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Summary . A lot of research has been devoted to modeling strategies for longitudinal data with missingness,
recently especially within the MNAR context. In this paper, the relatively unexplored but practically highly relevant
domain of non-monotone missingness with multivariate ordinal responses will be broached. To this end, a dedi-
cated version of the multivariate Dale model (Molenberghs and Lesaffre, 1994) will be formulated. Furthermore,
we will also assess the sensitivity of these models to their assumptions, using the technique of global influence
(Cook, 1979, 1986; Thijs et al., 2000).
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1. Introduction

Categorical data modeling has received a lot of attention during the past decades (Agresti, 2002). More
recently, quite a bit of attention has been devoted to repeated categorical data (Diggle et al., 2002; Fahrmeir
and Tutz, 1994; Molenberghs and Verbeke, 2005). One generally distinguishes between three families: (1)
marginal models (Ashford and Sowden, 1970; Bahadur, 1961; Molenberghs and Lesaffre, 1994, 1999); (2)
conditional models where parameters associated with a particular set of outcomes are interpreted relative
to values for (a subset of) the other outcomes (Cox, 1972; Liang and Zeger, 1989; Molenberghs and Ryan,
1999; Rosner, 1984); and (3) random-effects approaches (Breslow and Clayton, 1993; Stiratelli et al., 1984;
Wolfinger and O’Connell, 1993).

Especially with longitudinally measured outcomes, measurement sequences are prone to incompleteness.
When referring to the missing-value, or non-response, process we will use terminology of Little and Rubin
(1987, Ch.6). Missing outcomes are said to be missing completely at random (MCAR) if the missingness
is independent of both unobserved and observed data and missing at random (MAR) if, conditional on the
observed data, the missingness is independent of the unobserved measurements. A process that is neither
MCAR nor MAR is termed nonrandom (MNAR). In the context of likelihood (or Bayesian) inference, and
when the parameters describing the measurement process (θ) are functionally independent of the parameters
describing the missingness process (ψ), MCAR and MAR are ignorable, while a nonrandom process is
nonignorable.

A model for incomplete data starts from the joint distribution of the outcomes, Y say, and the non-response
process, R say. This joint distribution f(y, r|θ,ψ) can be factorized in several ways. A selection model
is based on the factorization f(y|θ)f(r|y,ψ), whereas the reverse factorization is referred to as a pattern-
mixture model (Little, 1993, 1994). When a common set of random-effects is thought to influence both the
Y and R processes, conditional upon which they are independent, then the so introduced model is referred
to as a shared-parameter model. For reviews, see Kenward and Molenberghs (1998); Little (1995); Wu and
Carroll (1988).



2 Jansen & Molenberghs

The non-response process R can either be monotone, also called dropout, or non-monotone when there are
intermittent missing values. For each of these processes different modeling strategies are needed. Mono-
tone missingness in continuous outcomes can be modeled, for example using a linear mixed model for the
measurements, and a logistic regression for the dropout, depending on the previous, and possibly also the
current, measurements (Diggle and Kenward, 1994). Monotone missingness in ordinal outcomes is discussed
in Molenberghs, Kenward, and Lesaffre (1997). They use a Dale model for the measurements and a logistic
regression for dropout. Also for non-monotone missingness several modeling strategies exist. For continuous
outcomes, we refer to Troxel et al. (1998), who used a multivariate normal distribution for the measurements,
together with the Markov Chain assumption, and a logistic regression, which only depends on the current
measurement, for the missingness process. They encountered problems with the heavy computational load
due to a multi-modal likelihood surface. For 2 binary outcomes Baker et al. (1992) already proposed a model
for dealing with non-monotone missingness. Later, Jansen et al. (2003) reformulated this model such that
its membership of the selection model family is unambiguously clear, extended it to accommodate, possibly
continuous, covariates, turning the model into a regression tool for several categorical outcomes, and pro-
posed a parameterization that avoids the risk of parameter space violations. The measurement model, as
well as the missingness model are a form of multigroup logistic regression. Baker (1995) proposed a model
for three binary outcomes with non-monotone missingness, based on marginal and association models for
the measurements, and a logistic regression for the missingness mechanism, depending on the last observed
and last unobserved measurement.

In this paper, we propose a flexible and elegant set of models that can be used for multivariate categorical
outcomes with non-monotone missingness, based on the multivariate Dale model (Molenberghs and Lesaffre,
1994) for the measurements, as well as for the missingness mechanism. Since MNAR models are sensitive to
the underlying model assumptions, generally performing a sensitivity analysis is strongly advisable. Many
different routes might be followed, either at the level of the models, or at the level of the individuals (Draper,
1995; Glynn et al., 1986; Molenberghs et al., 2001; Rubin, 1977, 1994; Scharfstein et al., 1999). We will focus
on global influence analysis, also known as the case-deletion method (Cook and Weisberg, 1982), to determine
which subjects might be influential for the analysis.

The rest of the paper is organized as follows. Section 2 introduces data from the Belgian Health Interview
Survey 1997 (HIS1997). In Section 3 we sketch the multivariate Dale model, and how two copies of it can
be combined, describing the measurement and missingness part of the model, respectively. Its application
to the HIS is presented in Section 4. In Section 5, the global influence methodology as introduced by Cook
(1979, 1986) in linear regression, and by Molenberghs et al. (2003) and Thijs et al. (2000) in linear mixed
models, is reviewed. Finally, the proposed methodology is applied to the Health Interview Survey data in
Section 6.

2. Belgian Health Interview Survey

In 1997, the first Belgian Health Interview Survey took place. The HIS1997 was conducted to evaluate the
usefulness of a periodic health-related survey, with the idea to collect information on the subjective health
of the Belgian population, as well as on important predictor variables.

The main goal of the HIS1997 was to provide a description of the subjective health status of the entire
Belgian population as well as of three regional subpopulations (Flemish, Walloon and Brussels region), and
in addition of the Germanophone community. The idea was to obtain a reflection of how specific groups of
people experience their health, to what extent they use health care facilities, and how they take care of their
health by adopting a certain life style and/or by taking preventive or other health-related measures.

The target population was defined as all people residing in Belgium during 1997. The National Register
was used as the sampling frame. The total number of successful interviews for the sample was set to 10000
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Table 1. Data from the HIS (10786 sub-
jects). ‘Mental health’ versus ‘fixed gen-
eral practitioner’.

Yes No Missing

Good 5048 522 17

Bad 2360 252 13

Missing 1737 266 571

Table 2. Data from the HIS (10786 subjects). ‘Mental
health’ versus ‘body mass index’.

< 18 18–25 25–30 > 30 Missing

Good 100 2923 1685 581 298

Bad 81 1421 691 285 147

Missing 17 168 97 25 2267

(0.1% of the Belgian population), 3500 in both the Flemish and Walloon regions, and 3000 in the Brussels
region. Sampling was based on a combination of systematic sampling, stratification, multistage sampling,
clustering, and selection with differential probabilities. More details on the design of the study, together with
a descriptive analysis of missingness, can be found in Burzykowski et al. (1999) and Renard et al. (1998).

In this paper, we will focus on three specific aspects of the HIS1997, i.e., the status of mental health (0 for
‘good’; 1 for ‘bad’; ‘.’ for ‘not interviewed’, ‘no valid information’, ‘error interviewer’, ‘not applicable’, ‘does
not know’, ‘no answer’), having a fixed general practitioner (0 for ‘yes’; 1 for ‘no’; ‘.’ for ‘not interviewed’,
‘no valid information’, ‘error interviewer’, ‘not applicable’, ‘does not know’, ‘no answer’), and body mass
index (1 for ‘< 18’; 2 for ‘18–25’; 3 for ‘25–30’; 4 for ‘> 30’; ‘.’ for ‘not interviewed’, ‘no valid information’,
‘error interviewer’, ‘not applicable’, ‘does not know’, ‘no answer’). In total, information is available for
10,786 subjects. Tabulated summary data are shown in Tables 1 and 2. Covariates of interest are sex (‘male’
and ‘female’) and educational level (‘none’, ‘primary’, ‘lower secondary’, ‘higher secondary’, ‘higher’). The
distribution of the subjects over the different covariate levels of sex and education are shown in Tables 3
and 4, respectively, in which the structure is changed a bit to save space (blocks for a missing value for
mental health are moved after other blocks).

3. Models for Non-Monotone Multivariate Categorical Outco mes

3.1. The Multivariate Dale Model

The multivariate Dale model (Molenberghs and Lesaffre, 1994) extends the bivariate global cross-ratio model
described by Dale (1986) and accounts for the dependence between multiple ordinal responses, as well as for
their dependence on covariate vector(s), which may be time-varying, continuous and/or discrete. The model
arises from a decomposition of the joint probabilities into main effects (described by marginal probabilities)

Table 3. Data from the HIS. ‘Mental health’ versus ‘fixed general prac-
titioner’. Separate for males (5288) and females (5498), respectively.

Males
2579 320

928 140

5

5
868 138 305

Females
2469 202

1432 112

12

8
869 128 266
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Table 4. Data from the HIS. ‘Mental health’ versus ‘fixed general practitioner’.
Separate for no education (267), primary education (1486), lower secondary
education (1844), higher secondary education (3265), higher education (3843),
and education information missing (81), respectively.

No
112 13

46 5

0

0
36 9 46

Primary
734 67

374 17

3

3
150 26 112

Lower secondary
899 74

446 47

2

1
255 36 84

Higher secondary
1611 131

699 51

4

3
581 62 123

Higher
1662 235

776 127

8

6
704 128 197

Missing
30 2

19 5

0

0
11 5 9

and interactions (described by cross-ratios of second and higher orders). A trivariate version of the model
has been presented by McCullagh and Nelder (1989, Sec. 6.5.4). However, these authors did not provide
a way to calculate the joint probabilities, needed in the likelihood equations. Several authors, including
Molenberghs and Lesaffre (1994, 1999), Lang and Agresti (1994), and Glonek and McCullagh (1995) have
provided solutions for the multivariate case. A detailed review is given in Molenberghs and Verbeke (2005).

Let i = 1, . . . , N indicate the covariate level, containing ni subjects. Every subject v at the ith level is
evaluated at T distinct time points and at each visit the subject is scored using a categorical outcome
variable. Hence, the outcome for subject v in the ith level is a series of measurements Yivt (t = 1, . . . , T ),
where Yivt can take on ct distinct (possibly ordered) values jt. Without loss of generality, we denote the
category levels by 1, . . . , ct. Along with the outcomes, a vector of covariates x is recorded, possibly time-
dependent. For convenience, we assume that the first element of this covariate vector x equals 1, necessary
for the intercept of the logistic regression. Both the marginal distributions and the cross-ratios can depend
on these covariates.

Categorical data are typically presented in the form of frequency counts of observations. It is therefore
convenient to summarize the categorical outcomes, measured for subjects with covariate vector xi, in a
cross-classification of the outcomes Yivt into a c1 × . . .× cT dimensional contingency table with cell counts
Z∗
i (j1, . . . , jT ), denoting the number of subjects with outcome (j1, . . . , jT ).

At every T -dimensional cutpoint k = (k1, . . . , kT ), the data table is collapsed into a 2 × 2 × . . . × 2 table,
each of which is assumed to arise as a discretization of a multivariate Plackett distribution (Plackett, 1965).
In harmony with the desire to use cumulative measures, given the outcomes are ordinal, a data table of
cumulative counts can be constructed:

Zi(k) =
∑

ℓ≤k

Z∗
i (ℓ). (3.1)

Thus, Zi(k) is just the number of individuals in group i whose observed response vector is ℓ, with ℓ ≤ k.
The corresponding probabilities are

pi(k) = P (Y iv ≤ k|xi,θ) (3.2)

and p∗i (k) = P (Y iv = k|xi,θ), with θ a vector of parameters of interest. Note that Zi(c1, . . . , cT ) = ni and
pi(c1, . . . , cT ) = 1.
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In addition, the marginal counts are given by all counts for which all but one index are equal to their
maximal value: Zitjt ≡ Zi(c1, . . . , ct−1, jt, ct+1, . . . , cT ). Bivariate cell counts, i.e., cell counts of a cross-
classification of a pair of outcomes, follow from setting all but two indices ju equal to cu, etc. Sim-
ilarly, e.g., bivariate probabilities pertaining to the tth and sth outcomes, are denoted by pi,ts,jtjs =
pi(c1, . . . , ct−1, jt, ct+1, . . . , cs−1, js, cs+1, . . . , cT ). Generalizations to higher orders are straightforward. The
order of the components is not important, but should be carried through the computations in a consistent
fashion.

The multivariate Dale model involves describing T marginal distributions, T (T − 1)/2 pairs of two-way
interactions and three or higher order associations. The description is completed by specifying link functions
and linear predictors for both the univariate margins and the association parameters. The latter are often
assumed to be constant modeled on a log-odds ratio scale. For the univariate marginal links, a convenient
choice is the logistic link function:

ηitjt = logit(pitjt |xi) = θTitjtxi, (1 ≤ t ≤ T, 1 ≤ jt < ct). (3.3)

Full specification of the association is done in terms of marginal global odds ratios:

ϕi,ts,jtjs =
(pi,ts,jtjs)(1 − pitjt − pisjs + pi,ts,jtjs)

(pisjs − pi,ts,jtjs)(pitjt − pi,ts,jtjs)
. (3.4)

They are usefully modeled on the log scale as

ηi,ts,jtjs = lnϕi,ts,jtjs = θTi,ts,jtjsxi, (1 ≤ t, s ≤ T, 1 ≤ jt < ct, 1 ≤ js < cs).

Higher order global odds ratios are easily introduced using ratios of conditional odds (ratios).

3.2. The Bivariate Dale Model

Since, in the application, we only have two responses of interest (mental health and fixed general practitioner),
the multivariate Dale model can be replaced by its bivariate version (Dale, 1986). Both responses are
restricted to two possible outcomes only (‘good’ versus ‘bad’ and ‘yes’ versus ‘no’, respectively), obviating
the need to construct tables with cumulative counts and probabilities, thence the ∗ is omitted from notation.
The joint probabilities

pi,12,j1j2 = pi(j1, j2) = P (Yiv1 = j1, Yiv2 = j2|xi), (j1, j2 = 1, 2)

can be decomposed into two marginal distributions for the main effects, and one log cross-ratio for the
association between both responses (indices i and 1, 2 are omitted):

h1(p1+(x)) = θT1 x,

h2(p+1(x)) = θT2 x, (3.5)

h3

(
p11(x)p22(x)

p12(x)p21(x)

)
= θT3 x,

where h1, h2, and h3 are link functions in the generalized linear model terminology, and p1+(x) and p+1(x)
are the marginal probabilities for observing Yv1 = 1 and Yv2 = 1 respectively. The most popular choice for
h1 ≡ h2 is the logit function, while for h3 the natural logarithmic function is commonly used. This results
in two marginal logistic regression models and the log cross-ratio

lnϕ = ln
p11(x)p22(x)

p12(x)p21(x)
, (3.6)

which is assumed linear in the covariates, although non-linear extensions are feasible but computationally
more demanding. Solving equations (3.5) yields the probabilities pj1j2(x) (the dependence on x is omitted
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Table 5. Theoretical distribution of complete and observed cells of a bivariate binary out-
come.

π11,11 π11,12

π11,21 π11,22

π10,11 π10,12

π10,21 π10,22

π01,11 π01,12

π01,21 π01,22

π00,11 π00,12

π00,21 π00,22

π11,11 π11,12

π11,21 π11,22

π10,1+

π10,2+

π01,+1 π01,+2 π00,++

for the ease of notation):

p11 =






1 + (p1+ + p+1)(ϕ− 1) − S(p1+, p+1, ϕ)

2(ϕ− 1)
if ϕ 6= 1,

p1+p+1 if ϕ = 1,
(3.7)

and

p12 = p1+ − p11,

p21 = p+1 − p11, (3.8)

p22 = 1 − p12 − p21 − p11,

with
S(λ1, λ2, ϕ) =

√
[1 + (λ1 + λ2)(ϕ − 1)]2 + 4ϕ(1 − ϕ)λ1λ2. (3.9)

Several extensions or variations to the model are possible, e.g., assume the associations to be constant,
keep the intercepts and/or covariate parameters constant over time, include relations between the covariate
parameters over time, etc.

3.3. Joint Model for Measurements and Missingness

In the case of two binary outcomes, the bivariate Dale model, as introduced in Section 3.2, will be used for the
measurement model and for the missingness model given the measurements (Section 3.3.1). Also in the case
that one or both outcomes have more than two outcome categories, the bivariate Dale model can be used,
but a slightly different version than in Section 3.2 is needed. Therefore, we start from the multivariate Dale
model, as introduced in Section 3.1, for the measurement model, combined with the bivariate Dale model for
the missingness model given the measurements (Section 3.3.2). In both situations, again a selection model is
obtained. Discrete as well as continuous covariates can be included in measurement and missingness models.

3.3.1. Two binary outcomes

Let i = 1, . . . , N index distinct covariate levels. In this section, the index i will be suppressed from notation.
Let j1, j2 = 1, 2 correspond to the outcome categories of the first and second measurement, respectively and
let r1, r2 = 0, 1 correspond to the missingness indicators (1 for an observed and 0 for a missing measurement).
This leads to a four-way classification as in Table 1. The complete data and observed data cell probabilities
πr1r2,j1j2 for this setting are presented in Table 5, and are factorized as:

πr1r2,j1j2 = pj1j2qr1r2|j1j2 , (3.10)

where pj1j2 parameterizes the measurement process and qr1r2|j1j2 describes the missingness mechanism,
conditional on the measurements, resulting in a selection model. In particular, we will assume

η1 = logit p1+ = X1θ,

η2 = logit p+1 = X2θ, (3.11)

η3 = ln ϕp = X3θ,
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Fig. 1. Graphical representation of the model nesting structure.

δ4|j1j2 = logit q1+|j1j2 = Z1|j1j2ψ,

δ5|j1j2 = logit q+1|j1j2 = Z2|j1j2ψ, (3.12)

δ6|j1j2 = ln ϕq = Z3|j1j2ψ.

As in Baker et al. (1992) and Jansen et al. (2003), we will consider nine identifiable models:

Model 1 : (ψ(1)
.. , ψ

(2)
.. ) Model 4 : (ψ(1)

.. , ψ
(2)
.j2

) Model 7 : (ψ
(1)
.j2
, ψ

(2)
.j2

)

Model 2 : (ψ(1)
.. , ψ

(2)
j1.

) Model 5 : (ψ
(1)
j1.
, ψ(2)

.. ) Model 8 : (ψ
(1)
j1.
, ψ

(2)
.j2

)

Model 3 : (ψ
(1)
.j2
, ψ(2)

.. ) Model 6 : (ψ
(1)
j1.
, ψ

(2)
j1.

) Model 9 : (ψ
(1)
.j2
, ψ

(2)
j1.

),

where ψ
(1)
j1j2

models the non-response for the first outcome and ψ
(2)
j1j2

models the non-response for the second
outcome. Index j1 indicates the dependence on the first outcome, index j2 on the second outcome. The
nesting structure of these models is schematically represented in Figure 1. Interpretation is straightforward.
For example, Model 1 is MCAR, in Model 4 missingness in the first variable is constant, while missingness
in the second variable depends on its value. Note that this is the first time the Dale model is applied to a
situation where missingness is non-monotone.

No a priori ordering is imposed on the outcomes. The advantage is that genuine multivariate settings (e.g.,
several questions in a survey) can be handled as well as longitudinal studies. When deemed necessary, the
implications of ordering can be imposed by considering specific models and leaving out others. For example,
one may want to avoid missingness on future observations. In the current bivariate case, the index j2 would
have to be removed from ψ(1) in the above model.

Models (3.11) and (3.12) can be combined into the model

ξ = Wφ, (3.13)

where
ξ =

(
η1, η2, η3, δ4|11, δ5|11, δ6|11, δ4|12, δ5|12, δ6|12, δ4|21, δ5|21, δ6|21, δ4|22, δ5|22, δ6|22

)T
,
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W =

(
X 0
0 Z

)
,

and φ =
(
θT ,ψT

)T
. This new model will be referred to as the Dale-Dale model , separate Dale models being

used for the marginal measurement process and for the process governing missingness, given the outcomes.

The design matrices X and Z, and the parameter vectors θ and ψ depend on the number of covariates that
are taken into account, and whether or not their influence can be different on both outcomes. Let us assume
that we include one covariate that is constant, and one that has a different influence on both outcomes, then
θ, ψ, X and Z can be specified as follows:

θ = (θ1, θ2, θ3, θ4, θ5, θ6)
T ,

ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8)
T ,

X =




X1

X2

X3



 =




1 0 0 cov1 cov2 0
0 1 0 cov1 0 cov2

0 0 1 0 0 0



 ,

and

Z =





Z1|11

Z2|11

Z3|11

Z1|12

Z2|12

Z3|12

Z1|21

Z2|21

Z3|21

Z1|22

Z2|22

Z3|22





=





1 0 0 cov1 cov2 0 0 0
0 1 0 cov1 0 cov2 0 0
0 0 1 0 0 0 0 0
1 0 0 cov1 cov2 0 I1 0
0 1 0 cov1 0 cov2 0 J1

0 0 1 0 0 0 0 0
1 0 0 cov1 cov2 0 I2 0
0 1 0 cov1 0 cov2 0 J2

0 0 1 0 0 0 0 0
1 0 0 cov1 cov2 0 I3 0
0 1 0 cov1 0 cov2 0 J3

0 0 1 0 0 0 0 0





,

where I1 = 1 in Models 3, 7 and 9, I2 = 1 in Models 5, 6 and 8, I3 = 1 if I1 = 1 or I2 = 1, J1 = 1 in
Models 4, 7 and 8, J2 = 1 in Models 2, 6 and 9, J3 = 1 if J1 = 1 or J2 = 1. These indicators are equal
to 0 in all other models. Note that the interpretation of ψ1, ψ2, ψ7 and ψ8 depends on the restrictions

made in a specific model. For example, model 2 assumes restrictions ψ(1)
.. and ψ

(2)
j1.

, which are equivalent to

ψ
(1)
11 = ψ

(1)
12 = ψ

(1)
21 = ψ

(1)
22 , ψ

(2)
11 = ψ

(2)
12 and ψ

(2)
21 = ψ

(2)
22 , such that ψ1 models the non-response for the first

variable, independent of any observed values, ψ2 models the non-response for the second variable, when the
first variable has a value equal to 1, and ψ8 models the difference in non-response for the second variable
between a value for the first variable equal to 1 and equal to 2.

To include individual-specific covariates, a subscript i has to be introduced to the vector ξ and the matrix
W and hence to their constituent components. θ, ψ, X , and Z can easily be changed to increase or reduce
the number of covariates.

3.3.2. One binary and one categorical outcome

Let i = 1, . . . , N index distinct covariate levels. Also in this section, we suppress i from notation. Let j1 =
1, 2, j2 = 1, 2, 3, 4 correspond to the outcome categories of the first and second measurement, respectively,
and let r1, r2 = 0, 1 correspond to the missingness indicators as in Section 3.3.1. This leads to a classification
as in Table 2. The complete data and observed data cell probabilities πr1r2,j1j2 for this setting are presented
in Table 6. They can be factorized as in (3.10), but now (3.11) needs to be replaced by
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Table 6. Theoretical distribution of complete and observed cells of a binary and a categorical (4 levels) outcome.

π11,11 π11,12 π11,13 π11,14

π11,21 π11,22 π11,23 π11,24

π10,11 π10,12 π10,13 π10,14

π10,21 π10,22 π10,23 π10,24

π01,11 π01,12 π01,13 π01,14

π01,21 π01,22 π01,23 π01,24

π00,11 π00,12 π00,13 π00,14

π00,21 π00,22 π00,23 π00,24

π11,11 π11,12 π11,13 π11,14

π11,21 π11,22 π11,23 π11,24

π10,1+

π10,2+
π01,+1 π01,+2 π01,+3 π01,+4 π00,++

η1 = logit p1+ = X1θ,

η2 = logit p+1 = X2θ,

η3 = logit p+2 = X3θ,

η4 = logit p+3 = X4θ,

η5 = ln ϕ1 = X5θ,

η6 = ln ϕ2 = X6θ, (3.14)

η7 = ln ϕ3 = X7θ,

with

ϕ1 =
p11 (p22 + p23 + p24)

(p12 + p13 + p14) p21
, ϕ2 =

(p11 + p12) (p23 + p24)

(p13 + p14) (p21 + p22)
and ϕ3 =

(p11 + p12 + p13) p24

p14 (p21 + p22 + p23)
,

the proportional odds ratios, rather than marginal global odds ratios as defined in (3.4). However, both
parameterizations should give similar results. Equation (3.12) will be used here too. However, we now need
it 8 times, once for each possible combination of j1 and j2. Now,

ξ =
(
η1, η2, η3, η4, η5, η6, η7, δ4|11, δ5|11, δ6|11, . . . , δ4|14, δ5|14, δ6|14, δ4|21, δ5|21, δ6|21, . . . , δ4|24, δ5|24, δ6|24

)T
.

For simplicity, we assume that no covariate effects will be included in this model, since the aim here is to
show how the models should be adapted when an outcome has more than two categories. However, covariates
can easily be included in the same way as before. Therefore,

θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7)
T
,

ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)
T ,
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where ψ4 and ψ5 do not appear in model 1, and ψ5 does not appear in models 2–5. X is in this case a 7× 7
identity matrix, while

Z =





Z1|11

Z2|11

Z3|11

Z1|12

Z2|12

Z3|12

Z1|13

Z2|13

Z3|13

Z1|14

Z2|14

Z3|14

Z1|21

Z2|21

Z3|21

Z1|22

Z2|22

Z3|22

Z1|23

Z2|23

Z3|23

Z1|24

Z2|24

Z3|24





=





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 I1 0
0 1 0 0 J1

0 0 1 0 0
1 0 0 I2 0
0 1 0 0 J2

0 0 1 0 0
1 0 0 I3 0
0 1 0 0 J3

0 0 1 0 0
1 0 0 I4 0
0 1 0 0 J4

0 0 1 0 0
1 0 0 I5 0
0 1 0 0 J5

0 0 1 0 0
1 0 0 I6 0
0 1 0 0 J6

0 0 1 0 0
1 0 0 I7 0
0 1 0 0 J7

0 0 1 0 0





,

where, in Models 3, 7 and 9 I1 = I5 = 1, I2 = I6 = 2 and I3 = I7 = 3, in Models 5, 6 and 8 I4 = I5 =
I6 = I7 = 1, in Models 4, 7 and 8 J1 = J5 = 1, J2 = J6 = 2 and J3 = J7 = 3, and in Models 2, 6 and 9
J4 = J5 = J6 = J7 = 1. In all other models, these indicators are equal to 0.

4. Models Fitted to the Health Interview Survey Data

4.1. Mental Health versus Fixed General Practitioner

In the analysis, all patients with recorded covariate information are considered. The effect of the covariate
on the marginal probabilities can either be constant, or different for both probabilities. We assume that
this choice is identical for the measurement model and the missingness model. So either θ4 and ψ4 in (3.13)
are included in the model, or θ5, θ6 and ψ5, ψ6, for parsimony. The association between both outcomes is
assumed to be constant in all settings.

We will consider in detail five different sets of Dale-Dale models. First, models are considered without
covariates. Results (estimates, standard errors, and negative loglikelihoods) are presented in Table 7. Second,
a constant effect of sex is added (Table 8), with distribution of the data over males and females shown in
Table 3. In Table 9 the effect of sex is allowed to differ for both marginal probabilities. Next, education is
included. Table 10 shows the results of the models with constant effect of education, while in Table 11 this
effect changes over the marginal probabilities. Table 4 contains the distribution of the data over the different
categories of education. Several other ways to include covariate information are possible (only including a
covariate effect in the measurement or missingness model, a constant covariate effect in one part of the model
and a varying effect in the other part, more than one covariate effect, . . . ), but will not be presented here
for conciseness.
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Table 7. Maximum likelihood estimates and standard errors of the Dale-Dale models. Mental health versus fixed general
practitioner. All observations included. No covariates.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.76(0.02) 0.76(0.02) 0.76(0.02) 0.76(0.02) 0.87(0.08) 1.13(0.02) 0.76(0.02) 0.86(0.07) 0.76(0.02)

θ2 2.17(0.03) 2.17(0.03) 2.17(0.03) 2.24(0.03) 2.17(0.03) 2.17(0.03) 2.16(0.03) 2.24(0.03) 2.17(0.03)

θ3 0.03(0.08) 0.02(0.08) 0.03(0.08) 0.03(0.07) -0.02(0.08) -0.08(0.08) 0.03(0.08) 0.02(0.07) 0.03(0.08)

θ4

θ5

θ6

Missingness model

ψ1 1.16(0.02) 1.16(0.02) 1.20(0.02) 1.16(0.02) 1.02(0.08) 0.77(0.02) 1.20(0.02) 1.03(0.07) 1.20(0.02)

ψ2 2.83(0.04) 2.97(0.13) 2.83(0.04) 2.71(0.04) 2.83(0.04) 2.56(0.04) 2.86(0.04) 2.71(0.04) 2.97(0.13)

ψ3 4.35(0.17) 4.37(0.18) 4.36(0.17) 4.40(0.16) 4.43(0.20) 4.54(0.19) 4.35(0.17) 4.46(0.19) 4.38(0.18)

ψ4

ψ5

ψ6

ψ7 -0.33(0.06) 0.55(0.38) +∞ -0.38(0.06) 0.50(0.31) -0.33(0.06)

ψ8 -0.40(0.30) +∞ 2.75(0.30) -0.29(0.02) +∞ -0.40(0.30)

-loglik 15991.13 15990.32 15979.06 15979.99 15990.33 15989.74 15979.06 15979.17 15978.21

Sampling zeroes or small counts in some of the cells forces certain parameters to lie on the boundary of
their corresponding parameter space which, due to the parameterization, is equal to ∞. This should not be
seen as a disadvantage of our model, since boundary solutions are a well known feature of MNAR models in
general (Rubin, 1996). The advantage of our parameterization (see also Jansen et al., 2003) is that either an
interior or a boundary solution is obtained, but never an invalid solution. Note that there are ramifications
regarding hypothesis testing when parameters lie on the boundary of their space. For details, we refer to
Molenberghs and Verbeke (2007).

From Table 7, the likelihood ratio tests reject Model 1 in favor of Model 3 (LRT = 24.14) and Model
4 (LRT = 22.28). Since these models make different assumptions about the missingness mechanism (in
Model 3, a missing value for mental health depends on the (un)observed value for fixed general practitioner,
in Model 4, a missing value for fixed general practitioner depends on the (un)observed value for fixed general
practitioner), both have to be considered. The extension to Model 7, which combines the missingness
mechanism assumptions from Model 3 and Model 4, is not significant (Models 3 and 7: LRT = 0.00,
meaning they are equivalent at the observed data level, Models 4 and 7: LRT = 1.86). We also notice that
in Model 4 the estimate for ψ8, the MNAR parameter, lies on the boundary of the parameter space, which
makes Model 4 less favorable than Model 3. Nevertheless, a more careful study is necessary to get insight
into why two models with completely different assumptions about the missingness mechanism are significant,
and therefore a sensitivity analysis is performed in Section 6. But first we will discuss the results of the
analyses where covariates are included into the model.

The effect of sex, assumed to be equal for both marginal probabilities, on the measurement and missingness
model simultaneously, is highly significant, whichever of the models is chosen to conduct a likelihood ratio
test (with 2 degrees of freedom). Further, within Table 8, Model 3 and Model 4 still provide the most
adequate description. The likelihood ratio test statistics for comparing Models 1 and 3 and Models 1 and 4
equal 23.00 and 22.98, respectively, while those for extending Model 3 and Model 4 further along the edges
of Figure 1, are all smaller than 1.50, and therefore not significant. Thus, from this set of models, one
observes that sex improves the fit but the nature of the missingness mechanism does not change. In Jansen
et al. (2003) a similar result was found. Without covariates, an MCAR model was found to be the most
adequate choice. Including the effect of duration in the measurement model changed the nature of the
missingness mechanism, by making it more complex. When further including duration in the missingness
part, all evidence for non-MCAR missingness disappeared and again the same MCAR model came out as
the best. It was also clear that the effect of duration on the missingness model could not be neglected.
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Table 8. Maximum likelihood estimates and standard errors of the Dale-Dale models. Mental health versus fixed general
practitioner. All observations included. Constant effect of sex.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 1.00(0.06) 1.00(0.06) 1.00(0.06) 1.00(0.06) 0.73(0.16) 0.20(0.05) 1.00(0.06) 1.03(0.14) 1.00(0.06)

θ2 2.42(0.06) 2.42(0.06) 2.42(0.06) 2.49(0.06) 2.40(0.07) 2.30(0.05) 2.49(0.06) 2.49(0.06) 2.42(0.06)

θ3 0.04(0.07) 0.03(0.07) 0.04(0.08) 0.04(0.07) 0.14(0.09) 0.21(0.07) 0.04(0.07) 0.04(0.07) 0.04(0.07)

θ4 -0.16(0.04) -0.16(0.04) -0.16(0.04) -0.16(0.04) -0.14(0.04) -0.09(0.03) -0.16(0.04) -0.16(0.04) -0.16(0.04)

θ5

θ6

Missingness model

ψ1 1.00(0.07) 1.00(0.07) 1.06(0.07) 1.00(0.05) 1.30(0.24) +∞ 1.02(0.07) 0.99(0.11) 1.05(0.07)

ψ2 2.67(0.08) 2.79(0.14) 2.69(0.08) 2.56(0.07) 2.55(0.10) 5.25(0.26) 2.57(0.07) 2.57(0.09) 2.81(0.14)

ψ3 4.35(0.18) 4.36(0.18) 4.36(0.18) 4.39(0.16) 4.56(0.30) 4.04(0.24) 4.39(0.17) 4.40(0.18) 4.37(0.18)

ψ4 0.10(0.04) 0.10(0.04) 0.09(0.04) 0.10(0.04) 0.19(0.06) 0.38(0.05) 0.10(0.04) 0.10(0.06) 0.09(0.04)

ψ5

ψ6

ψ7 -0.32(0.06) -0.97(0.54) –∞ -0.09(0.07) 0.09(0.50) -0.32(0.05)

ψ8 -0.34(0.30) +∞ -3.75(0.26) +∞ +∞ -0.35(0.31)

-loglik 15979.79 15979.17 15968.29 15968.30 15979.34 15957.23 15967.55 15968.29 15967.63

Table 9. Maximum likelihood estimates and standard errors of the Dale-Dale models. Mental health versus fixed general
practitioner. All observations included. Effect of sex different on both marginal probabilities.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 1.44(0.07) 1.44(0.07) 1.44(0.07) 1.44(0.07) 1.53(0.12) 0.52(0.12) 1.44(0.07) 1.55(0.11) 1.44(0.07)

θ2 1.60(0.10) 1.60(0.10) 1.60(0.09) 1.68(0.08) 1.60(0.10) 1.59(0.09) 1.47(0.16) 1.68(0.08) 1.60(0.10)

θ3 0.09(0.08) 0.08(0.08) 0.09(0.08) 0.09(0.07) 0.05(0.09) 0.23(0.07) 0.09(0.08) 0.07(0.08) 0.09(0.08)

θ4

θ5 -0.45(0.04) -0.45(0.04) -0.45(0.04) -0.45(0.04) -0.45(0.04) -0.27(0.05) -0.45(0.04) -0.45(0.05) -0.45(0.04)

θ6 0.39(0.06) 0.39(0.06) 0.39(0.06) 0.38(0.05) 0.39(0.06) 0.39(0.06) 0.40(0.06) 0.38(0.05) 0.39(0.06)

Missingness model

ψ1 1.01(0.06) 1.01(0.06) 1.06(0.07) 1.01(0.06) 0.95(0.09) 3.29(1.32) 1.14(0.11) 0.95(0.08) 1.06(0.07)

ψ2 2.62(0.13) 2.68(0.14) 2.63(0.12) 2.49(0.11) 2.62(0.13) 4.65(0.76) 2.95(0.45) 2.49(0.12) 2.70(0.14)

ψ3 4.35(0.18) 4.36(0.18) 4.36(0.17) 4.39(0.16) 4.39(0.19) 4.09(0.25) 4.29(0.19) 4.44(0.19) 4.37(0.18)

ψ4

ψ5 0.10(0.04) 0.10(0.04) 0.09(0.04) 0.10(0.04) 0.07(0.06) 0.39(0.05) 0.07(0.05) 0.06(0.05) 0.09(0.04)

ψ6 0.14(0.08) 0.18(0.08) 0.14(0.08) 0.15(0.08) 0.14(0.08) 0.29(0.08) 0.10(0.10) 0.15(0.08) 0.17(0.09)

ψ7 -0.32(0.06) 0.38(0.47) -3.82(1.42) -0.68(0.37) 0.44(0.38) -0.32(0.06)

ψ8 -0.33(0.30) +∞ -3.01(0.77) -1.36(1.13) +∞ -0.36(0.30)

-loglik 15926.04 15925.49 15914.42 15915.71 15925.78 15920.05 15914.04 15915.14 15913.76
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Table 10. Maximum likelihood estimates and standard errors of the Dale-Dale models. Mental health versus fixed general
practitioner. 81 observations not included. Constant effect of education.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.94(0.07) 0.94(0.07) 0.94(0.07) 0.96(0.06) 0.84(0.11) 0.34(0.06) 0.96(0.07) 0.90(0.09) 0.93(0.07)

θ2 2.37(0.07) 2.36(0.07) 2.37(0.07) 2.45(0.06) 2.43(0.09) 2.44(0.07) 2.45(0.07) 2.48(0.08) 2.36(0.07)

θ3 0.01(0.08) 0.01(0.08) 0.01(0.08) 0.01(0.07) 0.07(0.09) 0.17(0.08) 0.01(0.08) 0.01(0.08) 0.01(0.08)

θ4 -0.05(0.02) -0.05(0.02) -0.05(0.02) -0.05(0.01) -0.06(0.02) -0.07(0.02) -0.05(0.02) -0.06(0.02) -0.05(0.02)

θ5

θ6

Missingness model

ψ1 1.43(0.08) 1.43(0.08) 1.44(0.08) 1.43(0.07) 1.67(0.26) +∞ 1.43(0.07) 1.57(0.16) 1.44(0.08)

ψ2 3.10(0.09) 3.15(0.15) 3.09(0.09) 2.99(0.08) 3.09(0.09) 5.91(0.24) 2.99(0.08) 2.99(0.09) 3.14(0.14)

ψ3 4.36(0.18) 4.37(0.18) 4.37(0.18) 4.41(0.16) 4.46(0.24) 4.04(0.25) 4.41(0.18) 4.44(0.19) 4.37(0.18)

ψ4 -0.07(0.02) -0.07(0.02) -0.06(0.02) -0.07(0.02) -0.07(0.02) -0.03(0.02) -0.07(0.02) -0.07(0.02) -0.06(0.02)

ψ5

ψ6

ψ7 -0.31(0.06) -0.65(0.56) -∞ -0.08(0.08) -0.39(0.36) -0.31(0.06)

ψ8 0.15(0.33) +∞ -3.71(0.24) +∞ +∞ -0.16(0.33)

-loglik 15839.06 15838.95 15828.54 15827.65 15838.57 15832.29 15827.09 15827.36 15828.42

Table 11. Maximum likelihood estimates and standard errors of the Dale-Dale models. Mental health versus fixed general
practitioner. 81 observations not included. Effect of education different on both marginal probabilities.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.72(0.08) 0.72(0.08) 0.72(0.08) 0.72(0.07) 0.79(0.09) 0.99(0.07) 0.72(0.08) 0.78(0.09) 0.72(0.08)

θ2 2.85(0.12) 2.85(0.12) 2.85(0.12) 2.95(0.11) 2.85(0.12) 2.85(0.12) 2.95(0.12) 2.95(0.12) 2.85(0.12)

θ3 0.02(0.08) 0.02(0.08) 0.02(0.08) 0.02(0.07) -0.02(0.08) -0.08(0.07) 0.02(0.08) 0.01(0.08) 0.02(0.08)

θ4

θ5 0.01(0.02) 0.01(0.02) 0.01(0.02) 0.01(0.02) 0.02(0.02) 0.04(0.02) 0.01(0.02) 0.02(0.02) 0.01(0.02)

θ6 -0.17(0.03) -0.17(0.03) -0.17(0.03) -0.18(0.03) -0.17(0.03) -0.17(0.03) -0.18(0.03) -0.18(0.03) -0.17(0.03)

Missingness model

ψ1 1.53(0.07) 1.53(0.08) 1.54(0.08) 1.53(0.07) 1.40(0.11) 1.14(0.08) 1.53(0.08) 1.42(0.11) 1.54(0.08)

ψ2 2.14(0.12) 2.27(0.16) 2.13(0.12) 2.05(0.11) 2.15(0.13) 1.83(0.12) 2.06(0.11) 2.05(0.11) 2.26(0.17)

ψ3 4.42(0.18) 4.43(0.18) 4.43(0.18) 4.47(0.17) 4.47(0.20) 4.61(0.20) 4.47(0.16) 4.51(0.19) 4.44(0.18)

ψ4

ψ5 -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02)

ψ6 0.19(0.03) 0.19(0.03) 0.19(0.03) 0.18(0.03) 0.19(0.03) 0.20(0.03) 0.18(0.03) 0.18(0.03) 0.19(0.03)

ψ7 -0.30(0.06) 0.44(0.33) +∞ -0.07(0.07) 0.38(0.29) -0.30(0.06)

ψ8 -0.35(0.28) +∞ 2.74(0.32) +∞ +∞ -0.35(0.27)

-loglik 15789.46 15788.71 15779.33 15778.05 15788.78 15787.34 15777.57 15777.41 15778.58

Including a time-varying sex effect instead of a constant one, again improves the fit a lot (in all models
LRT > 100 with 2df). Here too, Models 3 and 4 are to be preferred, although the extension of Model 4
to Model 7 is borderline non-significant (LRT = 3.34), and in Model 7 the estimate of ψ8 no longer lies on
the boundary of the parameter space. Noteworthy also is that, in the measurement model, sex has opposing
effects on both marginal probabilities (negative for mental health, positive for fixed general practitioner),
while in the missingness model there is a borderline significant positive effect. The negative effect of sex
on mental health can be interpreted as men having a higher probability of bad mental health than women,
while the positive effect of sex on fixed general practitioner means that men are having a higher probability
of having a fixed general practitioner than women.

For the covariate education, the same conclusions can be drawn concerning the model selection. Models 3
and 4, with a varying education effect, provide the most adequate description from all models in Tables 10–
11, although the extension to Model 7 is again borderline non-significant, and will be considered as well. In
the measurement model, the effect of education seems to be significant only for the marginal probability of
fixed general practitioner, not for the marginal probability of mental health, with the interpretation that the
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Table 12. Maximum likelihood estimates and standard errors of the Dale-Dale models. Mental health versus body mass index.
All observations included. Equal odds ratios.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.63 (0.02) 0.63 (0.02) 0.64 (0.02) 0.63 (0.02) 0.62 (0.02) 0.05 (0.02) 0.56 (0.02) 0.61 (0.02) 0.64 (0.02)

θ2 -3.73 (0.07) -3.73 (0.07) -3.73 (0.07) -3.76 (0.07) -3.73 (0.07) -3.69 (0.07) -3.98 (0.07) -3.76 (0.07) -3.73 (0.07)

θ3 0.34 (0.02) 0.34 (0.02) 0.34 (0.02) 0.32 (0.02) 0.34 (0.02) 0.33 (0.02) -0.09 (0.06) 0.31 (0.02) 0.34 (0.02)

θ4 2.07 (0.04) 2.07 (0.03) 2.07 (0.03) 2.04 (0.04) 2.07 (0.04) 2.06 (0.03) 1.33 (0.12) 2.03 (0.04) 2.07 (0.03)

θ5 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.42 (0.02) 0.01 (0.01) 0.39 (0.02) 0.42 (0.02) 0.43 (0.02)

Missingness model

ψ1 1.16 (0.02) 1.16 (0.02) 1.08 (0.05) 1.16 (0.02) 1.18 (0.02) +∞ 3.08 (0.38) 1.19 (0.03) 1.08 (0.05)

ψ2 1.09 (0.02) 1.10 (0.02) 1.09 (0.02) 1.19 (0.05) 1.09 (0.02) 2.88 (0.06) 3.63 (0.54) 1.21 (0.06) 1.10 (0.02)

ψ3 4.86 (0.07) 4.86 (0.07) 4.87 (0.07) 4.87 (0.07) 4.86 (0.07) 4.82 (0.10) 4.94 (0.08) 4.88 (0.08) 4.87 (0.07)

ψ4 -0.02 (0.03) 0.05 (0.03) -0.07 (0.03) -0.07 (0.04) −∞ -1.03 (0.17) -0.09 (0.04) 0.05 (0.03)

ψ5 -2.75 (0.06) -1.34 (0.23) -0.08 (0.03) -0.02 (0.03)

-loglik 22090.77 22090.56 22089.01 22088.81 22089.49 21994.64 22085.11 22086.93 22088.91

higher the education, the higher the probability of having a fixed general practitioner. In the missingness
model, the influence of education is opposite for both marginal probabilities (negative for missingness in
mental health, positive for missingness in fixed general practitioner).

Important modeling and data-analytic conclusions can be drawn. It is clear that covariate effects need not be
the same on all marginal probabilities, in the measurement model as well as in the missingness model. Thus,
a varying covariate effect can be investigated. It should also be noted that the parameter estimates of the
covariates in the measurement part are remarkably stable among the 9 Dale-Dale models. This implies that,
in case one is primarily interested in a specific covariate effect on mental health and fixed general practitioner,
all models containing this effect provide very similar evidence. This need not be the case in general. However,
attention is more and more devoted to the nature of the missingness mechanism. Therefore, one should still
exercise caution, since non-random missingness models heavily rely on untestable assumptions (Verbeke and
Molenberghs, 2000). In our analyses, more than one model, with completely different assumptions, turned
out to describe the data well. So it is important to search for observations which may drive these conclusions
(Verbeke et al., 2001). This naturally leads to sensitivity analysis. In Section 5, we will describe the global
influence.

4.2. Mental Health versus Body Mass Index

In this analysis, we will not include covariate effects, since the way it should be done, is sufficiently described
in the previous analysis of mental health versus fixed general practitioner. Thus, all 10,786 patients can be
included in the analysis. Two different sets of Dale-Dale models will be considered. In a first model, we
assume that the three proportional odds ratios are equal. Results are shown in Table 12. The second model
is more complex in the sense that now the proportional odds ratios are allowed to be different (Table 13).

Similar to what was observed in Section 4.1, we notice that the estimates for the measurement model remain
stable in all models in Table 12, except Model 6, probably caused by the boundary solution (±∞). Therefore,
when primary interest is not in the missingness process, but e.g. in estimating the association between both
outcomes, all models (ignoring Model 6) can be used for this purpose. In this case, the odds ratio is estimated
to be equal to 1.537. However, also interpreting the missingness process might be of interest, leading to the
conclusion that Model 7 fits the data best (LRT = 7.40 when extending Model 4), meaning that the body
mass index is responsible for a missing value for mental health as well as for body mass index.

Including three different proportional odds ratios in the model, improves the fit a lot (for all models, LRT >
200 with 2df). However now, Model 3 is to be preferred while Model 4 is borderline non-significant (LRT =
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Table 13. Maximum likelihood estimates and standard errors of the Dale-Dale models. Mental health versus body mass index.
All observations included. Different odds ratios.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.75 (0.02) 0.75 (0.02) 0.75 (0.02) 0.76 (0.02) 0.76 (0.02) 0.07 (0.02) 0.75 (0.02) 0.76 (0.02) 0.75 (0.02)

θ2 -3.68 (0.06) -3.68 (0.07) -3.68 (0.07) -3.71 (0.07) -3.68 (0.07) -3.59 (0.07) -3.56 (0.45) -3.71 (0.07) -3.68 (0.07)

θ3 0.34 (0.02) 0.34 (0.02) 0.34 (0.02) 0.31 (0.02) 0.34 (0.02) 0.36 (0.02) 0.43 (0.28) 0.31 (0.02) 0.34 (0.02)

θ4 2.09 (0.03) 2.09 (0.03) 2.09 (0.03) 2.06 (0.04) 2.09 (0.03) 2.09 (0.03) 2.19 (0.31) 2.06 (0.04) 2.09 (0.03)

θ5 -0.56 (0.14) -0.56 (0.14) -0.56 (0.14) -0.56 (0.14) -0.56 (0.14) -0.64 (0.13) -0.56 (0.14) -0.56 (0.14) -0.56 (0.14)

θ6 -0.23 (0.05) -0.23 (0.05) -0.23 (0.05) -0.23 (0.05) -0.23 (0.05) -0.15 (0.04) -0.25 (0.08) -0.23 (0.05) -0.23 (0.05)

θ7 0.59 (0.02) 0.59 (0.02) 0.59 (0.02) 0.60 (0.02) 0.59 (0.02) 0.06 (0.02) 0.56 (0.09) 0.60 (0.02) 0.59 (0.02)

Missingness model

ψ1 1.16 (0.02) 1.16 (0.02) 1.08 (0.04) 1.16 (0.02) 1.16 (0.02) +∞ 0.74 (1.04) 1.15 (0.02) 1.08 (0.05)

ψ2 1.09 (0.02) 1.10 (0.02) 1.09 (0.02) 1.19 (0.06) 1.09 (0.02) 2.88 (0.05) 0.68 (1.28) 1.19 (0.05) 1.10 (0.02)

ψ3 4.86 (0.08) 4.86 (0.08) 4.87 (0.07) 4.88 (0.08) 4.86 (0.07) 4.82 (0.10) 4.85 (0.11) 4.88 (0.08) 4.87 (0.07)

ψ4 -0.01 (0.03) 0.06 (0.03) -0.07 (0.03) 0.02 (0.04) −∞ 0.29 (0.77) 0.02 (0.04) 0.06 (0.03)

ψ5 -2.75 (0.06) 0.28 (0.94) -0.07 (0.03) -0.02 (0.03)

-loglik 21981.37 21981.29 21979.42 21979.47 21981.31 21979.53 21979.36 21979.34 21979.30

3.80), but the extension to Model 7, which combines the assumptions regarding missingness from Models 3
and 4, is not significant anymore (LRT = 0.12 and 0.22 respectively). So body mass index is now only
responsible for a missing value for mental health. Also in this case, for Model 6, problems were encountered
with solutions on the boundary of the parameter space, and the estimates for the measurement model were
not comparable with the estimates of other models. It can be concluded that, based in the 8 other models,
the odds ratios ϕ1, ϕ2, ϕ3 are equal to 0.571, 0.795 and 1.804. It is clear from those estimates that it is
important to include all three proportional odds ratios into the model.

5. Global Influence

One of the tools to perform a sensitivity analysis is global influence, starting from case-deletion. This
methodology is based on the difference in log-likelihood between the model fitted to the dataset as a whole
on the one hand, and the dataset minus one subject on the other hand. Denote the log-likelihood function,
corresponding to model (3.13), as

ℓ(φ) =

N∑

i=1

ℓi(φ), (5.1)

in which ℓi(φ) is the contribution of the ith individual to the log-likelihood, and where φ is the s-dimensional
vector as defined in Section 3.3. Further, we denote by

ℓ(−i)(φ), (5.2)

the log-likelihood function, where the contribution of the ith subject has been removed. Cook’s distances
(CD) are based on measuring the discrepancy between either the maximized log-likelihoods (5.1) and (5.2) or

(subsets of) the estimated parameter vectors φ̂ and φ̂(−i), with obvious notation. Precisely, we will consider
both

CD1i = 2(ℓ̂(φ) − ℓ̂(−i)(φ)), (5.3)

as well as

CD2i(φ) = 2 (φ̂− φ̂(−i))
′L̈−1 (φ̂− φ̂(−i)). (5.4)

Formulation (5.4) easily allows for the consideration of global influence in a subvector of φ, such as the
measurement model parameters θ, or missingness model parameters ψ. This will be indicated using notation
of the form CD2i(θ), CD2i(ψ), and so on.
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f

Fig. 2. Global influence for Model 3 with varying sex effect. Solid line for males, dotted for females.

6. Influence Analysis of the Health Interview Survey Data

We will apply the global influence ideas to the Dale-Dale models in order to explain the conclusions of
Section 4.1. Whereas all models in Figure 1 can be used, we focus on Model 3 and Model 4, since those
were the most adequate ones when, on the one hand, a varying sex effect and, on the other hand, a varying
education effect is included in both parts of the model. In addition, we will consider Model 7, a supermodel
of both Model 3 and 4, which was, in both settings, borderline non-significant.

Performing a global influence analysis on data with categorical outcomes is less time consuming than on data
with continuous outcomes, since the data can be summarized in cells such as in Table 1. Thus, instead of
removing every subject one by one, we only need to remove one subject per cell and per covariate level. So
in our data set, when including sex, only 2× 9 subjects need to be removed, and when including education,
5 × 9 subjects. Results are shown in Figures 2–7.

When sex is included in the model, the influence graphs for the Cook’s distances on the log-likelihood scale
(CD1i), for the complete parameter vector (CD2i(φ)), and for the parameter vector of the missingness model
(CD2i(ψ)) appear similar in all models considered. The influence graphs for the Cook’s distances for the
parameter vector of the measurement model (CD2i(θ)) are similar for Models 3 and 4, but different for
Model 7. We will discuss these in turn.

The largest CD1i, CD2i(φ), and CD2i(ψ) were measured for subjects with a missing value for fixed general
practitioner. This can be explained as follows. Models 3, 4, and 7 all assume that a missing value for
a specific outcome depends on the value of fixed general practitioner. Since the value of fixed general
practitioner is not available, these assumptions heavily rely on the value such an individual would have
had had the measurements been made, thus a strong sensitivity. Males having no measurements at all
(for mental health and fixed general practitioner) have a non-negligible effect on the missingness model
parameters, while females do not. In all other cases, the influence for males and females is comparable.
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f

Fig. 3. Global influence for Model 4 with varying sex effect. Solid line for males, dotted for females.

f

Fig. 4. Global influence for Model 7 with varying sex effect. Solid line for males, dotted for females.
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f

Fig. 5. Global influence for Model 3 with varying education effect. Solid line for no education, dotted for primary
education, dashed for low secondary education, short dashes for high secondary education, dots and dashes for higher
education.

Varying parameterization invariably produces the same result.

In Models 3 and 4, CD2i(θ) is largest for subjects without fixed general practitioner, but this influence
is negligible. In Model 7 subjects without fixed general practitioner are also influential, but they are not
the only ones. Males with no measurement for fixed general practitioner have a relatively high influence,
compared with females, while in all other cases their influence on the measurement model parameters is
comparable, or higher for females than for males. Nevertheless, the Cook’s distances for the measurement
model parameters are much smaller than those for the missingness model parameters, which shows that the
measurement model parameters are remarkably stable. This conclusion has also been drawn in Section 4.

When education is included in the model, the influence graphs look similar for all models considered. For
CD1i, CD2i(φ) and CD2i(ψ) the largest Cook’s distances were measured for subjects with a missing value
for fixed general practitioner. This result is similar to the one for sex, and can be explained in the same
way. The Cook’s distances CD2i(θ) are largest for subjects without fixed general practitioner, for all levels of
education, but this influence is negligible. Again, the Cook’s distances for the measurement model parameters
are much smaller than those for the missingness model parameters. Some more conclusions have to be drawn.
Subjects having no measurements at all (for mental health and fixed general practitioner) have no influence
on the measurement model parameters, but a non-negligible effect on the missingness model parameters,
since, as in Jansen et al. (2003), the observations without any follow-up are explicitly modeled in the Dale-
Dale models. Subjects without education (solid line) have the highest influence on all parameters of the
model, possibly due to their low presence (267 out of 10705) in the data. In Jansen et al. (2006), it was
stated that the local influence measure for a subject decreases linearly with the sample size of the dataset,
and hence the total influence for a dataset is roughly constant. Our result may indicate that a similar result
might be true for global influence, and when the influence is measured for a group of subjects with identical
characteristics, this influence has to be rescaled according to the number of subjects in that group. Further
investigation of this feature will be necessary.
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f

Fig. 6. Global influence for Model 4 with varying education effect. Solid line for no education, dotted for primary
education, dashed for low secondary education, short dashes for high secondary education, dots and dashes for higher
education.

f

Fig. 7. Global influence for Model 7 with varying education effect. Solid line for no education, dotted for primary
education, dashed for low secondary education, short dashes for high secondary education, dots and dashes for higher
education.
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7. Concluding Remarks

We have presented a new model family for multivariate or repeated ordinal data subject to non-monotone
missigness, based on the multivariate Dale model (Molenberghs and Lesaffre, 1994). This is an important
extension over the methodology available in the literature, where the Dale model up to now was confined to
monotone missingness. A natural hierarchy between the models exist. We considered two binary outcomes,
and therefore a bivariate Dale model for the outcomes is combined with the same bivariate Dale model
for the non-response, resulting in the so-called Dale-Dale model. Several plausible model strategies (the
inclusion of constant or varying covariate effects in both the measurement and missingness model) have been
considered. While we focus on bivariate binary outcomes, the model formulation to incorporate more than
two assessments and/or possibly ordinal outcomes, is straightforward, using the multivariate Dale model.
The Dale-Dale model is particularly attractive when a varying covariate effect is deemed necessary. In our
case study, the models allowing for this varying covariate effect in both the measurement and the missingness
model, provided the best fit.

As is commonly known, to strengthen the data-analytic findings, it is best to conduct a sensitivity analysis,
for example, a global influence analysis. In linear regression, global influence is conceptually simple, straight-
forward in computation and well studied. In more general settings, the calculation of the Cook’s distances
requires N + 1 model fits (once to fit the model for all observations, and once for each individual that has
been excluded from the analysis). This is extremely time-consuming. Nevertheless, in the case of ordinal
outcomes, the work is largely reduced. Only a small number of Cook’s distances need to be calculated, since
there are only a few outcome combinations possible. In the HIS data, only 9 model fits per covariate level
were necessary. A disadvantage of global influence, is that it does not give any information on the reason
why some individuals are more influential than others, since by deleting a subject, all types of influence
stemming from it are lumped together. For this reason the so-called local influence tool (Cook, 1986; Jansen
et al., 2003; Thijs et al., 2000; Van Steen et al., 2001; Verbeke et al., 2001) is a good alternative.

In our first data analysis, the estimates of the measurement model parameters are remarkably stable, no
matter which assumptions are made regarding the reasons for non-response. When interest lies only in the
effect of a specific covariate on the measurement model, all models containing this effect provide very similar
evidence. The model selection (independent of the included covariate effects) pointed out that a missing value
for either mental health or fixed general practitioner depends on the value of fixed general practitioner. The
model that combines both assumptions is (borderline) non-significant. The influence analysis indicated that
subjects with a missing value for fixed general practitioner are the most influential ones in these models. So
they drive the conclusions towards these models. This is in contrast with the analyses done by Molenberghs
et al. (2001) and Verbeke et al. (2001) who found that the influential observations are invariably completers,
and with Jansen et al. (2003), were empty observations were influential. This illustrates that any type of
subject, no matter how many of the outcomes are measured, can have an impact on the assumptions for the
missingness model, and that the results of the data analysis should be carefully explored. The second data
analysis shows how the new method can be applied on ordinal data, which strengthens the motivation why
this research is needed in practice.
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