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Abstract - Topologies for retrieval systems are generated by certain subsets, called retrievals. In
this article we show how recall and precision can be expressed using only retrievals. Different
types of retrieval systems are investigated : both threshold systems and "close match” systems,
and both “optimal” and “non-optimal” retrteval. The relation with the hypergeometric and some
"non-standard” distributions is highlighted.



1L INTRODUCTION

The late Jean Tague-Sutcliffe noted that (Tague-Sutcliffe, 1996)
Most information retrieval evaluation is experimental. However, in related sciences, such as
computer science, results may be obtained by analysis as well as by experiment. This approach
bas been little used in information retrieval evaluation, perbaps because the problems are not so

well-defined as in computer science.

Taking up Tague-Sutcliffe's implicit challenge, we will work in this article within a well-
defined theoretical framework. This will enable us to obtain precise, analytical results. Moreover,
following Buckland and Gey, we stress the fact that in order to obtain a clear understanding of the
notions of recall and precision, it is important and useful to study the theoretical behavior of these
measures (Buckland & Gey, 1994). They constitute a basic building block for the understanding of

any retrieval model

A retrieval system is a triple (DS, QS, sim) consisting of a document space DS, a query
space QS and a similarity function sim. In (Everett & Cater, 1992) the authors introduced the

retrieval topology, denoted as 7, generated by the subbasis of retrevals :

{R(Q,r)[r € R, Q € QS}

where a retrieval R(Q,1), £ € R, is defined as :

R(Q,r)y = {D € DS{sim{D,Q) > r}

Note that the set of retrievals of a query Q is the set of all possible answers to the query Q
in the system (DS, QS, sim) with the retrieval topology. Different answers are obtained by changing
the threshold. For definitions of topological notions used in this article we refer the reader to
Appendix B, our earlier articles (Egghe & Rousseau, 1978 ) and the mathemaucal literature.

Further, the topology 77", referred to as the similarity topology, is defined as the coarsest
topology on DS that makes all similanty functions sim(.,Q) continuous. It is generated by the

following subbasis of retrevals :



{U(Q,r,,x,)[Q € QS, r, < r,}

where

U(Q,r, xr,) = {D€DS{r, < sim(D,Q) < r,} = sim(.,Q} *(1z,,x,{)
with 1, <1y, 1,1, € R.

We will assume that the document space DS consists of the documents {D,,D,,...D_}
ordered - in increasing order - according to the similarity values of one particular query (it does not
matter which). However, to simplify the analysis we assume that all these similanty values are
different. Consequently, a retrieval in the rettieval topology has the form {D,D,y,,....D,} i = 1,..,n)
and a retrieval in the similarity topology has the form {D, D.,,..D.} Lm = 1,..,n). More precisely

we will assume that we can retrieve no other sets than retrevals.

We will show that it 15 possible to express the notions recall and precision using the
topelogical approach introduced and studied in {Cater, 1986; Everett & Cater, 1992; Egghe, 1998,
Egghe & Rousseau, 19972, 1998; Rousseau,1998).

We will investigate (both for the retrieval topology and the similanty topology) non-optimal
searches and optimal searches (in that order). By optimal searches we mean that the used retrieval
is the best one with respect to the requested documents. More concretely, if we want k documents
from DS = {D,,..,D,} from which we will find p documents as a result (p < k) and if we retrieve the
set {D,...,D,} (using the retrieval topology) then D, is one of these p documents. In the same way,
if we use the similarity topology, we will retreve {D,...D_} and we assume that D; and D ate
amongst the p documents. If this is not necessarily the case we call the search non-optimal. We will
begin with the latter case (although the methodology is the same for both cases, it turns out that the
non-optimal case yields simple formulae whereas the other case can only be monitored using

approximations).

Note that p = 0,1,....k € N. In this connection we will show that we ate dealing with the
hypesgeometric distribution (see e.g. Olkin, Gleser and Derman (1980) or Rothschild and Logothetis
(1986)). If p = k we have perfect recall.
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It turns out that the average recall-preciston values (in short(R,P) values) in the non-optimal
case and in the optimal case are close to each other. This, in turn, yields accurate average (R,P) values

as they are experienced in random sampling.

The paper closes with some open problems that arise from these models. We stress again
that the study of the mathematical modelling of (R,P) is very important for a basic understanding of
IR.

2. NON-OPTIMAL SEARCHING

We consider a document space DS = {D,,D,,..,D,} in which the documents have an
increasing similarity w.r.t. one particular query Q, i.e. the finite sequence (sim(D, Q) Is
increasing. We study the retrieval topology 7 as well as the similarity topology 7 " as explained in

the introduction.
2.1. The case of retrieval via 7~

We retrieve via the retrievals (Q fixed):

R{Q,r) = {E € DS{sim(E,Q) > r}.
Suppose we want to retreve k documents from which we find p documents.

We take k= 1,2,...,n and p = 0,...,k. Observe that, although the case k = 0 occurs in practice
(e.g. when a would-be inventor does a search in a patent database), we will not consider this case.

We notice that for every r € R” (the positive real numbers):

R{(Q,r) = {Djﬂj > i} < DS

for a certain i = 0,...,n (here D, denotes a symbolical document to allow for the case that R(Q,r) =
DS). We hence have a situation as 1n figure 1.



Figure 1: Retrieval via 7, non-optimal searching: k documents are found in the set
{D.\1,-D,}, k-p documents are found in the set {D,,..,.D;}

In the retrieved set {D,,,,...D,} there are p out of the k requested documents, leaving k-p

requested documents in the non-retrieved set {D,,..,.D;}. Obviously

- P
R=2 o

p= —E_ )

are the recall and precision values. For fixed nk,p and i these values occur ( n; X lii—p ) tmes. As
p=0,1,..kandi=k-p,...n0-p we are dealing with a bivarate (in i and p) discrete discdbution

i = k-p,,np; p = 0,....k) :

(5 5)
P(X=i,Y=p) = B L KP 3)

n+l
(k+1) k+1

since it follows from Prudnikov, Brychkov and Marichev (1992), p.618(39)" that
N n-i)( i ) (n+1)
= . 4
E ) -l ®

Note that the binomial coefficient () = 1 and that () = 0 if s < t. This distribution gives the
probability that among k “desired” documents in a database containing n items, there are p of the

k documents in the set {D,,,,...,.D,}.

%" Note : In Prudnikov, Brychkov and Marichev (1992) one must cotrect formula 39 on p.618 by
replacing n+{ by a+1.



From this it follows that the marginal distributions are :

o (5

P Y= = 5
rep i=k-p n+1 k+1 2
(e+l) { et
P(X=i) = p/\kp . L | ©)
P K+l n+l n+1
(e*l) ka1

The latter result is obtained by using Vandermonde’s convolution formula:
n-i i _In
£ L) - (3 g

{(see Gradshteyn and Ryzhik (1965), p.4, 0.156 (1) or Prudnikov, Brychkov and Marichev (1992),
p.616 (13)).

From this, the conditional distmnbutions follow (i = k-p,...,n-p; p = 0,...,k).
For p fixed :

, P(X=i,Y=p)
P(¥X=1il¥Y=p) =
x=p P{Y=p)

2 L) .
=)

1}

Fori fixed :

P(Y=p|X=i) - P‘i?;;zrp)




- )l .

Hence for every fixed i = k-p,...,a-p, P(Y=p|X=j) is the classical hypergeometric distribution. See
Olkin, Gleser 2and Derman (1980) and Rothschild and Logothets (1986) for more information on

this important distribution. There one can find that

(10)

where ; denotes the average (over p: 1 is fixed) of the hypergeometric distribunon (9). From (10)

we obtain the following formulae for the average precision and recall values that are encountered

in this system :
—_ p R k
P, = P{Y=p|X= = — 11
$ g —_— P(¥Y=plx=i) = — (11)
R, = i) %P(Y=p|x=i) = 2=, (12)
n

p=0

Since P(X=i|Y=p) is not a "standard" distribution, it takes more work to calculate the average

{over i) precision value PP- For recall, howevet, it is clear that

R. =R =

p (13)

~ o

since R 1s independent from 1. For P, we have : —I-’o =P,=0and, forp = 0:

-

Bl S P - P (X=i|Y=p)

1 R

2(3) (5
n+l] = J \P k-p
k+1

H



il e
= - E 14)
n+l gp p-1j \k-p (
k+1
by using again formula (4) but with other symbols. Finally we can also calculate P and R over the

bivanate distribution (3).

F-Y 5 2 p(xei,vep)

p=0 i=k-p 0N — 1

k+1 i=k-p n-i n+l
k+1
= 1 = k (15)
P=1 n + 1 n + l

|
]
M-
ot
=
L+
jg
o
b
1l
|—l.
[
1l
g

p=l i=k-p n+l
Gerl) k1
1
= = by (4
k& P — (by (4))
_ 1
R = —_—
> (16)
This leads to the following theorem:

Theorem 2.1.1

In the case of retrieval via the retrieval topology 7, the probability to retrieve p documents from

k relevant ones via the retrieval {D,,,,...,D,} is



) ()
P(X=i,Y=p) = AP / \k°D 3

n+l
R

(=k-p,...,n-p;p=0,....k). This gives rise to the conditional distributions

2 () .

P(X=i|Y=p) =
n+l
k+1
‘““ ) i)
P(Y=p|x=i) = ~ P/ \kKP) ©)

B

The latter is the hypergeometric distribution. For (9) the average recall and precision values are:

g, =271 (12)

P, = g : (11)

¥ - _ P
R, -n= 2 (13)

k+1
P n+l

o]
il

(p#0, P =P, =0) (14)

and calculated over (3) these are
= _ 1
R =— 16
2 (16)
P=_K | (15)
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Discussion

1. We have found a bivariate probability distribution (3). The marginal distnbution for fixed i is the
hypergeometric distribution (in p). This was already remarked by Shaw, Burgin and Howell
(1997). Their paper becatne available at the writing of the present paper so that the findings are
independent of each other, but Shaw, Burgin and Howell deserve the credit for being the first
to remark this. Surprisingly, their formula is somewhat different from ours; one formula can be
recovesed from the other one by interchanging the terms "retrieved” and "relevant”. In any case
it can be readily checked that the probabilities appearing in their formula are exactly the same
as the one in (3). These findings in the context of duality have been studied in a separate note
(Egghe and Rousseau (1997b)). |

2. Formulae (11)-(14) are the most interesting resuits. It follows that

B,=T (1-Fy a7

leading to a decreasing linear relationship between recall and precision. Also, forp # 0,

3 1 (1 + B) (18)

P n+1 R

R = l—ip), a hyperbolically decreasing relationship between recall and precision. Formula (18) is
illustrated in figure 2 for n = 10 (p < k, p,k=1,..,10). We note that, although these recall-
precision curves are decreasing, they are not concave as required by Egghe's model (Egghe,
1992), nor have they the form of tangent parabolic recall (Buckland & Gey, 1994). The reason
for this difference is that there is no element of time or causality in our theoretic model : we do
not require or even expect that 'first’' relevant documents are found and 'later' the other ones. In
fact we deal here with mandom sampling. Random sampling is unbiased as opposed to any result
of an IR action. Random sampling is the basis of IR from which IR-results can be studied. Let
us give an example of this, Random sampling is used (in DS) e.g. to determine the number of
relevant documents to a certain query. Confidence intervals of this can be built based on the
knowledge that the hypergeometric distribution is approximated by the normal (Gaussian)
distrdbution.

Note also the remarkable fact that no f’, ﬁ, I_’P value depends on 1 and p! The case p=k
corresponds to perfect retrieval (R=1).
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Further we note that all P, P, F, values are decreasing in n (if k stays fixed) and decreasing in n
(for a fixed (k/n)-value). In the former case the limit is 0; in the latter case it is equal to k/n, as
is readily seen. The lattex case (for P,) is shown in figure 3.

p — ™ -+ L] o ™~ 0 =2 E
i N " I 0 I i n I "
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Figure 2

Recall-precision graph for non-optimal searching using the retrieval topology
for a document space containing n = 10 documents
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» kin

Figure 3 : I_’P versus k/n

Note concerning the mode of P

Another way to study average behavior is to look at the mode or the median. (Information
on the median will be given later.) Here we will show that, for the case of non-optimal searching,
using the retrieval topology, ie. formula (3) or (8), for fixed p, a mode is attained for

i = ___(k-p)n—-g-l-l

" k k

The symbol [x] denotes the floor function, i.e. the largest integer smaller than or equal to x. If
(k-p)n/k happens to be an integer then i, = (k-p)o/k. This means that the precision value
cotresponding to 2 mode is p/(n-i,), by (2), and is approximately equal to k/n, ie. is (almost)

mndependent of p.

Theorem
a n-i i
max, o k-p

is attained for




It

{kpin o N

k

then

. _ {(k-p)n

i, = ——
In this case,

Mod (P) = -]-E

n

The proof is provided in Appendix C. Fig.4 illustrated the occurrence of the mode.

13.
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0.025

e

Figure 4

Bivarate distribution, with recall and precision values in the
plane, illustrating that for different recall values, the mode
occurs at - approximately - the same precision value
(hete n = 30, k = 10, hence k/n = 1/3)

Figure 4 shows ten curves for the case of non-optimal searching, using the retrieval
topology, n = 30, k = 10. Each curve corresponds to a fixed recall value, equal to p/10, p = 1,..,,10.
The other axis corresponds to precision values p/(10-]); with p fixed, i takes values between 10-p and
30-p. The number of times each (R,P) value occurs (formula (3)) corresponds with the height of the
curves. Figure 4 clearly shows that the modes of these curves all occur at the same P-value, namely
forP=k/n=1/3
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2.2. The case of retrieval via 7 "

We now use the retrievals

U(Q,r,,r,) = {E € DS|r, < sim(E,Q) < r,} .

This set looks like {D}Ji < j < m} < DS, wherei = 0,..,n and m = 1,..,0+1 (as in 2.1 D, a0d D,
denote fictiious documents to allow for the case that U(Q,x,,r;) = DS). We hence have a situation

as in figure 5.

Figure 5 : Retrieval via 7 ", non-optimal searching

In the retrieved set {D,,,,....Dy} there are p out of the k requested documents leaving k-p

requested documents in the non-retrieved set {1,...,i} U {m,...,n}. Obviously

p
R = — 19
: (19)
P
P = ————m-—— . 20
m-1i-1 (20)

m-i-1| [n-m+i+1] .
These values occur P k-p dmes : p documents in {D,,,,...,.D,} and k-p

in the set {D,,...D;} U {Dg,....D,}-
We have now a trvariate (in i, m and p) discrete distribution :

[m*i-l) [n—m+i +1)
P(X=i,Y=m,Z=p) = B k-p 21

k n+2
{k+1} (-2'-'"‘1) (k+2)

(m = i+p+1,..,0+1;i = 0,..0-p; p = 0,...k).
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Here we use the formula :

S’J‘i &: [m—i-l) [n-—m+i+l) = (k-p+1) [E:g) i ©2)

i=0 m=i +p +1 p k _p

The proof is given in Appendix D since we were not able to trace this formula in the literature.
Summation of (22} over p = 0,....k yields the denominator of (21).

We will consider the marginal distrnbutions of p and of i and m (together, by the very nature

of close match retdeval via 7 " ).

o (m—i-ll_(n-m+i+l)
P(Z:p) :E 2 p k-p = k—p+l ) (23)

i=0 m=i+p+l k n+2 k+1 Eq.l
(k+1) (3+1) [k+2) { )Tz

P(X=i,Y=m)

& ) )

p=0 k n+2}
o (5 (2

- k +2 24

(n+1) (n+2) (gﬁq

again using (7) but with n-i replaced by m+i+1.

From this, the conditional distdbutions follow (m = t+p+1,....0+1;i = 0,...,n-p; p = 0,...K):

tn—i—l) (n-m+i+l)
b (X=i,Yem|zep) = DXL, ¥m 2=p) _ p k-p 25)
P(Z=p) n+2
{k-p+1) K+2
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m-i-1 n-m+i+l
P(X=i,Y=m,Z2=p) _ P k-p
P(X=i, Y=m) (n

) (26)

P(Z=p|X=i,Y=m) =

as is readily seen. It follows that, for every fixed m = i+p+1,.,a+1 and i = 0,.,n-p,
P(Z=p|X=iY=m) is the classical hypergeometric distribution.

Expression (10) now becomes :

m-1i-1
Bia =k —— @7)

where p;,, denotes the average (over p) of the hypergeometric distribution (26). This yields formulae

for the average precision and recall values that are encountered in this system :

- p . k

P, = ———— P{Z=p|¥=i,Y¥Y= = - 28
;::m—i-l (z=p|x=i,Y=m) = — (28)
= A p m-i-1

R, . =2 2 p(z=p|x=i,Yem) = 22" 2%, (29)

P=0 k n
What about the R and P-averages with tespect to P(X=i,Y=m|Z=p)?
Clearly
7 =n = P
R,=r=2 (30)

since R is independent from i and m. For P we have

» [m—i-l)in-nﬁi*—l)
Ly 3 p p k-p
NI WD M

i=p m=i-psr m-1i-1 n+2
(k-p+1) I +2

o
il
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It tamns out that

SR 228 () (0

i=0 {¢=p

I I ! /
1B & [ ) [ nl-¥

ifp* 1, with ¢ = 01, p' = p-1, k' = k-1, o' = 0-1, i = L. Note that P, = P, = 0.
We apply the formula proved in Appendix D, ytelding

/
f_o i n+2
5 .o 2 [k’+2]
B
n+2
{k-p+1) (k+2)
= _ k+2
P, = 5 (31)

Finally we now calculate the "overall" averages Pand R for the rivariate distribution

k = n+l
P = _.._._—p.___._.. =1 = =
B Z;Z:m:g;d ——>——— P(X=i,Ym, Z=p)

b« ]

_ k‘"pk+1 k:;= 1:2 (32)
p=1l (k+1} (‘_ + l] n n
2
and
— k ~ =
R = Y P p(x=i,v=m, z=p)
p=0 i=0 m=i+p+1
P 1
= -— P(Z= = —,
% {(Z=p} 3 (33)

using that
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Y p= k(i;1> and 3 p? = X(K+D) (2k+1)

p=0 p=0 )

Concluding, we have proved the following theorem :

Theorem 2.2.1
In the case of retrieval via the similarity topology 7 ", the probability to retrieve p documents from

k relevant ones via the retrieval {D,,,,...D_} is

[m—i—l] (n—m+i +1]
P k-p 1)

k n+2
(k+1) [3 + 1) [k+2)

(m =itp+1,.,0+1;1=0,..0-p; p = 0,....k).
This gives rise to the conditional distributions:

Lm-i—l) ( n-m+i +1)
P kp (25)

(k-p+1) (i:;]

H

P(X=i,Y=m|{Z=p)

and

Lm-i—l) (n—m+i+1J
P k-p (26)

P(Z=p|X=i,Y=m)

The latter is the hypergeometric distribution. Over (26) the average recall and precision values are

- m-1i-1
R. S —
i,m n (29)

= _k
P --;1- . (28}

im
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Over (25) these are :
" =mna= P
R,=R=_ 30)
= k+2
= 1
P, — (31)

and over (21) these are

- 1
R = — 33
- 63)
P=_X
n+2
Discussion
It follows that
= kim-1 =
s E(223ew,), »
which indicates a decreasing linear relationship between recall and precision. Also
P, = 2 + =1, 35
P n+2 ( RJ G3)

a hyperbolically decreasing relationship between recall and precision.

The curves are similar to the 7 -case (figure 2). Note again that no 1-3, ﬁ,m, P, depends on i, m and

p! All these values are decreasing in n (k fixed) and decreasing in n (k/n fixed). In the former case
the limit is 0 and in the latter case it is equal to k/n. A similar figure as figure 5 can be drawn.

Note

The case 7 (section 2.1) follows from the case 7 "' (section 2.2) by fixing m = n+1. However,

in 2.2 we did not fix m because we dealt with 7~ ". Hence the average formulae for 1_3p and Pin

section 2.1 do not follow from those in section 2.2!
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3. OPTIMAL SEARCHING

In optimal searching we assume that the first retrieved document (if we use 7 ) and the

first and the last retrieved document (if we use 7 ") belong to the k relevant ones. We thus assume
that the retrieval engine is capable of making this type of search. We think that in a theoretical

investigation such as the one performed here, such an assumption is allowed. However, as this case

has less practical value we refer the calculations to Appendix A.

4. SUMMARY

In this article we have studied recall-precision values for random retrieval, impoztant e.g.
in statistical investigations. Resuits, however, are described using the underlying topological structure,
i.e. using retrevals in the retrieval and the similarity topology. We have studied general, non-optimal,
searches and more focused, optimal searches. Different distributions have been obtained, among

which the hypergeometric one.

Our results yield the basic structure of random topological retdeval and consequently, the
resulting recall-precision values constitute a lower level performance standard, cf. (Shaw, Burgin &
Howell, 1997). Real IR results should be obtained by combining (convolving?) the distributions
obtained in this article with other distributions, such as perhaps a "relevance” distribution, or a
preference structure, or a distribution describing the precise behavior of the search mechanism.

Moteover, it is clear that feedback should play a decisive role in real-world retrieval processes.
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APPENDIX A: Optimal searching

Part 1. The case of retrieval via 7 "
The general case p < k

We still work with DS = {D,.....D,} and retdeve {D,...D_} (i = 1,..,n).
Suppose k documents are relevant and we retrieve p of them (0 < p < k < n).Now, D, is one of

these p documents. We thus have a situation as depicted in figure 6.

k-p
A
- “. ;
1 i . o
—
N p-1 y
v
P

Figure 6 : Retrieval via 7, optimal searching

The recall value is still R = p/k while the precision is

- P
Pp= — :
n-1i+1 ©6)

n-i) {i-1
These values occur (p _.1) ( k-p] times (i = k-p+1,..,n-p+1). The fact that n-i+1 is appearing

in the denominator of P and that n-i occurs in the frequency of occurrence, gives rise to serious
calculating difficulttes : we will explain this in the sequel. keturamsnssscdratuiadha-niamions
We have :

) ) -1
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using formula (4) but with other symbols. Since this is p-independent and since p ranges in {1,...k}
(we exclude retrieving an empty set when p= 0; p 2 1 since D, is relevant) we have now that optimal

searching via T'is governed via the bivariate distribution

n—i) (i-l)
P(X'=i,¥'=p) = (P’l el | (37)
n

The marginal distributions are
o1 [n-l) (i-l)
p(y/=p) = 3y, ARL \kwp) 1 (38)
i=k-p+l K n k
8
[n-—i) (i~1)
p(x/=i) =y, ARZ/\kp) _ 1 (39)
p=l n n
«(3)

using (7) but with other symbols. Hence the conditional distributions are

P(X'=i, Y =p)
P(¥’=p)

) 1) w

B

i

P(X'=1i|Y =p)

P(X'=i,Y'=p)
P(X'=i)

()

n
k-

P(Y'=p|X'=1)

I

[ X -1]

k-p

) . (41)
1
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Again as in the previous section we have here that (41) represents a hypergeometric
distribution with parameters k-1, p-1 and with n replaced by n-1 and i by i-1 (i-1 = k-p,...,n-p). The

average is noOw

/ n-1i
= (k-1 .
By ( ) -1 (42)

Hence, average R and P values can be calculated :

B, = —E __ p(y/=p[x'=1)
p=t n — 1 + 1
k-1 _
= E _p..._l__l.._..... P(Yf=p'xlzi) + ._.]T-___...
p-1=0 n-1+ 1 n-1++ l
- k-1 n -1 . 1
n-1n-1i+1 n-i+1
- k{n-i) + i - 1
P, =
* fn-1) (n-i+1) (43)
R, = % P(Y'=p|x’=1)
P=1
k-1
p~1=0 k
k{in-i) +1 -1
k(n-1) ' “4)

Of course, according to the other conditional distribution we have that

R, =R = (45)

w~ o

For P, we have
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a-p+l

_P
P i=k-p+21 N~ i+l

ro|
il

P(X'=i{¥ =p)

(46)

The reader might so far find this appendix very similar to section two. However, as far as

we know, formula (46) does not allow for analytical reductions. This is due to the occurrence of n-
i+1 in the denominator of P and of n-i in one of the combinations. This slight difference is the basis

of the difficulties. Of course (46) equals

witha' = n-1, k' =k-1, p' = p-1,1 = i-1. One could then approximate this by deleting 1/(n'4'+1) and
by assuming that

47
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Figure 7
Recall-precision graph for optimal searching, using the retrieval
topology, for a document space containing n = 10 documents

Even the case p = k (R = 1) will show that this approximation is rather rough. Still 1t is hardly
possible to calculate the sum in (46) directly since i runs from k-p+1 to n-p+1. Nowp < k <<n
since k denotes the number of relevant (wanted) documents and n is the number of documents in
the database. Hence n can easily be in the order of 10° or even 107 while k usually is of the order of
10 or 10% To get an idea what (46) looks like, figure 7 has been constructed for n = 10, which is the
analogue of figure 2, but now for the case of optimal searching.

It is obvious that figure 7 ressembles figure 2 very much. The horizontal k = constant lines
of figure 2 are slighdy decreasing now. The p = constant lines are comparable with the hyperbolae

of figure 2.
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The remainder of this section is devoted to the case k = p where we will find more

information on the intricate formula (46) and where approximations, better than (47) are given.
Thecasep=k(ie. R=1)

In this case, formula (46) reduces to

n-i
it k k-1

(48)

This function is depicted in figure 8 for n = 5, 7, 10, 15 and 20, where dl-T’P is shown in function of
k/n.

Although a workable exact analytical expression of (48) is unknown to us we are able to
explain figure 8 to a large extent. Indeed, we have the following theorem.
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0 T T T T = kin
0.2 0.4 0.6 0.8 1

Figure 8
Average precision, using the retrieval topology and optimal searching,
for document spaces containing n = 5, 7, 10, 15 and 20 documents.
The x axis shows k/n values, the y axis shows the corresponding average precision

Theorem A.1

Consider

P =~ ¥ (j‘l) —]1- (48)

as a function of n. Then we have

® P ,(n) decreases in n (fixed k)
i@ lim B (n) =0

k=ecst



. = k
(i) lim P (n) = & (here we ook at vertical k/n = constant trajectories).

oo
k/n=cat

The proof is given in Appendix E.
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The graph in figute 8 should also be compared to the non-optimal search case. There we
found figure 3, which shows a similar behavior except for the initial decrease at the lower values of

k/n. This patt of the curve, however, is the most important one in practice since, in retrieval, k <<

n. Again we can say that, for the lower values of k/n, better approximations (better than k/n) are

required in order to have workable and accurate approximations. This is done in the rest of this

subsection.

We will apﬁrox.imatc

— k -1 1
P n| 5= k-1 3
k

as follows.

Theorem A.2
VneEN,Vke N k<na:

_ k-1
Fp ~ =1 Vet e
whete
v = (-1)% (g-1) 1 k2
¢ (k=) n{n-1)...(n-0+1)

{p = (_l)k-l k i __]; )
ini =k ]
k

If we denote

(48)

(49)

(30)

(51)
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then, Vi=1,... k-1

lim|E_-¢,nt =0 (52)

N«
if k is fixed.

The proof is given in Appendix F. Note that (49) is exact and only requires the calculation
of k terms. In fact, we have reduced the summation to n in (48) to a summation of k terms and the
1

j which is well-known (accurate tables exist and moreover

calcuiation of jg

1 = 1
2; E *fnn«y- E 5 » for n large). Here ¥ denotes Euler's number. For a good

approximation of I’P even less than k terms are required (by (52)). We go into this in more detail.

Suppose we did not wish to use the exact formula (49) but to approximate Ep by using just
a few terms. Could this be done? Formula (52) shows that this must be possible at least for large n.
To see what happens we calculated @y,@,,...,9; for n = 10 (not at ail large but enough to see what
happens) and k = 2,...,10. Note that
k? | k?

Yt T T i neD

and so on. We have the following table.



Table 1

Comparison between P, and consecutive approximations

Casen=10,k=23..,10

33.

k B, 9 0 , @ Ps o 9
2 || 031427 | 04 - . - - - -
3 | o3ss72 | o045 | 035 - . - - .
4 || 046802 | 05333 | 044444 | 0.48889 - - - -
5 || 055415 | o625 | 0.53241 | 056713 | 0.53737 - . ,
6 || 064203 | o072 062 | 065333 | 063190 | 0.66048 ; .
7 || 0.73086 {| 0.81667 | 0.70778 | 0.74181 | 072236 | 0.75153 | 0.71264 -
g § 082025 I 091420 | 079577 | 083133 | 081227 | 0.82921 | 0.80381 | 0.88000
9 0.91 1.0125 | 0.88393 | 0.92143 | 0.90214 | 091821 | 0.89679 | 0.94500
10 1 LI | 097222 | 1.01191 | 099206 | 1.00794 | 0.98809 | 1.02778

One can see that the fit to the perfect -I;P-value is good and is reached quickly. It is now clear

that the rough estimate k/n as mentioned in formula (47) is not particularly accurate but gets better
the closer we are to k/n = 1, a fact that also follows from the graphs in figure 8. In table 1, the

underdined values are the best approximations. This is surprising : at first it seems that the best values
are on the diagonal but this stops at @, : all ¢,-values below the diagonal are now best. How can this
be explained?

This gives the inequality :

Using formula (50} this gives :

Hence

or

AR A

(-1)!

!

(k=¢} n{n-1)...(n-{+1)

k-¢-1

<1

n-{

k -1¢

(k-f-1) n{n-1)...(n-¢)

Consecutive refinements can only be expected if the corrections get smaller and smaller.
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1< 2 . (33)

One can verify that |5,| increases from [n/2] + 1 on ([x] = the largest integer smaller than or equal
to x). (53) implies that { = [n/2] (n odd) or § =1n/2 - 1 (n even) are the critical limits. Let us continue
with the latter. Since { < k - 1 < k we hence find the critical condition

Q=%-1<k. (54)

Interpretation .
() In practice kis smaller than (n/2 - 1) since n is the size of the database and k is the number

of relevant documents. In this case we use the diagonal elements (or even better : use (49)
exactly, the diagonal elements are in fact P, - @). If this is too much work then use any @, , ¢

< k-1 as a good approximation.

@) Ifk>n/2-1 then itis better not to use the diagonal elements : it is then optimal to use @, _f}i
0 =n/2-1<k (in the table : § = 4).

Part 2. The case of retrieval via 7 "

2.1 The general casep < k

We still work with DS = {D,,..,D,} and rettieve now {D,,...D_.} (i < m, im = 1,...,n)
because of the use of T". Suppose k documents are relevant and that we retrieve p of them (p < k
< n). As said in this section on optimal searching, D; and D, belong to these p documents. Hence

we have a situation as depicted in figure 9.
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Figure 9 : Retrieval via 7 ", optimal searching

The recall value is still R = p/k while the precision is

Pp= —~5 . (55)
m-1i+1

These vaiues occur
m-1i-1 n-m+i-1
p-2 k-p

times : p-2 documents in {D,,{,,Dy} and k-p documents in {D,,....D, ;} v {D_,,...D,} (m =
i+p-1,.,0;1 = 1,..,0-p+1; p = 2,..k). Hence here p = 0 or p = 1 is excluded since we have already

the relevant documents D, and D,,. We have now that optimal seaching via 7 " is governed via the

trivanate distnbution

m-i -1) ( n-m.+i-l]
p-2 k-p ] (56)

1 n
T [3

P(X'=i,Y'=m,2'=p) = (

Here we use that

n-p+1
ig;. m=i+p=1 ( p_.2

m-i-1 n-m+i-1
k-p

N

where n' = 0-2, k' = k-2, p' = p-2, m' = m-1,1 = i-1. We make again use of formula (22) but now
with primes. In this way we obtain that (57) equals
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n'+2 n
(k/-p/+1) [k,+2 = (k-p+1) | ] - (58)
Finally
n| _ 1 - n
Ig (k-p+l) [k) " k(k-1) (k)
yields the denominator of (56).

The marginal distributions are

o [m—i-l) (n—m+i-l)
P(2/<p)  a— -y ¥ p-2 k-p

i=1  m=i+p-1 1 n
— k(k-1) (k]
2{k-p+1)
k(k-1) (9)
[m—i-l] (n-m+i-l)
P(X'=i,Y'=m) = p1-2 kP = n(n2 A (60)
p=2 n -

using (7) again. From this the conditional distributions follow (m = i+p-1,...,n;
i=1l.,0-p+1]; p=2..%

P(X'=1i,Y'sm, 2 '=p)
P(z'=p)

m-i-1 n-m+i-1
p-2 k-p

(k-p+1) (ﬁ)

P(X'=1i,Y =m|2 =p)

(61)
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(X'=i,Y'=m, 2 =p)

P(Z/=p|X'=i, ¥ =m) = P
| ~ p(x'=i,Y'=m)
[m-i—l) Ln-mﬂ'.-l)
_ \ p-2 k-p ) (62)
n-2
k-2

a hypergeometric distribution with parameters k-2, p-2 and with n replaced by n-2.

The average is now

Pia = (k=2) ———— . (63)
n

We now find the average R and P-values

) P / /s /
B = ————— P(2'=p{X'=i,Y =m}
i,m rrf m-1i+1 pl
S S [ S MR R T
' p2=0 m -1 +1 m-1+1
s . k-2 m-41i-1 . 2
b n-2m-i+1 m-i+1

k(m-i-1) + 2(n-m+i-1

- (m-i-1) (-nml ) (64)
(n-2} (m-i+1)

R, .= 2 p(z’=p|x'=i, Y =m)

p2 K

- p -2 / I / 2
= P(Z'=plX'=1,Y¥'=m) + —
f ” (Z =p| )

p-2=0




|

and

ru|
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k-2 m-1i~-1 . 3
k n-2 k
k{m-i-1) + 2{n-m+i-1) (65)
k(n-2) )
p
R = o 66
- (66)

np+l p
2 i: e P(X’=i,Y’=m|Z’=p)
isl m=i+p-1 m -1 + 1

- Lm—i-l] (n—m-’-i-l)
>y ¥ __E p2 )1 k® /. 7

= =i +p—~ m"i'l'l
i=1 n=i+p-1 (k*p+l) (I;)

As explained in the previous section this last formula cannot be transformed into elementary

functions. Of course, the 7~ "-analogue of figure 7 can be constructed. Its graph is depicted in figure

10.
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Figure 10
Recall-precision graph for optimal searching, using the
similarity topology, for a document space containing n = 10 documents

39.



For p = k, formula (67) reduces to

L (m-l—l
- 2= k x-2
P = . 68
» i X ai (n) 8
k

Its graph can be depicted as in figure 11 : B, versus k/n forn = 5,7, 10, 15, 20,

0.2+

0.2 0.4 0.6 0.8 1

Figure 11
Average precision, using the similarity topology and optimal searching,
for document spaces containing n = 5, 7, 10, 15 and 20 documents.
The x axis shows k/n values, the y axis shows the corresponding average precision.
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Based on this graph we make the following observations.
For a fixed k/n-value, the average precision decreases with n {except, of course, in 1,ie. k =n). In
addition, it seems that here too this average precision tends to k/n. The average precision in 1/n
always begns at the value L For a fixed value of k, the average precision also decreases (probably to
zero), except for k = 1. Finally, for a fixed value of n, the minimum value of the average predsion
decreases, but occurs at a larger value for k:itis firstatk = 2, then atk = 3, and further calculatgons

(not shown on the graph) show that it moves on to k = 4.

Note: if you allowed not only retrievals for the similarity topology, but also finite unions
and intersections (Le. the complete topology) this would always result in a precision equal to one.
Yet, dropping the requitement that all similarity values are different, would reveal another aspect
of the retrieval process. Indeed, in that case the precision in retrieving one document would be equal
to the reciprocal of the number of documents with the same similarity value as the requested
document. In general, retrieving k documents would yield a precision equal to k divided by the
number of documents that have the same similarity values as - at least - one of the requested
documents. So, in that case, the precision gives us information about the clustering of similarity

values.

7 Y2 v e/m/qg
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APPENDIX B: Topological spaces
In this appendix we recall, for the reader’s convenience, some basic notions on topological spaces.

Let X be a set. Denote by £(X) the set of all subsets of X. A topology © on X is, by definition, a
subset of 8(X) satisfying the following four axioms.

(O1) The empty set @ belongs to 7.

(O2) The set X itself belongs to T.

(O3) Any union (hence, also infinite unions) of elements in T belongs to T.

(O4) Any finite intersection of elements of T belongs to 7.

The elements of T are called open sets. The couple (X, T) is called a topological space. Note that the

same set X can have many different topologies.

Given two topologies T, and T, on X, then T, is said to be weaker or coarser than T, if every
element of T, is also in T,. This relation between these topologies is also expressed by saying that T,

is stronger or finer than T,.

If (X,7) is a topological space, then 2 subset B of £(X) is a base for 7 if every element of T can be
written as a union of elements in B. A subbase for a topology T is a subset € of ©(X) such that
every element of T is 2 union of finite intersections of elements of €. This can also be expressed by
saying that all finite unions of sets in ¢ form a base for 7. Any collection of subsets of X is a

subbase of some topology on X.

Consider 2 function f from the topological space (X,T) to the topological space (¥,T°). The function

f is said to be continuous if the inverse image f '(U) = { x € X ; f(x) € U } of each open set U in

(Y,7") is open in (X,T) .



APPENDIX C
Theore_m
n-i i
Wi( P )(k-p)
is attained for
i:l_(_k;P.l.E_£+1J_ (69)
m k k
If
{k-pin cN
k
then
_ (k-p)n
m k "
Proof:

We note first that for p =k, i, = 0, hence (69) is correct for k = p. Let now, p < k and let
iy € Ny be such that for everyi = i :

[n;im] [ki—'i») : (ﬁgi) [ki-p) ' 70)

Now, (70) is equivalent with :

(730! L0 n-i-p)l (ickepdt )
(n-1)! il (n-1m-p)! (1m-k+p)!
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2) Assume thati < i, then (71) is equivalent with :

i ... (i+1) (n-i-p)...(n-i -p+1)
(n=i)...(n-i +1) (i -k+p)... (i-k+p+1)

or

1- B _,1-X-p
n-j j+1
or
: {k-pin p
s —F - £ 2

b) Assume now thati™> 1.
Interchanging the roles of i and 1,, and those of the numerator and the denominator of (71) leads

to:

Oor:



R T 3)

Combining (72) and (73) proves this theorem.
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APPENDIX D

Theorem
VneN,¥p <k<n,pkée Nonehas

N[O S R P

1i=0 m=i+p+l

Proof :
The formula can readily be checked forn =1 (casesk=p=0,p=0andk =1,k =p = 1). We now
prove the formula directly if k = n (vVn € N). Then we have

£.5 ) e

i=0 m=i+p+l

-89

i=0 i=p

_ [ n-p| _ _ _ _ _ n+2
) i=0 (P) [n-p) =n-p 1= (kp+l) (k+2)

since { € {p,....n-i} = n-0€ {i,..,0-p}.

Next, we prove the formula directly if k = p (Vn € N).
In this case (74) s

300 Y G B I o ) I oll i B T

i0 m=ivk+1 i=0
where we used (4) twice (with different symbols) and k = p. This proves (74) in case k = p.
The rest of the proof is done by induction on n : by the above we can suppose (74) to be

valid for n, Vp < k < n and have to prove it for n+1, Vp <k < n+1 (since the cases k = pand k =
n+1 have aiready been proved). We have
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i i m-i-1| [ n+l-m+i+l
£ )

1i=0 m=i+p+l

IRy

EEO 6 )

i=0 ft=p 1=0

n:l-p nrl-i
{(check the array i: )

i=0 t=p
Since
n+l-¢} | n-{ .| B -{
k-p /] \k-p k-1-p
we have that the above equals

LE LS EE 0L ()

We now apply the induction hypothesis on n and p < k < n for the first term, the induction

hypothesis on nand p < k-1 < n, for the second term and formula (4) on
ni:“’ n+l-i iyl “i:‘*’ n+l-i i ] _[n+2
P k-p P k-p) ~ lk+1

i=0 i=k-p

This yields

2P E (m-i-l) (n+1~m+i+1)
i P k-p

2 +2 2
= (kprd) [EIZJ  kop) (E+1J : [E:I)

n+2 . n+2
k+2 k+1

1
w
[}
o
+
[
——
——



(k-p+1) (

n+3
k+2

49.
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APPENDIX E
Theorem
The function
= k j-1} 1
P (n} = [ ] — 5
P n| 3= \k-1/ 5 (73)
k
satisfies

®  P,(n) decreases in n (k fixed)

ﬁg lim ?P(n) =0

n—-ﬁ
k=cat
= _k
@ LI B n) =T
k/n=cat
Proof: (i)

'p'P(n+1) < Ep(n)

But

x "if(j*l}i) k ”*l(j—1)= k [n+1]= 1 (k)
n o+ 1R \KTL 30 e AR iz U k) e r (ke

(using (4) again).

(1)
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j—l) 1, ¥ [j—l) 11 (n-l)
= < =
ik (k-l 3 ik k-1 j -1 k -1 \n-k

The last equality follows from the lemma below this proof (this lemma will also be needed in
Appendix F). Hence

- k2
0 <P § —
pin! n(k-1)

Consequently,

lim B (n) =0

kecat
(iif) From the above we have

= k k

P £ —

o (%) n k-1

Butn ~ = = k - « since k/n = constant.

Hence

lim P _(n) s X
R P n
k/n=cst

We will now prove that Ep(n) 2k/n,VoeN,Vk=1..a

The proof goes by complete induction. Forn = 1is k=1 and -I;p(n) =1=k/n. Let now
this inequality be valid fornand allk = 1,....n. Let now k = 1,..,a+1. Fork = n+1 the inequality is
travial. Letnow k= 1,..n.
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- k( [J—l)_}_]n+l~k k (n) 1
a] \i= \k71/ 5 n+l n+1) VK71 n o+
k k
, kn+l-x% k?
n n+1 (n+1)2
by the induction hypothesis since k = 1,...,n.
Hence
P_(n) 2 1+ K k-1, K
P n+1 n+1l n n+1

sincek<n+i. W
Lemma:VneN,Vm =0,1,..n

o Pl Je S T a6

I=x J-m k -m

Proof :

For m = 0 we have to show that
(3 -2z
= Ak 3 kK

for all n € N. This is true for n = 1 and induction on n yields

L I

j:




Now follows the induction step on m : for m+1

Slimy 2 . %

j=k ]J —m- 1 j"=k"

('=j-1,K =k-1,n' = n-1)

- 1 n'-m| _ 1
x/ -m \n'-k’ k-m-1

by the induction hypothesis. |

j'-m
k’-m

n-m-1
n-k

+ f

J

1

-

33.
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APPENDIX F

Lemma 1:Vkmn € N,m < k < n one has

Sl -5 023 o

i=k

Proof :

1 =(j-m] 1 __(j—m—l) m
i \km) 3w \kmol) Jiem)

Hence

. j—m) 1. (j-m} I (j-m-l) 1
Z (k—m j i k-m/ § -m k - m § k-m-1/ 5
We now apply the lemma in Appendix E. This yields (77) directly.
Lemma2:VneN, VkeN, k<n:

b - = - - -1 -
S0 -8 ) i o g

j=k b I =1 k-1) (k-2) ... (k-0 j=x

Proof :
We repeatedly apply the above lemma, yielding :

$ (i) 2

=k J




55,

_ 1 [n-l) ) 1 [n—Z)
k -1 \n-k (k-1) (k-2) \n-k

2 (n-B) _ 2.3 [n—4)
(k-1) (k-2) (k-3) \n-k (k-1) {k-2) (k-3) (k-4) \n~k

. 2.3.4 (n—S)
(k~1) (k-2) (k-3) (k-4) (k-5) \n-k

B 2.3.4.5 > (j-G) 1
(k-1) (k-2) (k-3) (k-4) (k-5) 3= i

From this it is clear that :

j-1] 1 _§ - -1) 1 p-1) ! -
£ (23) 3-8 () pmii oo B 3

ik ] =1 (k-1) (k-2)... (k-0 j=k

| |
Theotem 1:Vkne N, k<n:
_EP = g IU, + (P r (‘79)
where
_ (-1)"(e-1) 1k 2
Ve (k-0) n{n-1)...(n-0+1) (80)
o= (D Uk ;- &
n{ 3=« 31
k
Proof :

This follows readily from lemma 2 and the formula (48) for P, B
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‘Theorem 2

If we denote

then, Vi = 1,...k-1 and k fized

lim iz0 . (82)

n-—e

Pp*-cpi n

Proof: Vi=1,..k-1

E | + lol

But, for k fixed is

=0

1y 12 p.t-l
0 < lim le| ntl < 1im (¢-1)!' k" n
- n-e (k-0) nt

and
R 2 x-1
0 < lim |@| n*? < 1lim (kzl)!k"n""fWn _,
n-e o= nk
Here we used the fact that
1
lim 3% J 1
e N n
and that
¢
lim 2 =1

n-e n(n-1)...{(n-8+1)



Hence we have

0 £ lim

-~

< ¥

f=i+1

=i+l

o

sgl

1

T - i
B, -9]n

im Iwﬂl nt*+lim |@| nt
- nos

im lei n'?t + lim jo| n*?
n-m n-ow

since -1 >iandi< k1. W

57.
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APPENDIX G

In this final apppendix we refer again to the problems of dezling with formula (48)

§- - k nil k ( n ‘i) (48)

k

and similar formulae, all in the context of optimal searching. Formula (48) above refers to the case
p = k and to retrieval via 7 (the simplest case). We have presented 2 non-trivial but proper
approximation to (48), hereby reducing the sum up to n (large) to a sum up to k (small).

Another way to study the average behavior of P is to look at the median, We proceed as

n
follows. Since there are (in total) [ k) cases we must find s € {1,...,.n} such that

95 ()

But

hence we have to solve
1in}l _in=j
) -2)- o

Hence

or



59.

— h i ————— = 2, (85)
1_5 1 - k k
n n-1 n-j+1

Since k << n we can delete second (and higher) order factors (we assume that also k << n-, as j is
a median). This yields:

=2 . 86)
Y |
i=o n-i
But
ok 3y k Fok
i=o n -1 =1 ! = !
= f n
n(n-j) 87)

Hence
o 1/2k ' (88)

For the median precision M,(P) we have

. k - k
M, (B) =

- . +
n-[3j] 1 5 4 n
el/Zk
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So
k
M (B) & ———— . (89)
,_n
el/Zk

This is, roughly, of the order of k/n, a result that was already found for Ep. Some values for n = 100.

k M,(P)
1 0.01613
2 0.02532
3 0.03488
50 0.49505
100 0.99010

Note. We can say that all "average” P-values (in all cases) are around k/n being the precision value

obtained when we retrieve {(or take) the complete database DSI



