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TOPOLOGICAL ASPECTS 
OF INFORMATION RETRIEVAL 

Leo Egghe1 and Ronald Rousseau2 

ABSTRACT 

Let (DS, QS, sim) be a retrieval system consisting of a document space DS, a 

query space QS, and a function sim, expressing the similarity between a document and 

a query. Following Everett and Cater, we introduce topologies on the document space. 

These topologies are generated by the similarity function sim and the query space QS. 

Three topolgies will be studied : the retrieval topology, the similarity topology 

and the (pseudo-)metric one. It is shown that the retrieval topology is the coarsest of 

the three, while the (pseudo-)metric is the strongest. These three topologies are in 

general different, reflecting distinct topological aspects of information retrieval. We 

present necessary and sufficient conditions for these topological to be equal. 
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Severeal examples of topological retrieval systems are presented. One of these 

examples is a vector space model that yields a simplification of the Everett-Cater model, 

yet having a more diversified spectrum of topological properties. 

Finally, it is shown that information retrieval based on Boolean operators is an 

intrinsic part of the general topological model. This is a major motivation of the 

introduction of topologies in theoretical IR-models. 



1. INTRODUCTION 

Theoretical document retrieval has two main components : indexing and searching. 

As our article only deals with theoretical aspects we leave all software and hardware 

aspects aside. Indexing determines the way documents are placed in a database. We 

will use the term 'indexing' in a very broad way : even when the original document has 

not changed, e.g., it is directly put on the Internet, we call this a form of indexing. 

Therefore indexing is considered as a surjective map, f ,  from the set of original 

documents, X, to the set of 'indexed document representation', denoted as DS, the 

document space : 

f : X  + DS (1) 

Here "surjective" means that every element in DS is the representation of at least one 

document in X. 

Elements of DS will be denoted by D, E, D' etc. They can be bibliographical records 

with or without abstracts, or full-text documents, or any form of multimedia document. 

Searching uses queries and refers to the way customers express an information 

need, a topic on which they want to be informed. Users' needs are also transformed, 

and are represented by a formal query. The set of all formal queries is called query 

space and denoted by QS. So, again we can consider a surjective map, g, from the 

space of all topics (or use needs) to the query space : 

g : Y  + QS (2) 

From now on elements in QS will be denoted by the symbols Q, Q' etc ... We will 

mainly be interested in single attribute queries, e.g., keywords or authors. Different 

query definitions, hence different QS spaces lead to different retrieval systems. 

The spaces DS and QS do not completely determine a retrieval system. What is 

missing is a way to express the degree of agreement between a query Q E QS and a 

document D E DS. This is done using a similarity function, denoted as sim : 



sim: D S x Q S  -i) R : (D,Q) + sim (D,Q) 

We will often keep Q fixed, which yields functions of the form : 

sim (.,Q) : DS + R : D -+ sim(D,Q) (3) 

The higher the value of sim(D.Q), the more D and Q correspond and therefore, the 

more probable it will be that the document D satisfies the users' need. Consequently, 

such documents are wanted to be in the set of retrieved documents. This retrieved 

documents set is further determined by a cutoff value r E R. So, all documents 

D E DS, such that 

sim (D, Q) > r 

are retrieved. 

Other forms of thresholds such as 

rl  < sim (D,Q) < r2 (5) 

or even clustering techniques can also be used (Salton & McGill, 1983). 

Everett and Cater (1992) have shown that requirements (4) and (5) can be used to 

determine topological properties of the space DS. The definition of a topology and of 

a topological space is given in appendix A. As such it is not clear that such systems 

express "how near" points (here documents) are to each other. However, many 

topologies are determined by functions that measure similarity or distance between 

two documents (see (4), (5) or the example of a metric space as a special case of a 

topological space - see appendix A) and hence the link with this powerful mathematical 

tool is clear. 

Topologies on DS as determined by (4) or (5), or, in general, by using queries 

Q E QS, are called topological retrieval systems. Indeed, the above described available 

notion of "how near" documents are, can be used in IR. It is a kind of predetermined 

system of documents for which the notion of "relatedness" is available and 

this independent from a used query Q (i.e. prior to the retrieval action itself, but 

with the knowledge of QS, the set of all possible queries). 



Different topologies will, in addition, yield different retrieval properties. As such 

the notion of a topological retrieval system is closely linked to the dynamics of retrieval 

behavior. The mathematical tools made available through these systems allow us to 

give answers to questions such as: "How do slight alterations in queries or thresholds 

influence the retrieval result. 

In the next section we will set up a general framework for topological retrieval. 

Three topologies on DS will play a role : the retrieval topology T, the (pseudo-)metric 

topology T' (both introduced by Everett and Cater (1992)), and the similarity topology 

2". 

In the second section we present examples of document spaces DS for which the 

three topologies coincide, as well as examples where any two of these topologies are 

different. These properties illustrate the specific role each of these topologies plays. In 

particular, we give an example of a vector space model on DS = I" (I denotes the unit 

interval [0,1], n E N) with the inner product as similarity function. We will show that this 

approach leads to a simpler model, with more interesting propeties, than the vector 

model studied in (Everett & Cater, 1992) which is based on Salton's cosine measure. 

The last section shows that information retrieval based on Boolean connectives 

AND and OR is an intrinsic part of the general topological model. In particular it is only 

necessary to have a query space QS consisting of elementary queries. The Boolean 

aspects are taken care of by the topology of DS. This generalizes the Boolean algebra 

results of Cater (1986) and (Everett & Cater, 1992). 

Mathematical proofs of most of the results are relegated to the appendices. 

Notation : We will use the abbreviation iff for the phrase 'if and only if'. 



2. DOCUMENT SPACES AS TOPOLOGICAL SPACES 

A retrieval system is a triple (DS, QS, sim) consisting of a document space DS, a 

quey space QS and a similarity function sim. At this moment DS is only a set. However, 

using the quey set QS and the similarity function sim will enable us to put an additional 

structure on DS, namely that of a topological space. We focus here on the document 

space as a topological space (by using QS) since we want to have a notion of similarity 

between documents. But theoretically, there is no real difference between QS and DS: 

we could study a topological system on QS, determined by DS. This is an example of 

a dual situation. For more on this, see Egghe and Rousseau (1997 a). 

At this point we refer the reader who is not familiar with topological notions 

again appendix A and the second section of (Everett & Cater, 1992). Information on 

general topology can be found in any of the following books : (Csaszar, 1978), (Dugundji, 

1966) and (Willard, 1970). Special examples of topological spaces can be found in 

(Steen & Seebach, 1978). Finally, (Wilansky, 1970) and (Kreyszig, 1978) are good 

references on normed spaces. 

In this article we will study three topologies on DS 

The retrieval topology r (Everett & Cater, 1992) 

The retrieval topology, denoted as 7, is generated by the subbasis 

{R (Q, r)l r R, Q E QSJ (6) 

where a retrieval R(Q,r) is defined as : 

R (Q,r) = {D E DS l sim (D,Q) > r] . (7) 

A subbasis is a subset C of the set of all open sets such that all open sets can be 

constructed by forming finite intersections of elements of C. 



Note that, usually, the range of all sim(.,Q) is in R' (the positive real numbers, 

including zero), so that in these cases 7 is generated by 

(R (Q,r) lr E R + ,  Q E QS) 

There is no mathematical reason to limit the range of sim to the positive numbers. 

Therefore, we decided to use R in theoretical arguments, but to use R+ in all examples. 

The set 

ret,(Q) = {R (Q,r)lr E Rl (8) 

is called the set of retrievals of Q (or, in short, the retrievals of Q) w.r.t. 7. Also the sets 

R(Q,r), r E R, Q E QS are called retrievals of the system (DS, QS, sim, 7) or, in short, 

of 7. 

Note that the set of retrievals of a query Q is the set of all possible answers to the 

query Q in the system (DS, QS, sim) with the retrieval topology. Different answers are 

obtained by changing the threshold. Consequently, the retrievals of a fixed query Q, 

form a nested set, i.e. 

R (Q,rd c R (Q,rz) iff rl r2 

Another name for t could be the "threshold" topology, a name that is clear from 

the definition (7). Here a document is retrieved if its similarity with a query Q is at least a 

a certain value r. 

The (pseudo-)metric topology 7' (Everett & Cater, 1992) 

Everett and Cater (1992) give the following definition. Let (DS, QS, sim) be a 

retrieval system. Define a function d on DS x DS as follows : 

d (D,E) = sup Isim (D,Q) - sim (E, Q)I 
Q E Q S  



The function d should be a pseudo-metric (see appendix A for the definition), leading 

to the pseudo-metric topology 2' .  However, there is a problem with definition (9). It is 

possible that the supremum is infinite, in which case d does not exist in the usual sense. 

To correct this we will define 2' in a more accurate way. For the ease of the notation, 

we first define 

pQ (D, E) = lsim (D,Q) - sim (E,Q)I 

here D,E E DS, Q E QS. Then define 

(i) if the supremum of (10) is finite : 

i.e. the pseudo-metric defined by Everett and Cater; 

(ii) d' : DS x DS -[0,1] by 

d'(D,E) = sup 
PQ (D,E) 

Q G Q S  1 + pQ (D,E) 

(iii) d" : D S x  DS-[O,lIby 

Clearly d' and d" always exist and are finite. The following theorem states that from a 

topological point of view the pseudo-metrics d, d' and d" are 'the same' (although they 

are, of course, different as metrics). 

Theorem 2.1 : 

Let d, d' and d" be as defined in (9), (11) and (12). Then 

(i) the (pseudo-)mettics d' and d" are equivalent 

(ii) if d exists, it is equivalent with d' and d". 

The proof of this theorem is given in Appendix B. The topology generated by d 

(if it exists), d' or d" is called the pseudo-metric topology on DS and is denoted by 2' .  



The topology 2' measures absolute distances between documents, independent 

of a used query in IR. 

As noted by Everett and Cater (1992) the following result is true : 

Proposition 2.2 : 

2' is generated by the subbasis 

V (D,E) = (E E DSlpQ (D,E) < E, V Q E QSI 

where E is any strictly positive real number. 

The proof follows readily from the proof of Theorem 2.1 

Definition 2.3 (Everett & Cater, 1992) : 

The retrieval system (DS, QS, sim) separates the points of DS if, 

(V Q E QS : sim (D, Q) = sim (E, Q)) (D = E) 

It is obvious that the pseudo-metrics above are metrics iff the retrieval system (DS, QS, 

sim) separates the points of DS. 

The similarity topology 2" 

In order to obtain consistent results, stability is very important in IR. It is, e.g., 

necessary that if documents D and E are 'alike' (an expression to be defined in each 

concrete case) their similarity values must also be close to each other. In this way slight 

changes in e.g. recall requirements yield only slight changes in the retrieval result. Such 

a behavior can only be guaranteed if the functions sim(.,Q) are continuous. We therefore 

define the topology 2", referred to as the similarity topology, as the coarsest topology on 

DS that makes all similarity functions sim(. ,Q) continuous. The next theorem describes 

a subbasis of the similarity topology. 



Theorem 2.4 : 

The similarity topology 7" is generated by the subbasis 

IU (Q,rl,rd l Q E QS, rl < r21 

where 

U (Q,rl,r2) = {D E DSrl < sim (D,Q) < r2J = sim (.,Q)-' (I r1,r2[) 

with r, < r,, r,,r, E R, Q E QS. 

Proof : 

The proof is easy : it follows immediately from properties of the inverse relation and 

the fact that the open intervals ]r,,r,[ are a basis for the Euclidean topology on the real 

line. 

The set 

ret,,. (Q) = {U ( Q ~ T I ,  r J  / r~ < rz I 
is called the set of retrievals of Q (or, in short, the retrievals of Q) w.r.t, t". Also the sets 

U(Q,r,,r,), r, < r,, r,,r, E R, Q E QS, are called retrievals of the system (DS, QS, sim, 

T") or, in short, of 7". 

Note that if r, < r, < r, < r, then 

U (Q, r ~ ,  r2) c U (Q, r3, r4) 

The topology T" describes the retrieval of documents according to their closeness to a 

given query Q. Here (in contrast with 2) the exact query Q must be matched. 

When it is clear from the context with which topology we work we will drop the subscript 

7 or 7" and simply write ret(Q). 



Results on these topologies will follow in the next sections. We can, however, already 

point out one intrinsic property of these topological spaces. The topologies T ,  T' and 

7" determine neighborhoods around every document D E DS. These neighborhoods 

determine a filtering of documents : the finer we look, the more closely we end up in 

the neighborhood of D. The availability of such neighborhoods determine the degree 

of "fine tuning" that is possible in IR-systems that work with T ,  7 '  or 7". Otherwise 

stated, the topologies on the document space DS determine a pre-defined structure on 

DS of "what documents are close to (a) certain document (s)", even without the 

formulation of a specific query Q E QS. It is the totality QS of all possible queries that 

determines this pre-defined structure. This in turn is comparable (but totally different in 

nature) with the statistical clustering techniques for documents that exist - see e.g. 

Salton and McGill(1983). 

The three topologies we have introduced are related in the following way. 

Theorem 2.5 : 

t C 7" C 7' 

Proof : 

The sets R(Q,r) = sim(.,Q)~'(]r,+= [), generating the retrieval topology, are open in r" 

since sim(.,Q) is continuous on (DS,Tn). Hence 't c T". Furthermore, it is clear that 

sim(.,Q) is continuous on (DS,Z2), hence 7'' c T' as T" is the coarsest topology that 

makes all sim(.,Q) continuous. 0 

It will be shown in this and in the next section that it is possible that T # T", 

T" + T '  and even T + T " + 7' are possible, as well as = .t" = T'! 



Everett and Cater (1992) claimed the following results : 

Statement 1. 

For any Q E QS and t E [0,1], the set U(Q,t) = {D E DS I sim(D,Q) < t) E 7.  

Statement 2. 

Let 7, and T, be the retrieval topologies of two essentially equivalent retrieval systems. 

Assume that (DS,T,) is compact, then T,  = 7,. 

Recall (Everett & Cater, 1992) that two retrieval systems (DS, QS, sim,) and (DS, 

QS, sim,) are said to be essentially equivalent if sim,(D,Q) < sim,(E,Q) iff sim,(D,Q) < 

sim,(E,Q). Essentially equivalent models retrieve all documents in the same order. 

In (Egghe & Rousseau, 1997 b) we have shown that these statements (Lemma 1 

and Theorem 4 in (Everett & Cater, 1992)) are wrong. We briefly repeat the 

counterexamples constructed in (Egghe & Rousseau, 1997 b) and add some new 

comments 

A counterexample to statement 1. 

Let DS = N (all natural numbers, including zero); QS can be any non-empty set. 

Let sim, be defined as follows : sim,(D,Q) = 1/5 for all Q E QS, except for one special 

query Q,. For this special query sim,(n,Q,), n E N, is given by the following table : 



Note that the similarity values for the odd numbers converge to 1/2; the similarity 

values for the even numbers converge to 1. 

n 

0 
1 
3 
5 
7 

Now the set U(Q1,1/4) = {D E DS I sim,(D,Q,) < 1/41 = { O )  does not belong to 

the retrieval topology 7,. Indeed, the sets of T I  are the following : 

N and 4 (the empty set), 

all natural numbers except zero, 

all natural numbers except zero and the j smallest odd numbers (j = 1,2, ...) 

sim,(n,Q,) 

1/5 
1/4 
3/8 

7/16 
15/32 

all natural numbers except zero, the odd numbers and the j smallest even 

numbers (i = 1,2,3 ,... ). 

Note that the set consisting of all even numbers {2,4,6,. . .) is NOT an open set for 

this retrieval topology. 

and so on for the odd numbers 

This example also shows that the function sim,(.,Q,) is not continuous for the 

retrieval topology. Hence this is also a case where the retrieval topology differs from 

the similarity topology. 

2 
4 
6 

1/2 
3/4 
7/8 

and so on for the even numbers 



Counterexample to Statement 2 

We consider the same retrieval system as before but - for the second similarity 

function - make a slight change to the first one. The similarity function sim, is everywhere 

equal to sirn,, except for the value in (2,Q,). We set sim,(2,Ql) equal to 5/8. It is now 

clear that the models (DS = N, QS, sirn,) and (DS = N, QS, sirn,) are essentially equivalent. 

Moreover, as simj0,Q) is 1/5 for every Q, i = 1, 2, the set DS = N is compact for the 

retrieval topology (the point zero plays the role of Do in the Proposition of (Egghe & 

Rousseau, 1997b). However, the two retrieval topologies do not coincide. For 7, 

(the retrieval topology derived from sirn,), the set consisting of all even numbers 

= {D E DS I sim2(D,Q1) > 1/21 is clearly open (an element of 7,). We noted before that 

this set is not open in T,. Hence the two topologies are not equal, which contradicts 

statement 2. 

We consider now he following question : can statements 1 and 2 be adapted so 

that they become true? The answer to this is yes, essentially by using 7'' instead of T .  

This will be shown in Theorems 2.8.1 and 2.8.2. We first state a simple lemma and 

introduce a new notion. 

Lemma 2.6 : 

For any Q E QS and any r E R, the set 

{D E DS I sim (D, Q) < rl 

belongs to the similarity topology 7". 

Proof : 

This follows readily from the definition of 7" and the fact that the sets I-- ,r[ are open 

in R, for every r E R. 0 



Lemma 2 .6  shows that Lemma 1 in (Everett & Cater, 1992) is true for 7". Also 

their Theorem 4 becomes true when using 7" instead of 7 - see theorem 2.8.2 further 

on. 

Definition 2.7 : 

We say that a retrieval system (DS, QS, sim) satisfies the maximum principle if If r 2 0,  

VQ E QS, the set 

A = {sim (D, Q) I D E DS, sim (D, Q) < r) 

has a maximum, i.e., there exists Do E DS such that sim(Do,Q) = max A. An analogous 

definition can be given for the minimum principle. 

Examples. 

We formulate some cases of retrieval systems satisfying Definition 2.7 (min as well as 

max principle). 

(i) If the range of sim(.,Q) is finite for every Q E QS then the system satisfies the 

minimum as well as the maximum principle. This is the case for the classical 

example where sim can only take values in {0,11. This is also the case for a finite 

document space. 

(ii) If DS is compact for a certain topology S such that all sim(.,Q) are continuous 

(e.g. 7") then the system also satisfies the minimum and the maximum principle. 

Indeed, under these conditions sim(DS,Q) is compact in R for every Q E QS. 

Consequently sim(DS,Q) is closed and bounded and therefore has a minimum 

and a maximum. 

This brings us to Theorems 2.8.1 and 2.8.2,  



Theorem 2.8.1 : 

If (DS, QS, sim,) and (DS, QS, sirn,) are essentially equivalent retrieval systems and if 

one of the two satisfies the maximum principle then their retrieval topologies are equal. 

Proof : 

If one model satisfies the maximum principle then, by the fact that they are essentially 

equivalent, the other model does too (and the maxima are reached for the same document 

Do). For every Q E QS and r E R, let Do E DS be such that sim,(Do,Q) = max{sim,(E,Q); 

sim,(E,Q) < r]. Then the following expressions are equivalent : 

D E R1(Q,r) = {E E DS I siml(E,Q) > r) sim,(D,Q) > sim,(D,,Q) 

* sim,(D,Q) > sim,(D,,Q) 

* D E R,(Q,sim,(D,,Q)) 

The same argument can be given when the indices are interchanged. Since the sets 

{R,(Q,r) I Q E QS, r E R), i = 1,2 form a subbasis for the respective retrieval topologies, 

these topologies are the same. 13 

Theorem 2.8.2 : 

If (DS, QS, sim,) and (DS, QS, sirn,) are essentially equivalent retrieval systems and if 

one of the two satisfies the minimum principle and if one of the two satisfies the 

maximum principle then their similarity topologies are equal. 

Proof : 

Since the retrieval systems are essentially equivalent, they both satisfy the minimum 

and the maximum principle. In the same way as in the proof of theorem 2.8.1 we can 

now show that, for every Q E QS and r,,r, E R, r, < r, : 

{E E DS I ri < siml (E, Q) < rzl 

= {E E DS I simz (DI,Q) < simz KQ) < simz (DO,Q)) 



where Do resp. D, are the documents featuring in the definition of the minimum resp. 

maximum principle of the first system. Hence 

UI (Q,n,r2) = U2 (Q, simz (DI,Q), simz (DO,Q)) 

Again, the same argument can be given with the indices interchanged and hence 

TI" = 7,". 0 

The topology 7" is defined as the coarsest topology on DS that makes all the 

functions sim(.,Q) : DS -t R continuous. Here, R has the usual Euclidean topology g, 

Our next result shows that the retrieval topology can be defined in a similar way, but 

using a different topology on R. 

Theorem 2.9 : 

Equip the real line R with the topology, S, generated by the open half-lines 

]r,+ - [, r E R. Then the retrieval topology 7 is the coarsest topology on DS that makes 

all functions 

sim (., Q) : DS 4 R, S 

continuous. 

Proof : 

The functions sim(.,Q) are continuous from DS to R,S iff the sets 

R(Q,r) = sim(.,Q)-'(]r,+- [) are open in DS. 0 

One could also say that on (DS,T) all sim's are lower semi-continuous into R, equiped 

with g(see Willard (1970), p.49, 7K). 

Also the (pseudo-)metric topology 7' can be characterized through continuity properties 

of the similarity functions. 



Theorem 2.10 : 

The following assertions are equivalent : 

(i) T ' = T n  

(ii) The family {sim(.,Q) I Q E QSI is equicontinuous on (DS,T"), where the functions 

range in R, g. 

For the proof we refer to Appendix C. 

Corollary 2.1 1 : 

If QS is finite then T' = 7". 

Based on the above theorem and/or Theorem 2.5 we obtain the following easy results. 

Proposition 2.12 : 

The following assertions are equivalent : 

(i) T = T n  

(ii) All functions sim(.,Q) are continuous on (DS,T), with range in R,6P 

Proposition 2.13 : 

The following assertions are equivalent : 

(i) T = T ' = T n  

(ii) The family {sim(.,Q); Q E QS) is equicontinuous on (DS,T) with range in R, g. 



3. EXAMPLES OF TOPOLOGIES ON DOCUMENT SPACES 

3.1. The counterexample to Statement 1 

We repeat that the counterexample to Statement 1 is an example for which 

T = 7". Since the similarity functions are clearly equicontinuous in T", we conclude by 

Theorem 2.10 that 7'' = 7'. 

3.2. The vector space model of Everett and Cater (1992) 

We briefly recall the structure of the vector space model as presented in (Everett 

& Cater, 1992) and point out some problems with this model. We will compare this 

vector model to another one in Section 3.3. 

The Everett-Cater model starts by taking P = [0,1In for the document space as 

well as far the query space with the following similarity function : 

' > = cos (D, Q) sim (D, Q) = - 

IIDII, IIQT 

where <.,.> denotes the usual inner product, 14, is the Euclidean norm and cos(D,Q) 

denotes the cosine of the angle between the lines OD and OQ. 

We see two problems with this model. Firstly, the model does not distinguish 

between documents on a straight line through the origin. Since documents in [0,1]" are 

often obtained through a weighing process, it seems to us a waste of possibilities not to 

use these different weights. Secondly, the similarity functions are not defined in points 

(D,Q) where at least one of the coordinates is zero. Moreover, it is impossible to extend 

sim in such a way that this function becomes continuous on I". 



Everett and Cater solve these problems by taking DS = QS = P\{O) and introducing 

an equivalence relation R, where DRE iff there is straight line through the origin 

containing both D and E. Then DS* = (P\{O))/R with the usual quotient norm (and 

hence quotient topology). For readers not familiar with quotient theory we just note 

here that elements of DS' are straight half lines through the origin (0 not included) and 

only the part inside P is used. The similarity function (13) can be used unambiguously 

as above : if D' E DS' and Q E Q!3 then 

sim (D', Q) = < D,Q > 
ID/l, Qll, 

for any representative D E D'. Also, for D',F E DS, we can define : 

< D,E > 
sim (D', E') = 

llDl12 llEll2 

for any representative D E D', E E F 

By taking quotients as above we now obtain that the retrieval system separates 

points. Indeed, if sim(D',Q) = sim(F,Q), VQ E QS, then cos(D,Q) = cos(E,Q) for any 

D E D', E E E', and hence D' = E'. This shows that here r' is a metric topology. This 

leads to: 

Theorem 3.1 (Everett & Cater, 1992) : 

(DS,Z') = (S, g) with S that part of the unit sphere that contains vectors with positive 

(or zero) coordinates and with g the Euclidean topology on S. 

Proof : 

The homeomorphism is obtained via the function : 

f : D S *  + S : D *  -+ D n S  0 



Theorem 3.2 : 

2 = 2" = T'onDS'andonDS 

Proof : 

The subbasic neighborhoods for an element D E DS or D' E DS', for 'C as well as for 

'C', are of the form : an open cone with top 0 (not an element of DS') and D' as central 

ray. Hence 2 = T', and thus, by Theorem 2.5, 2 = 2' = 'C". 0 

Corollary 3.3 : 

DS' with 2 = 2' = 2" is compact. 

Proof : 

This follows from Theorem 3.1 and Theorem 3.2. 

Corollary 3.4 (Everett & Cater, 1992) : 

DS with 2 = 2' = 'C" is compact. 

Proof : 

The argument that proves that (S,q is compact can be used on DS if we use the 

function f ~ '  (the inverse of function f of (16)) and consider D' as a subset of DS. 0 

Note. 

It is not true that DS and D S  are homeomorphic! Indeed, DS' is a Hausdorff (or T,) 

space, while DS is not. 

The vector space model that we will present in the next section is an alternative 

for the usual one. Its mathematical properties are less complicated and more interesting 

as it will be defined on I" (not on a quotient space) and will give different topologies 

'C + 7". In addition to this it takes into account the different weights of vectors in I" . 



3.3. An alternative for the classical vector space model 

Using the cosine of the angle between vectors does not take into account the 

different weights given to each coordinate (representing e.g. a keyword). In addition to 

this, documents can be situated close to each other, yet the similarity as measured by 

cosines can be relatively small too. Using the inner product between vectors takes care 

of these problems. In such a model a query gives weights to keywords. These weights 

can be intepreted as minimum requirements : documents with higher weights (for that 

particular keyword) will just score better. 

We will now formalize this. Let DS = QS = I" = [0,1]", n E No. For every 

DE DS ,QE QS:  

sim (D, Q) = < D,Q > = /D~l,/IQ1l2 cos (D, Q) (17) 

The following results describe the topologies of this retrieval model. 

Theorem 3.5 : 

(i) The function <.,.> : DS x QS -+ R'; (D,Q) -+ <D,Q> is continuous for the 

norm topologies on DS = QS = I". 

(ii) The retrieval system (DS, QS = DS, sirn), with sim defined in (17) separates the 

points of DS. 

The proof of these results is well-known and is omitted. 

Therem 3.6 : 

In this model T' = g, the Euclidean topology on I". Hence, here DS with any of the 

topologies T ,  T '  or T" is compact. 

Theorem 3.7 : 

For this model, T" = T ' ,  hence DS with this topology is a T, space. 



Theorem 3.8 : 

For this model, (DS,T) is a To-space that is not a TI-space. Consequently T # T". 

The proof of these theorems can be found in Appendix D. 

3.4. Another simple example of a document system for which T + T" = T' 

Let DS = {a,b,c,d], QS = {el and define 

sim(a,e) = 0.5 = sim(d,e) 

sim(b,e) = 1, sim(c,e) = 0 

Then : 

7 = {@, DS, {a,b,d I, ib 11 
while 

7' = 7'' = i@, DS, ibl, {cl, {a,dl, ib,cl, ia,b,dl, {a,c,dll # (DS) , 

the discrete topology. Note that the equality between 7'  and T"  illustrates Corollary 

2.11, as here QS is a finite set. This retrieval system does not separate points. 

3.5. Three examples for which T = T' = T" = 8 (DS) 

Example 3.2 gave an example for which = T '  = T", but different from the 

discrete topology since they were homeomorphic with the Ecuclidean topology on S. 

Three examples will follow where all topologies are equal to p(DS), the discrete topology 

on DS. 

3.5.1. 

DS = QS any set 



Hence in this IRrnodel only exact matches are allowed! 

So V Q  E QS, V r E R, R(Q,r) = Q if r > 1  and = (Q) if r < 1. 

Hence 7 = p(DS). By theorem 2.5, c 7" c T'. Hence 7 = 7" = 7' = p(DS). 

Note that the metric of 7'  is the discrete metric 

Discrete metrics yield discrete topologies but not conversely as the next two examples 

show. 

3.5.2. 

The next example deals with documents that are ordered according to "similarity". 

This is an index approach and can not always be used in practice. However, if topics 

can be ordered this way (e.g. for aspects on which a linear order applies such as 

distance, temperature, ...) the example is useful. Let 

DS = (D, ,..., D, } = QS, n E N fixed 

Define 

Intuitively this means that if i and j are far apart then sim(D,,DJ is small and if i = j, then 

sim(Di,D) = 1. In any case is sim(D,,D,) = 1, for every i E (l, . .  .,n). We have the 

following results : 

Theorem 3.9 : 

b'j = 1, ..., n, Vr > 0 

which forms a subbasis for s. 



Theorem 3.10 : 

Let d be the metric of 7'. Then,K,k = 1 ,..., n : 

l i -  kl 
d ( D ~  , D ~ )  = 

2 max (i, k) 

Corollary 3.1.1 : 

7 = 7" = 7' = p(DS). 

For the proofs we refer the reader to Appendix E. 

A similar example, but with a completely different similarity function, now follows. 

3.5.3. 

DS = QS = { D ~  ,..., D, 1, n E N fixed 

Define 

2 
sim (Di,  Dj) = - Arctan 

n 

Note again that sim ( D ~ ,  D )  t = 1, Vi = 1 ,..., n 

Theorem 3.12 : 

Vj = 1,. . . , n,Vr > 0. 

which forms a subbasis for 7 

Theorem 3.13 : 
Let d be the metric of 7'. Then,Vi,k = 1 ,..., n : 

2 
d (Di, Dk) = - Arctan li - kl 
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Corollary 3.14 : 

= 7" = 2' = p(DS) 

For the proofs we refer the reader to Appendix F, 

3.6. An example for which r t 7' # z" 

This final example shows that 7 t T' # r" is possible. In view of Theorem 2.10 

and its Corollary 2.11,  QS  must be an infinite space. This means that we must admit 

an infinite number of possible queries. 

Let DS = QS = [O,+m [, with sim(D,Q) = D.Q (the simple product of the numbers 

D and Q). Let (D,,) ,,=,,,,,,m be a strictly increasing sequence in DS, converging to D in 

the usual, Euclidean norm on [O,+- [ (i.e. the absolute value). Consequently, 

lim D, = D in T" since, for every Q E QS : 
I,+- 

sim (D,,Q) = D,.Q + D.Q = sim (D,Q) 

Now, Dn does not tend to D in 7' since 

which is equal to 1 if Dn # D and is equal to 0 if Dn = D. As here Dn is never equal to D, 

d'(DnD) is always equal to 1. 

From this it follows that 7' = 8 (DS) # 7". We still have to prove that T # T". We 

know already that 7" yiels a T,-space, since 7" coincides here with the Euclidean 

topology on lo,+- [. (This follows from the fact that a sequene Dn + D in I . I iff 

Dn.Q + D.Q for every Q E [O,+ - [.) Now, (DS,T) is not even a TI-space : for every 

D E DS and E = a D ,  a > 1, and for every T-neighborhood U of D, 3n  E N andR(Fj,r$ 

such that 



Hence sim(D,Fj = D.Fj > r,, for every j = 1,. . . ,n. Since D.F, E [O,+- [ also sim (E,Fj = 

aD.F, > r,, which implies that E E U. This shows that (DS,T) is not a TI-space. 

In fact, if [O,+ - [  is equiped with the topology D inherited from S on R 

(cf. Theorem 2.9), then .t = D (restricted to [O,+- [). We conclude : 

T is the topology inherited from S on R 

7" is the Euclidean topology 

7' is the discrete topology on DS, 

and all three of them are different. 

4. Boolean information retrieval as a subsystem of any topological IR-system 

In Cater (1986) and Everett and Cater (1992) the Boolean IR-model is shown to 

be an example of topological retrieval, in the sense that specially defined similarity 

values yield traditional Boolean retrieval. In this section we will show that Boolean 

retrieval can be introduced in any IR-model (DS, QS, sim) without having to specify the 

value of a similarity function for Boolean combinations of elementary queries. The 

Boolean model we will present has the further advantage that it presents a major 

clarification why the introduction of topologies in theoretical 1R-models is essential. 

As defined in Section 1, let, for every Q E QS, 

ret,(Q) = {R (Q,r)lr E R) 

and 

r e t ,  (Q) = {U (Q,rlr r2)1 rl, r2 E R , rl < rz} 

be the retrieval sets of Q w.r.t. the topology 't (resp. T"). In the sequel of this section we 

will focus on ret~(Q), denoting this set simply as ret(Q). (Exactly the same reasoning 

can be made for T"). 



The set QS consists of elementary queries, which means that usually logical 

combinations of queries do not belong to QS although they are not excluded either. 

ret(Q) consists of all possible results when Q is used as a query. The only difference 

between the use of the topologies T and 7" is that we require 'minimum' (threshold) 

values for sim (T case), or 'close' values (2" case). 

Recall also that the sets in all ret (Q), Q E QS, form a subbasis for T .  This means 

that 

is a basis for T (similarly a basis for T"  can be built using the sets U(Q,r,,r,)). An open 

set A in is then any union (finite or infinite) of sets in B : 

where J is a finite or infinite index set. From now on we will assume that DS and QS 

are finite. Note that then T"  = T'  (Theorem 2.10 and Corollary 2.11). So we have only 

T and T"  to consider, and, as stated before, we will focus on T .  In this case a general 

open set A in 7 has the form 

Definition 4.1 : 
n 

Let Q,, . . . ,Qn be n elements of QS. We introduce, symbolically, an element Qi and 
i=l 

define 



We call &I Qi the Boolean AND applied to the elementary queries Q, ,...,Q ,,E QS. By 
i=l 

n 
definition, this Boolean AND retrieves sets in ret . We repeat that 8 Qi is not 

,=I 

necessarily an element of QS. Similarly we define a Boolean OR. 

Definition 4.2 : 
n 

Let Q,,...,Q, be n elements of QS. Consider, symbolically, an element @ Qi and 
i=l 

define 

m 
The set CB Q, is called the Boolean OR applied to the elementary queries Ql,...,Qn E 

j=1 

QS. By definition, this Boolean OR retrieves sets in ret @ Qi . C )  
Of course, we can as well define Boolean ANDs and Boolean ORs with respect to 

the topology 7". We suppose that it is clear in every IR-search whether we want to 

work with 7 (thresholds) or 7" (close matches). 

Based on Definitions 4.1 and 4.2 we can easily define more arbitrary Boolean 

queries, based on elementary queries in QS. 

Definition 4.3 : 

n m 
Let (a,,), be an array of queries in QS. 

,=I,, ,=I 

The Boolean query (not necessarily in is defined through its retrieval: 



and similarly when @ and ~3 (hence U and n ) are interchanged. 

We now need the following lemma : 

Lemma 4.4 : (Dugundji (1966), p.25) 

Let {B,Ia EA) be a family of sets and assume that { ~ ~ ; h  E A} is a partition of A 

I1 A?.. (hence each Ax + 0). Let T = 

Then 

where t ( h )  E Ax and t  = ( t ( ~ ) ) * = ~  

By taking complements one also has : 

In plain terms : any introduction of unions of sets A, can be interpreted as a union of 

intersections of the same sets (but in another order) and vice-versa. 

We have now reached the following important result, yielding a major reason 

why topologies on IR-systems are useful. 

Theorem 4.5 : 

For any IR-model (DS, QS, sim) with finite DS and QS we have the following equalities: 

a) the topology 7 is equal to the set of all possible Boolean retrievals based on 

elementay queries Q in QS, using thresholds; 

b) the topology 7" is equal to the set of all possible Boolean retrievals based on 

elementary queries Q in QS, using close matches. 



Proof  : 

The principal elements of the proof have already been outlined. An arbitrary Boolean 

query can be denoted as a combination of AND and OR Boolean queries in any order, 

which can be denoted as in (29) or with U and n interchanged (cf. Definition 4.3). 

By lemma 4.4 its set of retrievals can be written in the form 

Letting m and nj vary over all possible natural numbers and Qij E QS, we see, by (26), 

that the set of all Boolean retrievals using thresholds, is nothing but the topology T. 

Similarly, the set of all Boolean retrievals using close matches is nothing but the topology 

T". 

The following result gives a relation between the usual OR relation and our 

somewhat more general use of the Boolean OR. 

Proposition 4.6 : 

If Q, and Q, are single attribute queries, if also Q = Q, OR Q, belongs to QS, and if 

sim(D,Q) is defined as max(sim(D,Q,), sim(D,Q,)) - as in the classical Boolean or in the 

fuzzy set case - then (using thresholds) 

ret(Q) c ret 

Proof  : 

Consider the set {D E DS I sim(D,Q) > r}, an element of ret(Q). As sim(D,Q) = max(D,Q,), 

sim(D,Q,)), this set is equal to {D E DS I max(sim(D,Q,), sim(D,Q,)) > rJ 

= {D E DS l sim(D,Q1) > r, or, sim(D,Q,)) > r] 

= {D E DS l sim(D,Q,) > r) u{D E DS l sim(D,Q,) > r] 

= R(Q,,r) U R(Q,,r) E ret(Q, @ Q,). 



A similar result can be shown for any finite disjunctive form and for any finite 

conjunctive form. The Boolean NOT will be studied in a following article. 

5. SUMMARY 

In this article Everett and Cater's retrieval and pseudo-metric topologies are 

examined. Counterexamples to two statements are given and results correcting the 

original statements are presented. These corrections lead to the introduction of a new 

topology, namely the similarity topology. This new topology satisfies the interesting 

property of making the similarity functions continuous (stable). 

Several examples are presented amongst them a modified vector space model. 

Finally, the article shows that the retrieval and the similarity topology can be considered 

as the sets of retrievals of arbitrary Boolean AND-OR queries. 
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APPENDIX A 

GENERALITIES ON TOPOLOGICAL SPACES 

Let X denote a set. Denote by B(X] the set of all subsets of X. A t o ~ o l o m  r on 

X is a subset of B(X) such that 

(i) any union of elements in r belongs to t 

(ii] any finite intersection of elements in r belongs to r 

(iii) I$ (the empty set) and X belong to r. 

The elements of r are called open sets. 

The couple [X,r] is called a topolo~ical space. 

Given two topologies r1 and t2 on X we say that rl is weaker (or smaller or 

coarser) than q if rl c t2. We then also say that r2 is stronzer (larver or finer] than 

rl. 

- 
A set F c X is called if its complement FC E r. If A c X, the closure of 

A in X, w.r.t. r, denoted by A, is the set 

K = n {B c X I B  is closed and A c BI 

If it is not clear that the closure is w.r.t. r we denote AT. 

If ( X , d  is a topological space, a base for r is a collection B c r such that 

A subbase for r is a collection C c r such that the collection of all finite intersections 

of elements of C forms a base for r. Any collection of subsets of a set X is a subbase 

for some topology on X. This follows from the definition of r. This assertion is not 

true for a base! 

Note that B is a basis for r iff, whenever G E r and x E G, there is a B E B 

such that x E B c G. 



A.2 

Let x E X. We say that U c X is a neighborhood of x if there exists G  E .c such 

that x E G  c U .  We denote by V,(x) the collection of all neighborhoods of x E X and 

it is called a neivhborhood svstem. A neighborhood base at x E X is a collection 

BJx) c V,(x) such that each U E V%(X) contains an element V E BZ(x), i.e. V,(x) is 

determined by B, as 

The elements of B,(x), once chosen, are called basic neighborhoods. 

Let (X,Z) be a topological space. We say that it is a T? space if for every 

x,y E X, x f y, there exists a neighborhood of one of these points not containing the 

other. We say that it is a TI space if for every x,y E X, x + y, there exist neighbor- 

hoods of each of these points not containing the other point. 

Let (X,t) be a topological space. We say that (X,r] is a Hausdorff (or T21 space 

if for every x,y E X, x f y, there exists G,H E z such that x EG,  y E H and G  n H = 4. 
Equivalently if there exists U E V,(x), V E V,(y) such that U n V = 4. 

Clearly T2 TI TO. In this paper we will have examples showing that the 

converse is not true. 

Let X be a set and 

a function such that 

(i) d(x,x) = 0 

(4 d(x,yl = d(y,xI 

(iii) d(x,y) I d(x,z) + d(z,y) (triangle inequality) 

for every x,y,z E X. Then d is called a pseudo-metric on x and (X,d) is called a 

pseudo-metric space. Every pseudo-metric space can be considered as a topological 

space as follows : 



(a) Define the "open balls", Vx E X, Ve > 0 

(b) Define sets A c X open iff for every x E A there is a B(x,e) c A. 

It can be shown (cf. Willard (1970), 2.6, p.18) that the open sets defined above f o m  

a topology on X, the so-called pseudo-metric tovolo~y on X. 

If (i) above can be reformulated as 

( i t  d(x,y) = 0 iff x = y 

then we call d a metric. (X,d) a metric space and the topology that it generates, the 

metric tovoloe;v. 

If X is a vector space over R we can even go further. We say that 

is a seudo norm on X if 
%-+r 

(i) IOll = 0 (0 is the zero vector in X)  

(ii) Haxll = la1 llxll , V a  R 

(iii) Ilx + yII 3 Ilxll + llyll 

for all x,y E X. 11.11 is called a norm if (i)  can be replaced by + 
(i)' 1x11 = 0 iff x = 0 

for all x E X. 

X, [\.I, accordingly, is called a (pseudo-Inormed space. If we define 

then it can be shown that d is a (pseudo-)metric. 

Example : 

Rn, II.II, with, if x = (xl ,...., x,,) E Rn 



A.4 

for p L 1. 

[ . A p  is called the Minkowski norm and, if p = 2, 1.b2 is called the Euclidean norm. 

d derived from 11.112 is called the Euclidean metric and its topology the Euclidean 

topolom, denoted by 8: For p = we define 

Also I.[, is a norm on Rn. All norms l.llp (1 I p i m) are eauivalent by which we 

mean that they all induce the same topology [in this case 8. The same definition goes 

for equivalent pseudo-metrics. 

11.112 has one special feature, however. Define, for x,y E Rn 

the so-called inproduct in Rn. This inproduct is used in this article. It makes Rn into 

an inproduct space. Every inproduct space X is a normed space via the definition 

for every x E X. 

The inproduct satisfies the so-called inequality of Cauchy-Schwarz : Vx,y E X 

Let (x,T) be a topological space and Y c X. 

Then 

is a topology on Y, the subspace topology induced on Y by z. 



A.5 

Example : 

In c Rn where I = [0,1]. 

We can take the restriction of 11.112 (or any other norm on Rn) to In. This yields the 

Euclidean topology on In, being the subspace topology of In, inherited from the 

Euclidean topology on Rn. 

Let (X,r) and (Y,rl) be two topological spaces and let f : X + Y be a function. 

We say that f is continuous if for every B rp,  f ' ( ~ )  E t. We say that f is if G 

E t implies f(G) E r'. If f : X + Y is a bijection that is open and continuous then we 

say that (X,T) and [Y,zl) are homeomor~hic and we denote (X,r) + [Y,r'). Topologically 

spoken these spaces are indistinguishable. 

Let (X,t) be a topological space. We say that r is compact if every open cover 

of X has a finite subcover. 

Example : 

[0,1] is compact but ]0,1[ is not (]l/n,l[, n E N is an open cover of ]0,1[ without a 

finite subcover). 

A set in Rn (with the Euclidean topology @ is compact iff it is closed and bounded. 

Let f j  : (X,t) 4 R be a family of functions [j E J, where the index set J can be 

any, denumerable or non-denumerable, set). We say that the family (fj)j,J forms an 

equicontinuous family in x E X, if for every e > 0, there is a neighborhood U of x, 

independent of j E J, such that y E U implies that for every j J : Ifj(x) - fj(y) I < e. 

The family (fj)j,J is said to equicontinuous on (X,r) iff it is equicontinuous in every 

point x of X. Note that every finite family of continuous functions is an equicontinu- 

ous family. Moreover, if the topology T = PIX), the discrete topology, then any family 

is equicontinuous. 



APPENDIX B 

PROOF OF THEOREM 2.1 

Theorem 2.1 : 

Let d, d' and d" be as defined in (91, (11) and (12). Then 

(i) the (pseude)metrics d' and d" are equivalent 

(ii) if d exists, it is equivalent with d' and d". 

Proof : 

For every E > 0 and D E DS, we denote by B(D,e), BJ(D,e) and BN(D,e) the d- (resp. 

d' and d") e-open ball around D. 

[i) It is clear that for every D,E E DS, dl(D,E) 1 dU(D,E), hence B"(D,e) c B'(D,e) for 

every e > 0 and D E DS. Let now e > 0 and D E DS be given. Set e' = e/(2+e). 

Then dl(D,E) < E' implies 

for every Q E QS. Hence, eQ(D,E) < e/2 for every.Q E QS. So, d"(D,E) < e and 

hence B1(D,e') c BW(D,e). This shows that d' and d" generate the same topology 

on DS, denoted as r'. 

(ii) Assume now that d exists. Since for every D,E E DS : dl(D,E) I d(D,E), we see 

that B[D,e) c BZ(D,e) for every e > 0 and D E DS. Let now B(D,e) be an arbitrary 

open &-ball around D. Let e' = E / ( ~ + E )  > 0, then we have for every E E B1(D,e') 

that 

This implies that, for every Q E QS, eQ(D,E) < e/2. Hence, d(D,E) < e, which 

shows that B1(D,e) c B(D,e). This proves part (ii) of the theorem. 



APPENDIX C 

PROOF OF THEOREM 2.10 

Theorem 2.10 : 

The following assertions are equivalent : 

(i) t' = r" 

(ii) The family (sim(.,Q) IQ E QS) is equicontinuous on (DS,rn), where the functions 

range in R, &T 

Proof : (ii) a (i) : 

Let (Di)i,, be a net in DS, convergent to D E DS for r". Since the set (sim(.,Q) IQ 

E QS) is equicontinuous on t" into R, 8: we have that VE > 0, 3iO(e) E I (independent 

of Q E QS) such that Vi 2 i0(&) 

VQ E QS. Hence, VQ E QS 

Hence 

so dl(Di,D) < e. Consequently : (DJi,, converges to D in r' (by using the definition 

of t'). Hence t' = t". 

(i) a (ii) : 

Let the net (Di)i,, be convergent to D on DS equiped with the topology r" = r'. Hence 

VE > 0, 3iO(e) E I such that Vi 2 iO(e), i E I : 



From this it follows that, VQ E QS 

IsimCD,,Q - sim@,Q) I < E 

(hence Vi 2 iO(e], independent of Q]. Since this goes for every net (Di)isl that 

converges in t" we have that the set 

is equicontinuous on [DS,T"]. 



APPENDIX D 

PROOF OF THEOREMS 3.6. 3.7 AND 3.8 

Theorem 3.6 : 

r' = 8: Hence T, r", r' are compact. 

Proof : 

Let III.III be defined by, for D DS 

(since D E In we can indeed restrict ourselves to vectors Q with positive coordinates). 

Hence d defined by 

yields the metric topology z'. Furthermore d' defined by 

with 

IIDI12 = sup /<QP> I 
IQ&l 

yields the Euclidean metric. Since II.II= and II.llz are equivalent (see Appendix A) and 

since <aQ,D> = a <Q,D> for every a E R, it follows that d and d' are equivalent and 

hence r' = 8: 

Since z c z" c r' = Band since Bis compact, also r ,  r" and r' are. 



Theorem 3.7 : 

t' = t", hence they are T2-spaces. 

Proof : 

In view of theorem 2.10 it suffices to prove that the set 

is equicontinuous on (In,%"). For this it suffices to prove that 

(see e.g. Wilansky (1970), p.291, ex.201). 

Now 

Since 11.11, and 11.112 are equivalent, the result follows. From theorem 3.6 it now 

follows that t' = t" are T2-spaces (since gis) .  Cl 

Theorem 3.8 : 

t is a To-space but not a TI-space. Hence t t t". 

Proof : (i) t is To 

Let D,E E DS, D # E and we are looking for (sufficient condition) 



Hence we look for D = (Dl ,..., D,), E = (El ,..., \) in DS such that 

It is therefore sufficient to look for r such that 

Such an r exists if 

i.e. the inequality of Cauchy-Schwarz must be strict.This is so iff 

E 6 {aDlla E B] 

Let now E = aD, 3a E R. Since E E DS, a E R+. If a > 1, take r = <D,E> = all~11~'. 

Then, since 



D.4 

we have that E E R(E,r). Hence R(E,r) E V,(E). But <D,E> = r, hence D e R(E,r). If 

a < 1 then we have the above with D and E replaced : D = (l/a)E. 

(ii) r is not TI 

Choose any D,E + 0 in DS with E = aD, a > 1. For every V E V,(D) there is an n E IN, 

Fi E DS, ri > 0 (i = I, ..., n) such that 

Hence <Fi,D> > ri, Vi = 1 ,..., n and hence also <Fi,E> = a <Fi,E> > ri, Vi = 1 ,..., n. 

Hence 

So (DS,%] is not a TI-space. 

Since r' = r" are (even T2-spaces), we have that r + r". 

Note : 

In the above proof we had to check carefully if D E R(D,r). This looks trivial but it 

is not so. It is even not always true. Indeed D E R(D,r) iff <D,D> > r, i.e. iff 

UD1I2 > Jr. So it can easily be that R(D,r) + 4, R(D,r) E t but D e R(D,r). 



APPENDIX E 

PROOF OF THE RESULTS OF EXAMPLE 3.5.2 

Theorem 3.9 : 

Vj = 1, ..., n, Vr > 0 

forming a subbasis for z. 

Proof : 

Vi,j E (1 ,..., n), Vr > 0 

a) i < j  

Then (23) is equivalent to 

j > i > 2 j r  - j  

b) i > j  

Then, by (a] and reversing i and j, we find 



Theowm 3.10 : 

Let d be the metric of T' 

Then, Vi,k = I ,..., n : 

Proof : 

Vi,k = I ,..., n, by definition of d, 

dPi,Dk) = sup 
i + j  - 

j . 2 max(ij) 2 max04j) +  I 
Suppose first that i s k. 

(1) j s i 

Then 

[ 2 ) i s j s k  

Then 

the maximum being obtained in j = i as well as in j = k. 



So, if i i-k, 

For i 2 k we hence have [since d[Di,Dk) = d[Dk,Di)) 

This proves the theorem. 

Corollary 3.11 : 

r = r" = r' = B(DS). 

Proof : 

It suffices, by theorem 2.5, to show that r = B[DS). Now Vj  = 1, ..., n and 

we have that R[Q,r) = (Q). 

This follows readily from theorem 3.9. 

Note that also z' is the discrete topology but that d is not the discrete metric. 



APPENDIX F 

PROOF OF THE RESULTS OF EXAMPLE 3.5.3 

Theorem 3.12 : 

Vj = 1, ..., n, Vr > 0 

which forms a subbasis for 7. 

R(D,J) = D, E DSli E 11, ... PI n 

Proof : 

Vi,j = 1, ..., n 

j - 

(a) i < j 

Then 

. 'I 1 
, j  + 

1 
xr tan- tan- 
2 2 

xr 1 D, E R@,,r) - tan - < - ---- j - < i < j  
2 j - i  xr tan - 

2 

An analogous argument yields the right hand side of the open interval in (24), 

in case j > i. 0 

Theorem 3.13 : 

Let d be the metric of r'. Then, Vi,k = I ,..., n : 



Proof : 

Vi,k = 1, ..., n 

since Arctan is an increasing function. 

By the two lemmas below we have that Vi,j,k = I, ..., n 

using the formula 

tan (a - P) = 
tana - tanp  

l + t a n a t a n p  

If we split up the cases as in the previous example we find that, in all cases that i i k 

we have that 

~@,,DJ = kctan (k - i) 
x 

The analogue result is true if i L k, yielding the proof of the theorem. I3 



Lemma A : 

Lemma B : 

Proof : 

For i,j,k E {I ,..., n), 

l i - j l , U - k l ~ [ O p - 1 1  . 

From this the conclusion follows easily. 

Corollary 3.14 : 

z = t" = t = B(DS) 

Proof : 

indeed, then 

j - l < j -  1 
?TI tan - 
2 

Hence z = B(DS] and hence also t' = t" = B(DS] by theorem 2.5. [7 


