used to select a predefined
number of genes with the highest ranks (extval). Alternatively, Li et al. (2004)
also suggest two criteria to determine the number of genes tobe selected from the
ranking list. One is based on the expected values (E-criterion) and the other one is
based on p-values (P-criterion). We applied both criteria. A self-written codewas
used to implement the method in R.

Between-within ratio (BW)
The between-within (BW) ratio was used for ranking and selection of genes in

a microarray context by, e.g., Dudoitet al. (2002). The BW ratio is the ratio of
the between-treatment sum of squares and the within-treatment sum of squares of
gene-expression values. In a two group setting it reduces tothe same statistic as the



t-test. A self-written code was used to implement the methodin R.

Prediction strength (PS)
The prediction strength (PS) (Xionget al., 2001) of a certain gene is defined

as the ratio of the difference in mean log expression level between the two groups
and the sum of the variances of the two classes. A self-written code was used to
implement the method in R.

Normal mixture (Mix)
The distribution of intensity measures for an individual feature (peptide) is as-

sumed to come from a mixture of two normal populations with a common variance.
Assuming the true class of the spectrum is unknown,zij is an indicator variable that
equals1 or 0 if spectrumi is obtained for a case or control sample, respectively,
given featurej. LetF ′

ij denote the standardized intensity of featurej in spectrumi.
The normal mixture model can be formulated as

F ′

ij ∼ zijN(µ1j , σ
2

j ) + (1 − zij)N(µ0j , σ
2

j ). (2)

zij is a latent classification variable assumed to be Bernoulli-distributed with mixing
probabilityπj (Congdon 2003).

The model was fitted using a Bayesian approach with the following priors:

σ2

j ∼ gamma(0.0001, 0.0001), µkj ∼ N(0, σ2

µ),

σ2

µ ∼ gamma(0.0001, 0.0001), πj ∼ U(0, 1).

A spectrum is assigned to the class more frequently represented in the posterior
distribution ofzij . This can be seen as corresponding to the choice of the class
according to whether the posterior mean of the probabilityπj is larger or smaller
than 50%.

The ranking of the features is based on misclassification error obtained from
comparing, for each feature, the true and predicted classesof the training spectra.
The model was fitted in R and WinBugs by using the packageR2WinBugs.

Statistical impurity measures (Gini)
In contrast to determining a test statistic, we can attempt to find a feature-

specific threshold in the intensity range. If a measured value for a particular feature
is larger (resp. smaller) than this threshold, the spectrumis assigned to, for instance,
class one (resp. two). Statistical impurity measures quantify the effectiveness of this
method. There are several ways this can be done, leading to multiple impurity mea-
sures. We focus on the Gini index (Gini). A full description can be found in Murthy
et al. (1994) and Suet al. (2003). A self-written code was used to implement the
method in R.



2.2.2 Classification methods

The class prediction procedures investigated in our study included classical dis-
criminant analysis techniques, tree methods, and machine learning methods.

Discriminant analysis
Linear discriminant analysis (LDA), a classical discriminant method, estimates

linear discriminant functions for decision boundaries based on assumptions of Gaus-
sian distribution and equal covariance matrices for the grouped data. Diagonal
linear discriminant analysis is a variant of the LDA method.It assumes a diago-
nal structure for the covariance matrix. If the matrices areassumed equal for the
considered classes, a linear discriminant rule is obtained(DLDA). Otherwise, one
obtains a quadratic discriminant rule (DQDA). In a sense, DLDA and DQDA ig-
nore the correlation structure between variables (features). In our study we included
LDA and DLDA based on their performance in a microarray context (Van Sanden
et al. 2007). LDA is implemented as the functionlda in theMASS package, while
stat.diag.dafrom thesma package is used for DLDA.

Classification tree
A classification tree is a binary recursive partitioning method developed by

Breimanet al. (1984). In each step a subset of training samples is split in two,
based on the intensity value of one particular feature. The value is chosen to ob-
tain an as homogeneous set of labels as possible in each partitioning. The subsets
remaining at the final stage are assigned to a certain class, the one which is most
frequently represented in the subset. In a way, the method has its own feature se-
lection procedure. It determines which feature to use (fromthe given set) at each
splitting node in order to get the best classification. This feature makes them quite
robust to the presence of classification noise.

Aggregated classifiers combine tree classifiers to improve the accuracy of the
class prediction. One such method is calledbagging(Breiman, 1996). Bootstrap
replicates (in our case 100) are taken from the training dataset. A tree is constructed
for each replicate and the final classification is determinedby majority vote. That
is, the sample is assumed to belong to the class to which it is most frequently as-
signed by the different trees. Bagging is said to be a variance reduction technique,
designed to stabilize trees. It is implemented by the function ipredbagg.factorfrom
theipred package.

Boosting, proposed by Schapire and Freund (1999) is another form of aggregat-
ing classifiers. A series of classification trees is producedfor the training dataset,
each time with different weights assigned to the samples. The idea is to give sam-
ples misclassified in the previous step more weight in the current one. The final
outcome is a weighted majority vote of all created trees. It is believed that bag-



ging is much better than boosting in situations with substantial classification noise.
Boosting is however expected to reduce both the variance andbias of unstable trees.
It is implemented as the functionsgbmandgbm.morein the gbm package. The
gbmfunction is first applied to the data in order to create 100 trees in the manner
described above. When applying the function, a shrinkage parameter of 0.001, the
fraction of randomly selected observations for building a tree of 0.5, and Bernoulli
distribution were used. Thegbm.morefunction is used to create 1000 additional
trees.

Random forests(Breiman, 2001) are formed by a combination of tree predictors.
Subsets of spectra and peptides are obtained by independently drawing samples
with replacement from the training dataset and by selectinga number of features at
random. A classification tree is estimated for each of the newly formed datasets.
A new spectrum is allocated to the class with the most votes over all the trees
in the forest. The method is implemented as the functionrandomForestfrom the
randomForest package. The number of samples drawn at random is set at 63%
of the total number. This is the default value in R. For the features it is determined
by a function specified in the help file ofrandomForest. The method was applied
with the number of trees equal to 500 and 1000. Results obtained for 1000 trees
were very close to those obtained for 500. Therefore, only the latter are reported.

Machine learning

Support vector machines (SVM), first introduced by Cortes and Vapnik (1995)
in the machine learning theory, are used to solve two-group classification problems.
The idea behind them is the following: the samples from the calibration data are
non-linearly mapped to a very high-dimensional feature space. In this space a hy-
perplane is designed that provides an optimal separation between the two groups.
The support vectors are the samples which lie closest to the separating hyperplane.
In the input space this hyperplane corresponds to a non-linear decision boundary.

To classify a sample a decision value is calculated. This value quantifies the dis-
tance between a sample and the decision boundary. The sign ofthe decision value
determines the class label. Fureyet al. (2000) give an overview of the calculations
involved. Note that SVM does not provide probabilities for assigning individual
observations to classes.

SVM are characterized by the regularization parameter and the use of linear,
polynomial, radial, splines, and other kernels to solve theoptimization problem. For
our analysis only the linear and radial kernel were considered. The regularization
parameter was set equal to one. The other parameters were setat the default value of
the R-function (shrinking was allowed, epsilon=0.1, tolerance=0.001). The method
is implemented as theSVMfunction in the packagee1071.



2.2.3 Cross-validation study
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Figure 6: Features found in re-sampled datasets. Panel a) shows the number of
features (clusters) found for the1000 resampling exercises. Panel b) indicates the
location of the features found from the resampling exerciseby blue dots. The red
dots are the features found for the whole dataset (153 spectra)

In order to choose the best combination of a feature-selection method and a
classification procedure, we applied all the combinations to 1000 re-sampled data
sets, and we evaluated the misclassification error rate.

Each re-sampled dataset contained50 spectra from the case-group and50 spec-
tra from the control-group, randomly selected (without replacement) from the com-
plete set of153 spectra. For these100 spectra, treated as a training set, the prepro-
cessing steps described in Section 2.1 were applied.

Figure 6 shows the number and location of clusters found in each of the re-
sampled datasets. On average,82 features were selected (Figure 6, panel (a)). The
heatmap in panel (b) shows that in the majority of cases, the same clusters (blue
dots) were consistently found in the1000 re-sampled datasets. Note that, for the
whole set of153 spectra,92 features were selected. Their meanm/z location is
indicated by red dots at the top of panel (b) of Figure 6.

Once the features were selected for the set of100 spectra by the clustering
algorithm, corresponding intensity values were obtained for the53 remaining spec-
tra, that were treated as the test set. (Note that the testingspectra were also pre-
processed; for the intensity standardization, the term in the numerator of (1) was
based only onK = 100 training spectra.) The misclassification error for each



classification procedure was computed using the test set.

3 Results

In this section we present the results of the cross-validation study undertaken to
select the classification procedure, and the results of the application of the chosen
procedure to the calibration dataset provided by the organizers of the competition.

3.1 Cross-validation study

The estimates of total misclassification error obtained forthe280 combinations of
feature-subset selection and classification methods by applying them to the1000
re-sampled datasets are displayed in Table 1. For each method the mean misclassi-
fication rate and its standard deviation (on parentheses) were calculated.

Instead of using the pre-determined numberp of “best” scoring feature, one
could use the E- or P-criterion to select it automatically (see Section 2.2.1). Table 2
presents the results obtained using the two criteria for allclassification procedures
listed in Table 1.

It is worth noting that for the vast majority of the considered approaches the
misclassification error decreases with the increasing number of selected features,
and it achieves its minimum (except for LDA and DLDA) if allp = 92 features are
selected for building a classification rule. Based on a simulation study in a microar-
ray context, Van Sandenet al. (2007) reported that, for the methods considered
in our study, there was a clear dependence of the average misclassification rate on
p, the number of selected features. Using too few or too many features increases
the misclassification. This is most likely due to the fact that using too few features
does not allow to discriminate between the classes, even if the features are truly dif-
ferentiating. On the other hand, asp increases, more and more non-differentiating
features enter the subset selected for building the classification rule and make the
classification more difficult. Hence, there might be an optimal value ofp that might
lead to the best performance of a classification procedure.

From this point of view, Tables 1 and 2 suggest that the optimum choice is the
selection of all the92 features. In this case, the choice of the method of feature-
subset selection is irrelevant. It is worth noting, though,that in general, different
methods of feature-subset selection give similar results for each classification pro-
cedure.

Furthermore, when allp = 92 features are considered for building a classifi-
cation rule, the minimum misclassification error is obtained for the linear kernel



SVM. This approach was therefore selected to be applied to the test data provided
by the organizers of the competition.

In the case of the linear kernel SVM, the use of PAM for a subsetof 50 features
might have been also considered. However, given the aforementioned argumenta-
tion for choosing all the features, confirmed by a slightly lower misclassification
error, we decided not to use PAM on50 features.



Table 1: Mean misclassification error rate (standard deviation in parentheses) for the
method selection. Abbreviations: RF – random forest; LDA – linear discriminant
analysis; DLDA – diagonal LDA; SVMlin – support vector machine with a linear
kernel; SVMrad – SVM with a radial kernel.

Classification Selection Number of selected featuresp
procedure criterion 10 20 30 50 all

Bagging wilc .2357 (.0511) .2147 (.0512) .2116 (.0510) .2041 (.0508) .1952 (.0528)
Bagging sam .2385 (.0511) .2135 (.0517) .2049 (.0510) .1925 (.0524) .1952 (.0528)
Bagging pam .2352 (.0541) .2127 (.0523) .2022 (.0516) .1933 (.0517) .1952 (.0528)
Bagging ps .2383 (.0510) .2122 (.0538) .2073 (.0516) .1960 (.0525) .1952 (.0528)
Bagging bw .2389 (.0513) .2165 (.0543) .2087 (.0522) .1952 (.0518) .1952 (.0528)
Bagging gini .2346 (.0535) .2085 (.0523) .1975 (.0531) .1930 (.0532) .1952 (.0528)
Bagging extval .2364 (.0510) .2138 (.0536) .2087 (.0524) .1960 (.0521) .1952 (.0528)
Bagging mix .2204 (.0553) .2088 (.0550) .2049 (.0558) .1970 (.0538) .1952 (.0528)
Boosting wilc .2104 (.0490) .2062 (.0499) .2037 (.0497) .2005 (.0508) .1994 (.0512)
Boosting sam .2152 (.0494) .2049 (.0507) .2013 (.0507) .1996 (.0514) .1994 (.0512)
Boosting pam .2323 (.0535) .2232 (.0552) .2034 (.0516) .1991 (.0510) .1994 (.0512)
Boosting ps .2109 (.0488) .2050 (.0504) .2012 (.0513) .1991 (.0509) .1994 (.0512)
Boosting bw .2118 (.0494) .2064 (.0506) .2016 (.0504) .1991 (.0513) .1994 (.0512)
Boosting gini .2113 (.0497) .2018 (.0510) .1993 (.0516) .1996 (.0515) .1994 (.0512)
Boosting extval .2106 (.0487) .2052 (.0505) .2015 (.0511) .1995 (.0515) .1994 (.0512)
Boosting mix .2321 (.0586) .2277 (.0595) .2206 (.0595) .1980 (.0508) .1994 (.0512)
RF wilc .2211 (.0468) .1981 (.0476) .1940 (.0471) .1877 (.0483) .1800 (.0477)
RF sam .2232 (.0485) .1990 (.0485) .1902 (.0468) .1824 (.0466) .1800 (.0477)
RF pam .2196 (.0521) .1997 (.0503) .1899 (.0453) .1830 (.0464) .1800 (.0477)
RF ps .2219 (.0471) .1993 (.0490) .1911 (.0483) .1830 (.0473) .1800 (.0477)
RF bw .2229 (.0485) .2025 (.0498) .1927 (.0491) .1835 (.0468) .1800 (.0477)
RF gini .2207 (.0508) .1914 (.0488) .1833 (.0484) .1813 (.0473) .1800 (.0477)
RF extval .2204 (.0478) .1989 (.0495) .1918 (.0487) .1830 (.0476) .1800 (.0477)
RF mix .2071 (.0528) .1938 (.0512) .1896 (.0523) .1781 (.0469) .1800 (.0477)
LDA wilc .2068 (.0491) .2132 (.0528) .2104 (.0603) .2074 (.0590) .3111 (.0709)
LDA sam .2067 (.0502) .1980 (.0519) .1893 (.0551) .1957 (.0572) .3111 (.0709)
LDA pam .1879 (.0468) .1886 (.0531) .1856 (.0521) .1948 (.0573) .3111 (.0709)
LDA ps .2071 (.0497) .1992 (.0534) .1964 (.0555) .2020 (.0578) .3111 (.0709)
LDA bw .2107 (.0499) .2020 (.0537) .1973 (.0555) .2019 (.0573) .3111 (.0709)
LDA gini .2068 (.0508) .1966 (.0537) .1783 (.0568) .1953 (.0562) .3111 (.0709)
LDA extval .2065 (.0492) .2024 (.0538) .1959 (.0563) .2029 (.0578) .3111 (.0709)
LDA mix .2083 (.0573) .2022 (.0565) .1968 (.0550) .2121 (.0590) .3111 (.0709)
DLDA wilc .1967 (.0512) .2016 (.0532) .2083 (.0543) .2033 (.0507) .2046 (.0512)
DLDA sam .2045 (.0508) .2008 (.0520) .1964 (.0516) .2005 (.0500) .2046 (.0512)
DLDA pam .2134 (.0513) .1976 (.0529) .1945 (.0511) .2000 (.0498) .2046 (.0512)
DLDA ps .1942 (.0505) .2011 (.0539) .2035 (.0537) .2009 (.0509) .2046 (.0512)
DLDA bw .1995 (.0520) .2044 (.0546) .2049 (.0537) .2010 (.0509) .2046 (.0512)
DLDA gini .2055 (.0536) .1927 (.0539) .1971 (.0542) .2007 (.0514) .2046 (.0512)
DLDA extval .1922 (.0502) .2013 (.0536) .2040 (.0536) .2012 (.0511) .2046 (.0512)
DLDA mix .2308 (.0587) .2253 (.0575) .2149 (.0588) .2123 (.0548) .2046 (.0512)
SVMlin wilc .2048 (.0470) .1921 (.0521) .1776 (.0517) .1748 (.0518) .1540 (.0492)
SVMlin sam .2055 (.0480) .1810 (.0509) .1693 (.0502) .1583 (.0488) .1540 (.0492)
SVMlin pam .1977 (.0476) .1728 (.0496) .1698 (.0494) .1561 (.0484) .1540 (.0492)
SVMlin ps .2041 (.0474) .1862 (.0501) .1772 (.0495) .1615 (.0499) .1540 (.0492)
SVMlin bw .2052 (.0477) .1893 (.0514) .1780 (.0508) .1626 (.0508) .1540 (.0492)
SVMlin gini .2065 (.0485) .1831 (.0525) .1581 (.0506) .1599 (.0494) .1540 (.0492)
SVMlin extval .2041 (.0476) .1859 (.0503) .1762 (.0494) .1609 (.0506) .1540 (.0492)
SVMlin mix .2040 (.0550) .1880 (.0551) .1786 (.0542) .1788 (.0525) .1540 (.0492)
SVMrad wilc .2078 (.0495) .1976 (.0500) .1895 (.0511) .1795 (.0491) .1709 (.0464)
SVMrad sam .2124 (.0508) .1871 (.0500) .1767 (.0485) .1715 (.0456) .1709 (.0464)
SVMrad pam .2114 (.0515) .1862 (.0492) .1725 (.0453) .1699 (.0458) .1709 (.0464)
SVMrad ps .2076 (.0492) .1894 (.0520) .1819 (.0497) .1721 (.0467) .1709 (.0464)
SVMrad bw .2096 (.0502) .1937 (.0530) .1841 (.0506) .1726 (.0465) .1709 (.0464)
SVMrad gini .2130 (.0524) .1801 (.0526) .1680 (.0494) .1695 (.0451) .1709 (.0464)
SVMrad extval .2054 (.0489) .1903 (.0521) .1834 (.0511) .1727 (.0467) .1709 (.0464)
SVMrad mix .2115 (.0552) .1933 (.0520) .1767 (.0498) .1678 (.0459) .1709 (.0464)



Table 2: Mean misclassification error rate (standard deviation in parentheses) for
theE- andP-criteria of the extreme-value-distribution-based gene/feature selection.
Abbreviations as in Table 1.

Classification procedure E-criterion P-criterion

Bagging 0.2016 (0.0506) 0.2224 (0.0498)
Boosting 0.2008 (0.0506) 0.2097 (0.0485)
RF 0.1896 (0.0468) 0.2102 (0.0458)
LDA 0.1933 (0.0567) 0.2037 (0.0511)
DLDA 0.2039 (0.0529) 0.2000 (0.0536)
SVMlin 0.1720 (0.0498) 0.1960 (0.0478)
SVMrad 0.1780 (0.0475) 0.1995 (0.0495)



3.2 Training data and leave-one-out cross-validation

The linear kernel SVM was applied to the pre-processed training dataset of153
spectra. Forty-eight spectra (24 of each class) where selected as support vectors.
When the classifier was then applied to the whole set of153 spectra of the calibra-
tion data, a perfect classification was reached. The total error rate was therefore 0
and both the sensitivity and the specificity of the classifierwere estimated at 100%.

The error rate was also estimated using leave-one-out cross-validation. That
is, each spectrum was removed from the dataset, the classification method was
applied to the remaining spectra, and the class prediction was obtained for the
removed spectrum. Results are provided in Table 3. The totalerror rate was es-
timated to equal24/153 = 0.1569, with the sensitivity and specificity equal to
67/77 = 0.8701 and62/76 = 0.8158, respectively. Note that the estimated error
rate is very close to the estimate reported in Table 1.

Table 3: Classification results for leave-one-out cross-validation.

Predicted class True class
0 1

0 67 14
1 10 62

4 Discussion

As mentioned in the Introduction, classification of samplesusing mass spectra re-
quires a careful consideration of various sources of nuisance and error. For instance,
a removal of systematic effects like, e.g., a varying baseline on the intensity scale,
or miscalibration of mass-to-charge coordinates, needs tobe performed. An im-
portant step is also a selection of features of the spectra that are likely due to true
biological signal (peptides). To this aim, chemical-knowledge-based peak finding
methods might be used (Valkenborget al., 2007; Valkenborget al., 2008). In this
way, the selection of noise-generated spectrum features for building a classification
rule might be avoided.

We believe that a careful pre-processing of mass spectra is akey to developing
a successful classification procedure. From this point of view, one should start from
raw data and apply the methods of choice aimed at removal of the various nuisance
effects and additional error processes present within the spectral data. Note that



some methods (e.g., non-linear removal of baseline) make itimpossible to retrieve
raw data from the pre-processed ones (Baggerlyet al., 2004). This was the case for
the data made available to the participants of the competition. It would be of interest
to investigate whether using the raw data might improve the reported results.

Another important issue is the choice of the classification procedure. This issue
also applies to other complex experimental technique as, e.g., microarrays. Given
the complexity of data produced by such techniques, one probably should not ex-
pect that a single classification method will always outperform all the others. It
is therefore paramount to investigate relative merits of different procedures to see
which methods, and in which settings, might be expected to work reasonably well.
In the current study we attempted to achieve it by estimatingthe misclassification
error rate for the considered classification approaches by applying the approaches to
1000 re-sampled datasets. The results were pointing favorably towards linear kernel
SVM, with radial kernel SVM and RF as the next best alternatives. Interestingly,
for a microarray context, Van Sandenet al. (2007) reported DLDA, RF, and radial
SVM as the best performing approaches. Good performance of DLDA and RF in
the microarray context was also reported by, e.g., Dudoitet al. (2002) and Leeet al.
(2005). It would be of interest to check whether these slightly different conclusions
can be confirmed and related to the different nature of the mass spectrometry and
microarray data.
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