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Abstract

Estimation in generalized linear mixed models for non-Gaussian longitudinal data

is often based on maximum likelihood theory, which assumes that the underlying

probability model is correctly specified. It is known that the results obtained from

these models are not always robust against misspecification of the random-effects

structure. Therefore, diagnostic tools for the detection of this misspecification are

of the utmost importance. Three diagnostic tests, based on the eigenvalues of the

variance-covariance matrices for the fixed-effects parameters estimates, are proposed

in the present work. The power and type I error rate of these tests are studied via

simulations. A very acceptable performance was observed in many cases, especially

for those misspecifications that can have a big impact on the maximum likelihood

estimators.
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1 Introduction

The generalized linear mixed model (GLMM) is a frequently used tool in

the analysis of discrete repeated measurements (Breslow and Clayton, 1993;

Wolfinger and O’Connell, 1993; Diggle et al., 2002; Molenberghs and Verbeke,

2005). It is a natural extension of the generalized linear model, taking into

account multiple sources of variation. Indeed, let yij denote the jth response of

subject i, i = 1, . . . , n and j = 1, . . . , ni. Conditional on a vector of individual

random effects bi, the outcome variables are assumed to be independent with

density functions belonging to the exponential family

f(yij|bi, θij, ϕ) = exp[ϕ−1{yijθij − ψ(θij)} + c(yij, ϕ)], (1)

where ϕ is a scale parameter, c(.) is a function only depending on yij and ϕ,

and ψ(.) is a function satisfying E(yij|bi) = ψ′(θij) and Var(yij |bi) = ϕψ′′(θij).

Further, µij = E(yij|bi) = v(xT
ijβ + zT

ijbi), where v(.) denotes a known link

function, xij and zij are vectors of covariates, and β is a vector of unknown

fixed regression coefficients. The subject-specific effects bi are often assumed

to be normally distributed with mean zero and variance-covariance matrix D.

Fitting the model requires maximization of the marginal likelihood, which is

obtained by integrating out the random effects. Let the contribution to the

likelihood of subject i be given by:

f(yi|β, D, ϕ) =
∫ ni∏

j=1

f(yij|bi, θij, ϕ)f(bi|D)dbi, (2)
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then we can write the marginal likelihood as

L(β, D, ϕ) =
n∏

i=1

∫ ni∏

j=1

f(yij|bi, θij , ϕ)f(bi|D)dbi. (3)

The commonly used choice of the normal distribution for these random ef-

fects generally leads to intractable likelihood functions, with the exception of

linear mixed model (LMM) for continuous data. In response, several numeri-

cal approximations to the likelihood have been implemented in the available

software packages. For example, Gaussian quadrature, as implemented in the

SAS procedure NLMIXED, approximates the integral using Gaussian-Hermite

polynomials, thereby employing specific properties of the normal distribution.

Obviously, estimation and inferences based on this model, depend on the as-

sumption that the model, and therefore the random-effects structure, is cor-

rectly specified. Since random effects are unobserved, violations of the assump-

tions concerning this part of the model may be difficult to identify. Recent

research has focused on the impact of misspecifications of the random effects

structure on the maximum likelihood estimators and other inferential proce-

dures. Neuhaus et al. (1992) showed that the maximum likelihood estimators

of a random-intercept logistic model with misspecified random-effect distribu-

tion are inconsistent, but that the magnitude of the bias is typically small.

Simulations by Chen et al. (2002) also indicate that the estimation of the re-

gression coefficients may be subject to negligible bias when the distribution of

the random effects is wrongly assumed to be normal. According to Agresti et

al. (2004), the choice of the random-effects distribution seems to have, in most

situations, little effect on the maximum likelihood estimators. However, when

there is a severe polarization of subjects, for example, by omitting an influen-

tial binary covariate, this can affect the predictive qualities of characteristics
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involving the random effects as well as the fixed effects. Similarly, Heagerty

and Kurland (2001) found substantial bias while using a random-intercept

model when the random-effect distribution depends on measured covariates.

We should underscore that all these simulation studies were performed using a

limited number of distributions and, in all of them, only small variances for the

random-effects were considered. Litière et al. (2008) found, using simulations

with a random-intercept logistic model and a wide range of distributions for

the random effect, that the estimate of the variance component is always sub-

ject to considerable bias when the random-effect distribution is misspecified.

Although variance components are generally treated as nuisance parameters,

this bias can have an important impact in studies where they are of primary

interest. This is the case, for instance, in fields like surrogate marker valida-

tion, the assessment of the reliability of rating scales, or studies to evaluate

the criterion and predictive validity of psychiatric rating scales.

Furthermore, the bias induced in the estimates of the mean structure parame-

ters appears to depend on the magnitude of the variance component, whereby

a large bias is associated with large random-effects variance. Clearly, in any

practical situation, the bias induced in the estimator of the variance compo-

nent under misspecification will make it hard to distinguish between the two

scenarios, that is, small or larger variance components. Therefore, it can be

difficult to determine how severe the impact on the mean parameters can be.

Additionally, Litière et al. (2007) established that the type I error rate and

the power related to the tests for the mean structure parameters, can also be

severely affected, even in the presence of small variance component. These au-

thors also showed with a limited simulation study that the situation worsens

when more complicated random-effects structures are used.
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In these circumstances, the development of diagnostic tools that can help to

detect these kinds of misspecifications is of great importance. White (1982)

proposed a general test for model misspecification, the so-called Information-

Matrix Test (IMT). Unfortunately, this test requires third-order partial deriva-

tives of the likelihood function. Even though the calculation of higher order

derivatives might not be an issue in cases where the likelihood is available in

a closed form, as for example, in the LMM case, it can become an important

problem when such a closed form does not exist, as for example, in the GLMM

case. More recently, Waagepetersen (2006) proposed a simulation-based test

by generating random effects while conditioning on the observations. The in-

tuition behind this test is that, if the joint model for the observations and

the random effects is correctly specified, then the marginal distribution of the

simulated random effects should coincide with the assumed distribution. Al-

though simulations with Poisson responses showed a reasonable power, this

test required very large cluster and sample sizes to produce similar results

with binary outcomes. Tchetgen and Coull (2006) proposed a diagnostic test

to verify the validity of the choice of the random-effects distribution by com-

paring marginal and conditional maximum likelihood estimators of a subset

of fixed effects in the model. They argue that the conditional estimators are

robust to the choice of the random-effects distribution, whereas the estimators

from the marginal model will be affected if this distribution is misspecified.

Therefore, they suggest a test statistic based on the difference between these

estimates, focusing on the covariates which vary within each cluster. Clearly,

the test is restricted to those applications which involve at least one within-

cluster covariate. This would make it inapplicable, for instance, to study the

appropriateness of the normal distribution to describe the heterogeneity of

the latent trait involved in the Rasch model and other item response mod-

5



els (Agresti, 2002). Another limitation of this test is that it cannot be applied

when auto-regressive random effects are present. However, as we will illustrate

in the following sections, mispecification in this scenario can have serious con-

sequences for the inferences and the estimation procedures.

In the present work, we extend this toolbox with a set of diagnostic tools

based on the eigenvalues of the variance-covariance matrix of the parameters

estimators.

In Section 2 the motivating case study is introduced. In Section 3, we derive the

new tests. Next, in Section 4, the performance of these proposals is evaluated

by means of simulations. Finally, the appropriateness of the model chosen to

analyze the case study is assessed, using the new tests, in Section 5.

2 A Case Study in Mental Health

The data were obtained from a clinical trial investigating the effect of risperi-

done compared to an active control for the treatment of chronic schizophrenia

(Alonso et al., 2004). In total, 128 patients were included in the trial, from

which 64 where assigned to the treatment group (zi = 1) and the rest to the

control group (zi = 0). Several measures can be used to assess a patient’s

global condition. The Clinical Global Impression (CGI) is generally accepted

as a clinical measure of change. It is a 7-grade scale used to characterize a

subject’s mental condition. Clinicians are often interested in a transformation

of this scale into a binary response variable Y which equals 1 for patients

classified as normal to mildly ill, and 0 for patients classified as moderately

to severely ill. In the study treatment was administered for 8 weeks and the
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Table 1

Case study. Parameter estimates (standard errors) and p-values for the effects in

the logistic random-intercept model (4).

Effect Parameter Estimate (s.e.) p-value

Fixed effects

Intercept β0 -7.37 (1.18) < 0.0001

Treatment effect β1 2.14 (1.08) 0.049

Time effect β2 0.65 (0.10) < 0.0001

Variance structure

Random intercept variance σ2

b 21.01 (6.81)

outcome was measured at 6 fixed time points: 0, 1, 2, 4, 6, and 8 weeks.

A previous model building endeavor led to the following model for these data

(Litière et al., 2007):

logit{P (yij = 1|b0i)} = β0 + b0i + β1zi + β2tj , (4)

where yij denotes the response for patient i at time point tj , zi denotes the

treatment group to which subject i was allocated, and b0i represents a random

intercept, assumed to follow a mean-zero normal distribution with variance σ2

b .

The corresponding maximum likelihood estimates are summarized in Table 1.

According to the results obtained by Litière et al. (2008), the relatively large

estimate for the variance of the random effect reported in Table 1 could poten-

tially imply a serious bias for the mean parameters, including the treatment

effect, if the random-effect distribution is misspecified. In practice, such a

large random-effect variance would not be rare, for instance, in clinical trials

involving a placebo control, where little variability in the response is to be

expected in the placebo group. For the data at hand, this large estimate could

be explained by the high proportion of patients (75%) in the control group

that have a response pattern consisting solely of zeros. Hence, two variance
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Fig. 1. Case study. Histograms of the Empirical Bayes estimates obtained from fitting

model (4), under the assumption of normally distributed random effects.

components, one for each treatment group, might be necessary to capture this

structure. However, allowing σ2

b to vary among the treatment groups did not

decrease the variance components. Indeed, this analysis resulted in a random-

effect variance of 20.00 (s.e. 7.93) for the treatment group and 22.61 (s.e. 10.69)

for the control group. These high variances hint on a very strong intra-subject

correlation within each treatment group.

Arguably, these circumstances could render the assumption of a normal distri-

bution for the random effects questionable. The problem is aggravated by the

unobservable nature of the random effects, complicating the evaluation of their

distributional assumptions. Often, histograms of the empirical Bayes (EB) es-

timates of the random effects are used to detect departures from normality.

For instance, in Figure 1, we have displayed the EB estimates obtained from

fitting model (4) to the data of the case study. Observe that this histogram

shows a severe departure from normality. Nevertheless, one should be careful

in using these estimates to detect misspecification of the random-effects dis-
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tribution, since it can be shown that in GLMM, the EB estimates no longer

follow a normal distribution, even when the random-effects distribution is cor-

rectly specified as being of a normal type (Molenberghs and Verbeke, 2005).

Another important issue occurring in this study was the high proportion of

drop-out present in the last two measurement occasions, especially in week

8 for the control group (50%). A full analysis and discussion of this missing

data problem is beyond the scope of the present work. Therefore, here we

will assume that the missing data generating mechanism is missing at random

(MAR) making our likelihood approach a valid option (Molenberghs and Ver-

beke, 2005; Kenward and Molenberghs, 2007). Note that MAR is oftentimes

considered a plausible assumption in a clinical trial setting.

From the previous discussion it becomes clear that diagnostic tools which

can detect the presence of this type of misspecification are of the utmost

importance. In what follows, we will introduce three such tests, based on

the eigenvalues of the variance-covariance matrix of the maximum likelihood

estimators.

3 Methodology

Let us consider a random variable y with density function h, and a parametric

family of density functions F = {f(y; ξ) : ξ ∈ Υ}. In this manuscript, f

denotes the marginal model (2) associated with the hierarchical model defined

in (1), with random effects assumed to follow a normal distribution. Further,

let ξ be a vector of order p × 1, representing all parameters in (1), including

the mean structure parameters β and the variance components in D.
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In the absence of misspecification, i.e., if there exists a ξ
0
∈ Υ such that

h(y) = f(y, ξ
0
), it can be shown that the maximum likelihood estimator ξ̂n

is a consistent estimator for ξ
0

and the inverse of Fisher’s information matrix

yields the asymptotic variance-covariance matrix of ξ̂n. However, this matrix

does not provide valid results when the model is misspecified, and appropriate

standard error estimates must be obtained by replacing the standard asymp-

totic covariance matrix by the so-called sandwich estimator (White, 1982).

Let us further introduce the following additional notation

A(ξ) =E
{
∂2 log f(yi, ξ)

∂ξk∂ξℓ

}
,

B(ξ) =E
{
∂ log f(yi, ξ)

∂ξk
· ∂ log f(yi, ξ)

∂ξℓ

}
,

An(ξ) =
{

1

n

n∑

i=1

∂2 log f(yi, ξ)

∂ξk∂ξℓ

}
,

Bn(ξ) =
{

1

n

n∑

i=1

∂ log f(yi, ξ)

∂ξk
· ∂ log f(yi, ξ)

∂ξℓ

}
,

where k, ℓ = 1, . . . , p, and p refers to the number of parameters in the model.

White (1982) proved that, under a correctly specified model, B(ξ
0
) + A(ξ

0
) = 0

and therefore, deviations from the model assumptions are expected to distort

this equality. In what follows, we will use this property to construct tests to

detect model misspecifications.

3.1 The Determinant Tests

Consider for each subject i the score statistic given by:

S(yi, ξ) =

{
∂ log f(yi, ξ)

∂ξk

}

. (5)
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Further, assuming that S(yi, ξ0
) ∼ Np[0,−A(ξ

0
)] and taking into account

that nBn(ξ
0
) =

∑
i S(yi, ξ0

)ST (yi, ξ0
), the results established by Anderson

(1963) and Girschick (1939) on the large sample distribution theory for the

eigenvalues of a variance-covariance matrix show that, if γ1, . . . , γp represent

the eigenvalues of −A(ξ
0
) and γ̂1n, . . . , γ̂pn the eigenvalues of Bn(ξ

0
), then

asymptotically

√
n(γ̂n − γ) ∼ Np(0, 2Γ

2), (6)

where γ = (γ1, . . . , γp)
T , γ̂n = (γ̂1n, . . . , γ̂pn)

T , and Γ = diag(γ). Applying

the delta method, (6) can be transformed to
√
n(log γ̂n − log γ) ∼ Np(0, 2I),

where I is the p× p identity matrix. Using these results, we get:

Theorem 1 Let us define δd1(n) = log |Bn(ξ
0
)[−A

−1

n (ξ
0
)]| and δd2(n) =

|Bn(ξ
0
)| · |−A

−1

n (ξ
0
)|. Then, under general regularity conditions, if the model

is correctly specified

1.
n

2p
[δd1(n)]2 ∼ χ2

1
, and (7)

2.
n

2p
[δd2(n) − 1]2 ∼ χ2

1
. (8)

Given that An(ξ
0
) is a consistent estimator of A(ξ

0
), the asymptotic distri-

bution of δd1(n) and δd2(n) will be the same as the asymptotic distribution

of δ∗d1
(n) = log |Bn(ξ

0
)[−A−1(ξ

0
)]| and δ∗d2

(n) = |Bn(ξ
0
)| · | − A−1(ξ

0
)|, re-

spectively (Lehmann , 1999). Note now that δ∗d1
(n) can be written as δ∗d1

(n) =

∑
k(log γ̂kn − log γk). Since for each k = 1, . . . , p the distribution of log γ̂kn

is given by (log γ̂kn − log γk) ∼ N(0, 2/n), it can then easily be shown that

δ∗d1
(n) ∼ N(0, 2p/n), which is equivalent to (7). Furthermore, the second statis-

tic equals δ∗d2
(n) =

∏
k γ̂kn/γk. The variance of this statistic follows from the
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distribution of γ̂kn in (6) after applying the delta method. This results in

δ∗d2
(n) ∼ N(1, 2p/n) and this implies that

n

2p
[δd2(n) − 1]2 ∼ χ2

1
.

In practical applications, ξ
0

can be replaced by its consistent estimator under

the null, given by ξ̂n. Further, note that, δd1(n) and δd2(n) are merely two

variations to the same theme. However, whether or not the logarithm is used

can play an important role in the asymptotic behavior of the tests as well as

in their small sample performance.

Essentially, (7) and (8) try to detect departures from the equality B(ξ
0
) =

−A(ξ
0
) using the determinant of the matrix Bn(ξ)[−A−1

n (ξ)]. The use of

the determinant is a plausible and sensible choice to quantify the “distance”

between Bn(ξ) and −A−1

n (ξ). Another intuitive and appealing possibility con-

sists in combining the determinant with the trace into the same test statistic to

quantify the “distance” between the two matrices of interest. We will explore

this approach in the next section.

3.2 The Determinant-Trace Test

In this section, both the trace and the determinant of An(ξ
0
) and Bn(ξ

0
) are

incorporated in the test statistic. Define

δdt(n) =
tr[Bn(ξ

0
)]

tr[−An(ξ
0
)]
− |Bn(ξ

0
)|

| − An(ξ
0
)| , (9)

The following result allows us to establish the distribution of δdt(n) under the

null hypothesis.
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Theorem 2 If the model is correctly specified then under general regularity

conditions

n[δdt(n)]2

2σδn

∼ χ2

1
. (10)

Like in the previous section the fact that An(ξ
0
) is a consistent estimator of

A(ξ
0
) implies that the asymptotic distribution of δdt(n) is the same as the

asymptotic distribution of

δ∗dt(n) =
p∑

k=1

(
γ̂kn∑

l γl

)

−
p∏

k=1

γ̂kn

γk

. (11)

If we further denote

σδn
=

p∑

k=1

(
γk∑
l γl

− 1

)
2

,

the distribution of δ∗dt(n) follows from applying the delta method. Indeed, the

gradient of δ∗dt(n), evaluated in γ̂n = γ, corresponds to

∂δ∗dt(n)

∂γ̂kn

∣∣∣∣∣
γ̂

n
=γ

=
1

∑
ℓ γℓ

−



∏

ℓ 6=k

γ̂ℓn

γℓ



 1

γk

∣∣∣∣∣∣
γ̂

n
=γ

=
1

∑
ℓ γℓ

− 1

γk

.

If we let ∆T =
(

1∑
ℓ
γℓ
− 1

γ1

. . . 1∑
ℓ
γℓ
− 1

γp

)
, then δ∗dt(n) ∼ N

(
0,

2

n
∆TΓ2∆

)
.

Since ∆TΓ2∆ = σδn
, this results in (10).

In principle, other alternatives using these eigenvalues could be considered

as well. We have chosen three that are intuitively appealing and mathemati-

cally tractable when calculating their null distribution. Note further that these

tests are based on some assumptions. For instance, the assumption that the

individual contributions to the score are normally distributed. Obviously, de-

partures from this assumption may affect the distributional results in (6) and

the performance of the proposed tests. In this case, Waternaux (1976) showed

that the estimators of the eigenvalues obtained from the observed covariance
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matrix will still be normally distributed and centered around their population

values, however the covariance matrix of these estimators may require a cor-

rection depending on the shape of the real distribution. Another important

issue is the substitution of ξ
0

by its consistent estimator under the null, ξ̂n.

This extra variability introduced by using an estimator is not explicitly taken

into account by the tests. Essentially, these assumptions are the price to pay

in order to gain simplicity and avoid the use of high order derivatives.

In what follows, we will empirically study the performance of these tests via

simulations. This study will help us to evaluate the impact of these assump-

tions and the behavior of these asymptotic results in finite sample sizes.

3.3 Implementation

One major advantage of the diagnostic tools proposed in this manuscript is

their relatively easy implementation using standard software, like the SAS

procedures NLMIXED and IML. Indeed, note first that the Hessian An(ξ̂n)

follows directly from NLMIXED. The subject’s contribution to Bn(ξ̂n) can

also be obtained in a relative straightforward way, but they need some ex-

tra calculations. To compute these values, we need to fit the final model in

NLMIXED to each subject separately, keeping the maximum likelihood esti-

mates fixed by setting maxiter = 0, and saving the corresponding first order

derivatives. This approach is illustrated with more detail using some exem-

plary SAS code in Appendix A.

It is also important to point out that the maximum likelihood estimates can

be subject to bias due to rounding errors and inadequate precision of the sta-
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tistical software. These numerical issues have been studied, for example, by

Lesaffre and Spiessens (2001). They have shown that the default number of

quadrature points calculated by NLMIXED can lead to inaccurate maximum

likelihood estimates and p-values. In this manuscript, all analyses were carried

out using adaptive Gaussian quadrature and 50 quadrature points to approx-

imate the likelihood function. Note further that the previously introduced

tests involved the first and second order derivatives of the likelihood function,

rendering the approximations more challenging. It is difficult to establish a

general rule to define the number of quadrature points necessary to achieve a

reasonable approximation in this case. However, our empirical experience with

these and previous simulations indicate that 50 are generally sufficient to ob-

tain adequate approximations to the likelihood function and its derivatives. In

general, it would always be advisable not to restrict the computations to the

default number of quadrature points given by NLMIXED and explore other

values. For instance, one could sequentially increase the number of quadra-

ture points until the results stabilize and no relevant differences are observed

with further increases. Using 50 quadrature points to estimate An(ξ̂n) and

Bn(ξ̂n), we also obtained stable results, when using the SAS procedure IML,

to determine the eigenvalues of these two matrices.

4 Simulations

Although misspecification of the random effects distribution can severely affect

the estimation and inferential procedures in GLMM, other types of misspecifi-

cations of the random effects structure are important as well. Indeed, as stated

in the introduction, simulations by Heagerty and Kurland (2001) have shown
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that misspecifications such as assuming a logistic-normal model, (i) when the

variance of the random effect depends on a covariate in the mean structure,

(ii) when the random structure includes both a random intercept and slope,

or (iii) when the random effects are auto-correlated, can also induce an im-

portant bias in the estimates of the fixed effects parameters. Therefore, in this

section, we will also evaluate the performance of the proposed tests to detect

these more general misspecifications of the random-effects structure.

4.1 Non-normal Random Effects

Using simulations with the model given by (4), while considering different dis-

tributions for the random intercept, Litière et al. (2008) established that the

variance component estimator is always subject to considerable bias when the

random-effect distribution is misspecified. Further, they found that bias can

also be present in the estimates of the mean structure parameters, depend-

ing on the size of the variance associated with the random intercept. In this

section, we will use a subset of these simulations to evaluate the power of the

new proposals to detect this type of misspecification. The binary responses

were generated using model (4), including an intercept, a binary covariate zi,

a within-cluster covariate tj taking values 0, 1, 2, 4, 6, and 8, and a random

intercept b0i sampled from five distinct mean-zero distributions, each with

variances σ2

b = 4 and 32: a normal, a power-function, and a lognormal distri-

bution, as well as a discrete distribution with equal probability at two support

points, and an asymmetric mixture of two normal densities. Note that σ2

b = 32

allows to investigate scenarios with variances in the same order of magnitude

as the one observed in the case study, whereas σ2

b = 4 is used to analyze the
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performance of the tests in less extreme scenarios.

The parameters in the mean structure were fixed at β0 = −8, β1 = 2, and

β2 = 1, in accordance with the values estimated from the case study. Six

different sample sizes were considered, namely 50, 100, 200, 350, 500, and 1000

subjects, and for each setting, 500 data sets were generated. The diagnostic

tools were then used to assess the appropriateness of model (4), with a normal

random intercept, for the analysis of each of the generated data sets. For each

test, we determined the proportion of cases in which a significant result, at a

5% level, was detected. When the random effects were generated from a normal

distribution, this proportion corresponds to the type I error rate; in the other

settings, it represents the power of the tests to detect the misspecification.

The findings of these simulations are shown in Table 2.

The first part of the table displays the results for the small variance setting

(σ2

b = 4). In this scenario, most of the tests exhibit a reasonable type I error

rate for samples of 200 or 350 subjects. The only exception seems to be the

determinant-trace test, showing a considerably inflated type I error rate of

up to 16%. The determinant tests have the best global behavior when both

power and type I error rate are taken into account. Especially the test based on

δd1(n) successfully detects the discrete and lognormal distribution for sample

sizes of 350 or larger. The determinant-trace test also produced good power

values but its inflated type I error rate would make its results unclear in a real

situation where the true distribution is unknown.

The second part of the table summarizes the results for the large variance

scenario (σ2

b = 32). Unlike in the small variance setting, here all the tests

exhibit a very good type I error rate, even for small samples of 50 subjects.
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Table 2

Power and type I error rate of the determinant tests δd1(n) and δd2(n), and the

determinant-trace test δdt(n) to detect a misspecified random-effects distribution: a

normal random intercept is assumed, whereas the random effect was generated from

a normal (No), a power-function (PF), a discrete (D), an asymmetric mixture of

two normals (AM) or a lognormal distribution (LN), each with variance σ2

b = 4 or

32.

σ2

b = 4 σ2

b = 32

n δd1(n) δd2(n) δdt(n) δd1(n) δd2(n) δdt(n)

No 50 0.126 0.010 0.048 0.074 0.042 0.032

100 0.106 0.030 0.098 0.052 0.026 0.020

200 0.096 0.054 0.126 0.048 0.044 0.032

350 0.098 0.072 0.152 0.062 0.050 0.026

500 0.100 0.084 0.164 0.054 0.040 0.018

1000 0.074 0.068 0.126 0.052 0.038 0.012

PF 50 0.167 0.004 0.094 0.422 0.014 0.448

100 0.208 0.034 0.240 0.542 0.214 0.754

200 0.262 0.092 0.422 0.734 0.558 0.968

350 0.334 0.200 0.570 0.926 0.846 0.996

500 0.392 0.278 0.648 0.990 0.980 1.000

1000 0.640 0.580 0.894 1.000 1.000 1.000

D 50 0.412 0.010 0.266 0.914 0.458 0.840

100 0.502 0.176 0.600 0.986 0.942 0.992

200 0.716 0.550 0.858 1.000 0.998 1.000

350 0.894 0.782 0.972 1.000 1.000 1.000

500 0.954 0.926 0.994 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

AM 50 0.145 0.006 0.095 0.266 0.014 0.500

100 0.116 0.016 0.148 0.322 0.094 0.722

200 0.152 0.054 0.288 0.456 0.264 0.904

350 0.164 0.086 0.328 0.602 0.474 0.998

500 0.170 0.108 0.404 0.704 0.602 1.000

1000 0.312 0.260 0.620 0.934 0.918 1.000

LN 50 0.076 0.088 0.169 0.091 0.113 0.178

100 0.267 0.369 0.583 0.172 0.260 0.474

200 0.676 0.766 0.936 0.476 0.578 0.868

350 0.914 0.954 0.996 0.690 0.786 0.982

500 0.994 0.996 1.000 0.874 0.924 1.000

1000 1.000 1.000 1.000 0.998 1.000 1.000
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Regarding power, all tests perform quite well already for sample sizes of 200

or larger. The best overall performance is now observed for the determinant-

trace test. Indeed, it shows a very good type I error rate and a remarkable

power for all misspecifications studied in this scenario.

Clearly, all tests perform considerably better when the variance of the random

effect is large. This is a desirable behavior given the results obtained by Litière

et al. (2008). As stated before, these authors found that considerable bias

could appear under misspecification when the variance was large. Precisely,

the scenario where the proposed tests showed the larger power and best general

performance.

4.2 Random Intercept Variance Depending on a Binary Covariate

Similar to the simulation approach followed by Heagerty and Kurland (2001),

binary responses were now generated using the model

logit{P (yij = 1|bij)} = β0 + β1zi + β2tj + β3zitj + bij , (12)

where zi is a binary covariate, tj is a within-cluster covariate representing a

linear trend, with tj = (j − 1)/(ni − 1), the variance of the random intercept

bij = bi0 is sampled from a distribution given by

bi0 ∼






N(0, σ2

0
) when zi = 0

N(0, σ2

1
) when zi = 1,

(13)

and ni = 6. The parameters in the mean structure were fixed at β0 = −2,

β1 = 1, β2 = 0.5 and β3 = −0.25. In total, 500 data sets, each containing

information on n = 500 subjects, were generated using the previous spec-
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ifications, and model (12) was fitted to the generated data, assuming that

bij = bi0 ∼ N(0, σ2

b ). In this setting, Heagerty and Kurland (2001) found that

substantial bias can occur for all coefficients when σ0 and σ1 are very different.

For example, they reported 38% and 31% of relative bias in the estimation of

β1 and β3, respectively, when σ0 = 1 and σ1 = 2. Additionally, they observed

that, as the discrepancy between the two parameters increases, so does the

bias in the parameter estimates.

To study the performance of our proposals in this particular scenario, we

applied the tests to the generated data sets and determined the proportion out

of the 500 repetitions in which the tests were able to detect the misspecification

(at a 5% significance level). The corresponding powers are displayed in the first

panel of Table 3 as a function of σ0 and σ1. Note that, when σ0 = σ1, these

values correspond to the type I error rate.

Remarkably, all the tests have in general a poor performance in this setting.

The observed type I error rate exceeds the pre-specified value in some scenarios

and the power is usually very small. They failed to detect the misspecification,

even when the difference between σ0 and σ1 was largest. For instance, the

determinant-trace test δdt(n) shows an excellent power when σ1 = 3.0 and

σ0 = 0.5, but fails to detect the reverse situation, when σ1 = 0.5 was combined

with σ0 = 3.0, in 75% of the cases.

4.3 Ignoring a Random Effect

Another type of misspecification in the random structure occurs when a ran-

dom slope is incorrectly ignored. To study the performance of our proposals
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Table 3

Power of the determinant tests δd1(n) and δd2(n), and the determinant-trace test

δdt(n) to detect model misspecification, when a logistic-normal model is assumed, but

(a) the variance of the random intercept depends on a binary cluster-level covariate,

[bi0|zi = 0] ∼ N(0, σ2

0
) and [bi0|zi = 1] ∼ N(0, σ2

1
), (b) the data are generated using

both a random intercept and slope (bij = bi0 + bi1tj), with variance σ2

0
and σ2

1
,

respectively, and (c) the data are generated using autocorrelated random effects bij

such that cov(bij , bik) = σ2ρ|tij−tik |.

(a) (b) (c)

σ1 σ0 δd1(n) δd2(n) δdt(n) σ1 σ0 δd1(n) δd2(n) δdt(n) ρ σ δd1(n) δd2(n) δdt(n)

0.5 0.5 0.100 0.080 0.106 0.2 0.5 0.078 0.070 0.110 0.5 0.5 0.067 0.080 0.103

1.0 0.056 0.060 0.090 1.0 0.056 0.040 0.076 1.0 0.182 0.267 0.333

2.0 0.176 0.108 0.026 2.0 0.050 0.048 0.048 2.0 0.852 0.910 0.938

3.0 0.594 0.478 0.248 3.0 0.070 0.060 0.042 3.0 0.992 0.998 0.998

1.0 0.5 0.134 0.072 0.184 0.5 0.5 0.070 0.068 0.094 0.7 0.5 0.095 0.099 0.128

1.0 0.050 0.042 0.070 1.0 0.066 0.068 0.102 1.0 0.232 0.306 0.366

2.0 0.072 0.048 0.044 2.0 0.062 0.090 0.086 2.0 0.954 0.970 0.972

3.0 0.227 0.165 0.107 3.0 0.058 0.067 0.053 3.0 1.000 1.000 1.000

2.0 0.5 0.364 0.236 0.638 0.8 0.5 0.068 0.116 0.120 0.9 0.5 0.076 0.062 0.103

1.0 0.154 0.116 0.242 1.0 0.120 0.166 0.172 1.0 0.092 0.148 0.190

2.0 0.062 0.046 0.064 2.0 0.178 0.242 0.224 2.0 0.768 0.864 0.834

3.0 0.062 0.044 0.028 3.0 0.190 0.234 0.198 3.0 0.998 0.998 0.998

3.0 0.5 0.740 0.584 0.926 1.0 0.5 0.138 0.178 0.174

1.0 0.444 0.328 0.654 1.0 0.210 0.300 0.260

2.0 0.100 0.068 0.086 2.0 0.356 0.434 0.380

3.0 0.066 0.064 0.046 3.0 0.368 0.468 0.394

in this scenario, we have generated binary responses from the model given by

(12), with bij = bi0 + bi1tj, and σ2

0
and σ2

1
representing the variance of the

random intercept bi0 and slope bi1, respectively.

Simulations by Heagerty and Kurland (2001) showed that when these data are

analyzed wrongly assuming that bij = bi0, moderate bias can appear in the

estimation of the regression coefficients. For instance, they observed asymp-
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totic relative biases as large as 30-50% in the estimates of β2 and β3 when σ0

is small and σ1 is large. On the other hand, the bias for the estimators of the

intercept β0 and the cluster-level covariate effect β1 remained below 15% for

all considered pairs of (σ0, σ1).

The second panel of Table 3 shows the power of the diagnostic tools to detect

this type of misspecification, as a function of σ0 and σ1. As one would expect,

all tests fail to detect the misspecification when σ1 is small. However, the

results of Heagerty and Kurland (2001) showed that little bias is present in

this case. When σ1 is increased, relative to σ0, then the power slightly improves.

Nevertheless, when σ1 = 1 and σ0 = 0.5, precisely the setting in which bias as

large as 52% was obtained for β2 and β3, we only observed a power of at the

most 17% with the determinant-trace test.

4.4 Autoregressive Random Effects

In the analysis of longitudinal data one often observes that the dependence

between repeated measurements within a subject seems to decay as the time

separation between the measurements increases. This could be accounted for

with a generalized linear mixed model including autocorrelated random effects

bij for which cov(bij , bik) = σ2ρ|tij−tik|. Simulations by Heagerty and Kurland

(2001) with this type of misspecification have shown that substantial negative

bias can arise in the estimated fixed effects, with increasing bias as σ increases,

and especially when ρ is small. Note that the random intercept model follows

as a special case of the autoregressive model when ρ = 1. For models with

ρ < 1, a potentially large negative bias can be observed in σ̂n, given that it es-

timates the common variance and therefore approximates the true covariances
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σ2ρ|tij−tik|. These authors observed that as ρ decreases, the negative bias in

σ̂n increases, ranging between −30% and −50% when ρ = 0.7, and between

−47% and −70% when ρ = 0.5. As a result, substantial negative bias can

also arise in the estimated regression coefficients, with increasing bias as σ

increases. For instance, when (ρ, σ) = (0.5, 3.0) negative bias as high as −45%

occurred in each of the mean structure parameter estimates.

The final panel of Table 3 shows the power of the diagnostic tools to detect

this type of misspecification, as a function of σ and ρ. From the table it

follows that, unlike in the previous misspecification settings, as of σ ≥ 2,

the tools are able to detect the misspecification in over 80% of the cases.

Given that the bias in the estimation of the mean structure parameters was

seen to be more substantial as of σ ≥ 2 (Heagerty and Kurland, 2001), this

is a very desirable behavior. The results obtained with this misspecification

are specially appealing if we take into account that the test introduced by

Tchetgen and Coull (2006) will not be applicable in this scenario.

5 Analysis of Case Study

In this section, we will apply the different tests to assess the suitability of

model (4) with normal random intercept, for the analysis of the case study.

The determinant tests lead to δd1(n) = 0.075 and δd2(n) = 1.078 with cor-

responding p-values of 0.763 and 0.754, respectively. On the other hand, the

determinant-trace test delivers the following output: n[δdt(n)]2/2σδn
= 0.001

accompanied by p = 0.996.

Even though these results suggest that the data at hand do not provide evi-
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dence for misspecification, one should interpret them with due caution. Note

first that the simulations clearly showed that the tests may lack power to de-

tect misspecifications in the presence of small samples sizes, such as the one

considered here (n = 128). Additionally, the simulations also illustrated that

these diagnostic tools can fail to detect some specific types of misspecifications

even when relative large sample sizes are available. Therefore, they should only

be considered as an extra element in the evaluation of the model and not as a

definitive instrument. In this spirit, an additional sensitivity analysis was also

conducted, where different distributions were considered for the random inter-

cept (Litière et al. (2008)). The estimates of the parameters of interest and the

associated inferential procedures were similar, irrespective of the distribution

used to obtain them.

Finally, the results of this sensitivity analysis, together with the wide vari-

ety of models considered in the model building exercise and the clearly non-

significant p-values obtained from the diagnostic tests, offer a comfortable

level of confidence about the conclusions emanating from the analysis based

on model (4).

6 Discussion

It is known that the maximum likelihood estimators and the associated in-

ferential procedures can be affected by misspecifications of the random-effects

structure in GLMM. In this manuscript, we have provided a toolbox of tests to

detect misspecifications of this type. The proposals considered have the strong

advantage of not requiring higher order derivatives of the likelihood function,

an important issue in situations where we have to deal with a complex likeli-
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hood without closed form. We compared, via simulations, the performance of

these tests. Encouragingly, the simulations have shown a reasonable behavior,

especially in some scenarios where the cost of a misspecified random-effects

distribution is higher.

Clearly, the tests did not exhibit the same power in all the settings consid-

ered, however, this is a frequently encountered situation. Indeed, inferential

procedures are usually more powerful in some regions of the parametric space,

defined by the alternative hypothesis, than others. Moreover, the lack of a clear

winner among the tests considered should not be considered a disappointing

result. Uniformly most powerful tests (UMPT) are already difficult to obtain

in simpler scenarios where the alternative hypothesis is just a subset of the

p-dimensional space. Here the alternative is defined by a set of distribution

functions, making the chances of finding a UMPT, formally or informally, even

smaller.

Notice that these diagnostic tools are, in principle, suitable to detect different

types of model misspecifications. In this manuscript, we have explored their

performance when facing misspecifications in the random-effects structure.

Supplementally, simulations not shown here using a logistic random-intercept

model with a misspecified mean, for example, by omitting an important co-

variate, but correctly specified random-effects structure, showed that the ef-

fect of the covariate has to be considerably large for the tests to detect the

misspecification. This is an expectable result given that random effects are

known to account for heterogeneity caused by omitting certain explanatory

variables (Agresti, 2002). In this case, the tests are not nearly as powerful as,

for instance, a Wald test, which explicitly tests for the presence of a covari-

ate in the model. Still, one should not forget that the alternative hypothesis
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of the Wald test consists of H1 : β0

1
6= 0, whereas the alternative hypothesis

of the proposed diagnostic tools consists of a wide range of model misspeci-

fications. Other types of misspecification are also possible, for instance, one

could misspecify the link function or not take into account the presence of

overdispersion, etcetera.

Finally, it is important to point out that a non-significant result from these

diagnostic tools does not necessarily imply that there is no misspecification.

For instance, as can be seen from columns (a) and (b) in Table 3, due to a lack

of power a non-significant result can still mask some types of (random-effects)

misspecification. On the other hand, a significant result will not necessarily

imply that there is a problem in the random structure of the model. Nev-

ertheless, given that the tools seem to be especially powerful in detecting

misspecification of the random-effects distribution, this could be one of the

aspects to check if such a significant result is obtained.
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Appendix A. SAS Code

First, we run the statistical model to obtain the maximum likelihood estimates

and the Hessian. For, instance, consider model (4) for the analysis of the

schizophrenia data.
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proc nlmixed data=new qpoints=50 hess;

parms beta0=1 beta1=1 beta2=1 s2u1=1;

eta = beta0 + beta1*Z + beta2*time + u;

expeta=exp(eta);

p=expeta/(1+expeta);

model Y ~ binary(p);

random u ~ normal(0,s2u1) subject=subject;

ods output ParameterEstimates=pe Hessian=hess;

run;

Next, we run the following macro, which will determine each subjects contri-

bution to Bn(ξ). Note that the subjects in the data require an identification

number, going from 1 to n, the total number of subjects.

%macro individual(data=, n=);

data glmmgrad; set _NULL_; run;

%do i = 1 %to &n;

data hulp;

set &data;

if subject ^= &i then delete;

run;

proc nlmixed data=hulp qpoints=50 maxiter=0;

parms / data=pe;

eta = beta0 + beta1*Z + beta2*time + u;

expeta=exp(eta);

p=expeta/(1+expeta);

model Y ~ binary(p);

random u ~ normal(0,s2u1) subject=subject;
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ods output ParameterEstimates=pe1;

run;

data glmmgrad; set glmmgrad pe1; run;

%end;

%mend;

%individual(data=new, n=128);

Now the file glmmgrad contains first order derivatives of the likelihood for each

subject in the data set. Finally, we use IML to calculate the test statistics.

proc iml; reset noprint;

n=128;

/* determining A */

use hess; read all into hess;

na = ncol(hess);

np = nrow(hess);

A = -hess[,2:na]; An = A/n;

/* determining B */

use glmmgrad; read all into gradient;

i=1; B = {0};

begin=1;

do while (i <= n);

end = begin -1 + np;

first = gradient[begin:end, 2];

B = B + first*first‘;

begin = end + 1;
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i = i+1;

end;

Bn = B/n;

/* the determinant tests */

delta1 = log(det(-Bn*inv(An)));

test_det1 = (n/(2*np))*(delta1**2);

prob_det1 = 1 - PROBCHI(test_det1,1);

delta2 = det(Bn)*det(-inv(An));

test_det2 = (n/(2*np))*((delta2-1)**2);

prob_det2 = 1 - PROBCHI(test_det2,1);

/* the determinant-trace tests */

delta_dt = trace(Bn)/trace(-An) - det(Bn)/det(-An);

Eb = eigval(-An);

sigma = sum((Eb/trace(-An) - 1)##2)

test_dettr = (n/2)*(delta_dt**2)/sigma;

prob_dettr = 1-probchi(test_dettr,1);

quit; run;
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