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Abstract - Topologies for retrieval systems are generated by certain subsets, called remevals. In 

this article we show how recall and precision can be expressed using only retrievals. Different 

types of remeval systems are investigated : both threshold systems and "dose match" systems, 

and both "opdmal" and "non-optimal" remevaL The relation with the hypergeometric and some 

"non-standard" dismbutions is hqhhghted. 



1. INTRODUCTION 

The late Jean TagueSutdiffe noted that (Tague-Sutcliffe, 1996) 

Most it$mzation nhiicval etmkahbn is eqm'mental. H o w ,  in nhted scicncer, such as 

romputcr science, nsyk m 9  be obtained 5 an&k m MU as e q h e n t .  This appmach 

bar been link usedin i+&n n~'euaIeua(uation,p~~hopr became thcpmbkms a n  not so 

d-&ned ar in ~~~utersc irnce .  

Taking up Tape-Sutdiffe's implicit challenge, we will work in this amde within a wd- 

defined theoretical framework. Ths d enable us to obtain prease, analytical results. Moreover, 

following Buddand and Gey, we sttess the fact that in order to obtain a dear understanding of the 

notions of recall and precision, it is important and useful to study the theoretical behavior of these 

measures (Buckland & Gey, 1994). They constitute a basic building block for the understanding of 

any retrieval model. 

A retrieval system is a triple (DS, QS, sim) consisting of a document space DS, a query 

space QS and a simdaritp. function sim. In (Everett & Cater, 1992) the authors inuoduced the 

retrieval topology, denoted as Zg-aerated by the subbasis of retrievals : 

where a retrieval R(Q,r), r E B, is dehed as : 

R ( Q , r )  = ( D  E ~ S / l s i m ( D , Q )  > r) . 

Note that the set of remevals of a queq Q is the set of all possible answers to the query Q 

in the system @S, QS, sim) with the retrieval topology. Different answers are obtained by changing 

the threshold. For debtions of topological notions used in h article we refer the reader to 

Appendix B, our earlier artides (Egghe & Rousseau, 1998 ) and the mathematical literature. 

Fuaher, the topology r", refened to as the similatiy topology, is detined as the coarsest 

topology on DS that makes all simdariy functions sim(.,q) CO~MUOUS. It is generated by the 

following subbasis of retrievals : 



We will assume that the document space DS consists of the documents {D,,D ,..., D,} 

ordered - in increasing order - accordmg to the simbity values of one particular query (it does not 

matter which). However, to simphfy the analysis we assume that all these similarity values are 

different Consequently, a retrieval in the retrieval topology has the form {Di,Di+,, ...,D,} (i = 1. ..., n) 

and a retrieval in the similatity topology has the form { D i p  ,,,..., Dm} (i,m = 1 ,..., n). More precisely 

we will assume that we can remeve no other sets than retrievals. 

We WIII show that it is possible to express the notions recall and precision usmg the 

topological approach introduced and studied in (Cater, 1986; Everett & Cater, 1992; Egghe, 1998; 

Egghe & Rousseau, 1997a, 1998; Rousseau,1998). 

W e d  inveshgate @oth for the retrieval topology and the simikrity topology) non-optimal 

searches and optimal searches (in that order). By optimal searches we mean that the used rettieval 

is the best one with respect to the requested documents. More concretely, if we want k documents 

kom DS = {Dl, ...,D,} kom which we d find p documents as a result @ < k) and if we rettieve the 

set {D;, ...,D,} (using the retrieval topology) then D; is one of these p documents. In the same way, 

if we use the sirmlaritty topology, we will remeve {D;, ..., Dm} and we assume that D; and Dm are 

amongst the p documents. If this is not necessarily the case we call the search non-optimal. We will 

b e g  with the latter case (although the methodology is the same for both cases, it turns out that the 

non-optimal case yields simple formulae whereas the other case can only be monitored using 

approximations). 

Note that p = O,l, ..., k E N. In this connection we will show that we are dealing with the 

hypergeomemc distribution (see e.g. O W ,  Gleser and Derman (1980) or Rothsddd and Logothetk 

(1986)). If p = k we have perfect recall. 



It turns out that the average recall-precision values (in short(R,P) values) in the non-optimal 

case and in the opdmal case are dose to each other. This, in tum, yields acnvate average (qP) values 

as they are experienced in random sampling. 

The paper doses with some open problems that arise &om these models. We stress again 

that the study of the mathematical mod* of (qP) is very important for a basic understanding of 

IR. 

2. NON-OPTIMAL SEARCHING 

We consider a document space DS = {D,,D,, ..., D,) in which the documents have an 

increasing s&y w.r.t one particular query Q, i.e. the hnite sequence (sim(D,,Q) is 

increasing. We study the retrieval topology Tas well as the sirmlanty topology as explained in 

the inuoduction. 

2.1. The case of retrieval via 7 

We remeve via the retrievals (Q fixed): 

R ( Q , r )  = {E E D s I l s i m ( E , Q )  > r) . 

Suppose we want to retrieve k documents from which we find p documents. 

We take k = l,Z,...,n and p = 0, ..., k Observe that, although the case k = 0 occurs in practice 

(e.g. when a would-be inventor does a search in a patent database), we win not consider this case. 

We notice that for every r E R+ (the positive real numben): 

for a certain i = 0, ...p @ere Do denotes a symbolical document to allow for the case that R(Q,r) = 

DS). We hence have a situation as in figure 1. 



Figure 1 : Rettieval via c n o n - o p d  searchq k documents are found in the set 

{D;,, ,... D,}, k-p documents are found in the set {D ,,... Di}  

In the retdeved set {Di+, ,..., D,} there are p out of the k requested documents, leaving k-p 

requested documents in the non-reaieved set {D,, ...Pi). Obviously 

i are the recall and precision values. For hxed n k p  and i these values occur (n; )( k-p ) times. As 

p = O,l, ..., k and i = k-p, ... p-p we are dealing with a bivariate (in i and p) discrete dismbution 

(i = k-p ,..., n-p; p = 0 ,..., k) : 

since it follows from Prudnikov, Brychkov and Marichev (1992), p.618(39)(" that 

Note that the binomial coeffiaent 6 = 1 and that 0 = 0 if s < t This distribution gives the 

probability. that among k "desired" documents in a database containing n items, there are p of the 

k documents in the set {D;, ,,... P,}. 

Note : In Prudmkov, Brychkov and Marichw (1992) one must conect formula 39 on p.618 by 
replacing n+P by n+l. 



From this it follows that the mar@ dismbutions are : 

The latter result is obtained by usmg Vandermonde's convolution formula: 

(see Gradshteyn and Ryzhik (1965), p.4, 0.156 (1) or Prudnikov, Brychkov and Madchev (1992), 

p.616 (13)). 

From this, the conditional distributions follow (i = k-p, ..., n-p; p = 0, ..., k). 
For p 6xed : 

For i 6xed : 

P ( y = p / x = i )  



Hence for every fixed i = k-p, ..., n-p, P(Y=p lX=i) is the classical hypergeometric distribution. See 

O l h ,  Gleser and Derman (1980) and Rothschild and Logothetis (1986) for more information on 

this important distribution. There one can hnd that 

n - i  p i = k -  
n  

where ir; denotes the average (over p: i is &xed) of the hypergeometric dismbuaon (9). From (10) 

we obtain the following fonnulae for the average precision and recall values that ate encountered 

in this system : 

- n - i  
R~ = 2 P ( Y = ~ ~ x = ~ )  = -. 

p=o n 

Since P (x=~~Y=~)  is not a "standard" distribution, it takes more work to calculate the average - 
(over i) precision value P,. For recall, however, it is deac that 

- 
since R is independent from i. For P, we have : Po = Po = 0 and, for p + 0 : 



- - 
by uslug agam formula (4) but with other symbols. Finally we can also calculate P and R over the 

bivaiate distribution (3). 

This leads to the fo110wi.p theorem: 

Theorem 2.1.1 

In the case of retrieval via the retrieval topology r, the probabiliy to retrieve p documents from 

k relevant ones via the remeval {D;,,, ..., D,) is 



(i=k-p, ..., n-p;p=O, ...,It). This gives rise to the conditional distributions 

and 

P ( Y = ~ ( x = ~ )  = 

The latter is the hypergeometric distribution. For (9) the average recall and precision values are: 

- n - i  
R ,  = - 

n (12) 

For (8) these are 

- P R  = R = -  
P k 

and calculated ova  (3) these are 



Discussion 

1. We have found a bivariate probability distribution (3). The m a t g d  distribution for 6xed i is the 

hypergeometric distribution (in p). This was already remarked by Shaw, Bur@ and Howell 

(1997). Their paper became available at the wdnng of the present paper so that the fin+ are 

independent of each other, but Shaw, Burgin and Howell deserve the credit for being the first 

to remark this. Surpmmgly, their formula is somewhat different b m  ours; one formula can be 

recovered ftom the other one by ioterchangq the terms "retrieved" and "relevant". In any case 

it can be readily checked that the probabilities appearing in their formula are exactly the same 

as the one in (3). These hndings in the context of duality have been s i d e d  in a separate note 

(Egghe and Rousseau (199%)). 

2. Formulae (1 1)-(14) are the most interesting results. It follows that 

- 
P i  = If (1 - Tii) , 

i 

leading to a decreasing linear relationship between recall and precision. Also, for p * 0, 

- 
(R = %), a hyperbolically decreasing relationship between recall and precision. Formula (18) is 

dustrated in figure 2 for n = 10 @ 5 k, p,k=l, ..., lo). We note that, although these recall- 

precision curves are decreasing, they are not concave as required by Egghe's model (Egghe, 

1992), nor have they the form of tangent parabolic recall (Buckland & Gey, 1994). The reason 

for this difference is that there is no element of time or causality in our theoretic model : we do 

not require or even expect that 'first' rdevant documents are found and 'later' the other ones. In 

ha we deal here with random samphg. Random samphg is unbiased as opposed to any result 

of an IR action. Random sampling is the basis of IR from which IR-results can be studied. Let 

us give an example of this. Random sarnphg is used (in DS) e.g. to determine the number of 

relevant documents to a c& query. Confidence intends of this can be built based on the 

knowledge that the hypergeomemc dismbution is approximated by the normal (Gaussian) 

distiibution. - - -  
Note also the remarkable fact that no P, P, P, value depends on i and pl The case p=k 

corresponds to perfect retrieval (R=l). 



11. 
- - A  

Further we note that all P, Pi, P, values are decreasing in n (if k stays fixed) and decreasing in n 

(for a fmed (k/n)-value). In the former case the limit is 0; in the latter case it is equal to k/n, as - 
is readily seen. The latter case (for PJ is shown in figure 3. 

Figure 2 

Recall-precision graph for non-optimal sear* using the retrieval topology 
for a document space containing n = 10 documents 



- 
Figure 3 : P, versus k/n 

Note concerning the mode of P 

Another way to study average behavior is to look at the mode or the median. (Information 

on the median will be given later.) Here we will show that, for the case of non-optimal searching, 

using the retrieval topology, ie. formula (3) or (8), for fixed p, a mode is attained for 

The symbol 1x1 denotes the floor function, i.e. the largest integer smaller than or equal to x. If 

(k-p)n/k happens to be an iateger then i, = (k-p)n/k. This means that the preasion value 

corresponding to a mode is p/(n-4, by (2), and is approximately equal to k/n, i.e. is (almost) 

independent of p. 

Theorem 

is attained for 



then 

In this case, 

The proof is provided in Appendix C. Fig.4 illustmted the occurrence of the mode. 



Figure 4 

Bivariate dismbution, with recall and precision values in the 
plane, illustrating that for different recall values, the mode 

ocws  at - approxiuutely - the same precision value 
(here n = 30, k = 10, hence k/n = 1/3) 

Figure 4 shows ten curves for the case of non-optimal searching, using the retrieval 

topology, n = 30, k = 10. Each curve corresponds to a fixed recall value, equal to p/10, p = 1, ..., 10. 

The other axis corresponds to precision values p/(10-4; with p fixed, i takes values between 10-p and 

30-p. The number of times each (R,P) value occws (formula (3)) couesponds with the height of the 

curves. Figure 4 dearly shows that the modes of these curves all occur at the same P-value, namely 

for P = k/n = 1/3. 



2.2. The case of retrieval via TI' 

This set looks like {DJi < j < m) c DS, where i = 0 ,... p and m = 1 ,... p+l (as in 2.1 Do and Dm+, 

denote fictitious documents to allow for the case that U(Q,r,,rJ = DS). We hence have a situation 

asinfigure5. 

Figure 5 : Retrieval via r" , non-optimal searching 

In the retrieved set {D;,,, ...,Dm,) there are p out of the k requested documents leaving k-p 

requested documents in the non-retrieved set {1, ...,i) u {m,...,n). Obviously 

m - i - 1  n - m + i + l  
These values or- [ ) [ k-p ) he. : p do-ents in {Di+,, ..., Dm.,} and k-p 

in the set {D ,,... Pi} u (D ,,... P.}. 
We have now a aivariate (ii i, m and p) discrete distribution : 

(m = i+p+l, ..., n+l; i = 0 ,... p-p; p = 0 ,... $1. 



16. 

Here we use the formula : 

The proof is given in Appendix D since we were not able to trace this formula in the literature. 

Summation of (22) wer p = 0, ...,k yields the denominator of (21). 

We wdl considex the m q p a l  disbibutions of p and of i and m (together, by the very nature 

of dose match reaieval via " ). 

again using (7) but with n-i replaced by m+i+l. 

From this, the conditional distlibutions follow (m = i+p+l, ...p+ 1; i = 0, ...p-p; p = 0, ..., k): 



as is readily seen It follows thaf for every 6xed m = i+p+l, ...p+ l and i = 0, ..., n-p, 

P(Z=p (X=i,Y=m) is the classical hypergeometric dismbution. 

Expression (10) now becomes : 

where denotes the average (over p) of the hypergeometric distribution (26). This yields formulae 

for the average precision and recall values that are encountered in this system : 

What about the R and P-averages with respect to P(X=i,Y=m/Z=p)? 

Clearly 

since R is independent from i and m. For P we have 



It turns out that 

- 
if p + 1, with P' = P-1, p' = p-1, k' = k-1, n' = n-1, i' = I. Note that Po = Po = 0. 

We apply the formula proved in Appendix D, yieldulg 

- - 
Findy we now calculate the "overall" averages P and R for the trivariate distribution 

and 

using that 



Condudmg, we have proved the following theorem : 

Theorem 2.2.1 

In the case of retrieval via the simikrity topology r", the probability m reaieve p documents from 

k relevant ones via the retrieval {Di+,,..,D,,} is 

(m = i+p+l, ... p+l; i = 0 ,..., n-p; p = 0 ,... ,k). 
This gives rise to the conditional dismbutions: 

and 

The latter is the hypergeometric distribution. Over (26) the average r e d  and precision values are 



Over (25) these are : 

and over (21) these are 

Discussion 

It follows that 

which indicates a decreasing linear relationship between recall and precision. Also 

a hyperbolically decreasing relationship between recall and precision. 
- -  - 

The curves are s& to the T-case (figure 2). Note again that no P, Pb, Pp depends on i, m and 

p! All these values are decreasing in n (k fixed) and decreasing in n (k/n fixed). In the former case 

the limit is 0 and in the latter case it is equal to k/n. A similar figure as figure 5 can be drawn. 

Note 

The case T (section 2 .I) follows from the case 7" (section 2.2) by f i g  m = n+l. However, 
- - 

in 2.2 we did not fix m because we dealt with 7- ". Hence the average formulae for P, and Pin 

section 2.1 do not follow from those in section 2.2! 



21. 

3. OPTIMAL SEARCHING 

In opamal searclung we assume that the hcst reaieved document (if we use r )  and the 

hrst and the last remeved document (ifwe use r" ) belong to the k &ant ones. We thus assume 

that the teaieval engine is capable of making this type of search. We think that in a theoretical 

iuvesugation such as the one performed here, such an assumption is dowed. However, as this case 

has less practical value we refex the calculations ro Appendix A. 

4. SUMMARY 

In this article we have studied recall-precision values for random remeval, i m p o m t  e.g. 

in statistical invesugations. Results, however, are descxibed using the underlying topological stcucture, 

i.e. uslug remevals in the remeval and the similarity topology. We have studied general, non-opamal, 

searches and more focused, optimal searches. Dfierent dismbuaons have been obtained, among 

which the hypergeometric one. 

Our results yield the basic smcture of random topological retrieval and consequently, the 

resulting recall-precision values constitute a lower level performance standard, cf. (Shaw, Burgin & 

Howell, 1997). Real IR results should be obtained by combining (convolving?) the dismbutions 

obtained in this article with other disnibutions, such as perhaps a "relevance" dismbution, or a 

preference structure, or a disaibution describing the precise behavior of the search mechanism. 

Moreover, it is clear that feedback should play a decisive role iu real-wodd remeval processes. 
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APPENDIX A: Optimal searching 

Part 1. The case of reuieval via 7'' 

The g e n d  case p < k 

We s d  work with DS = {D, ,... ,Do} and reaieve {D; ,..., D,} (i = 1 ,... p). 

Suppose k documents are relevant and we reaieve p of them (0 < p I; k < n).Now, Di is one of 

these p documents. We thus have a situation as depicted in & r e  6. 

Figure 6 : Retrieval via 7, o p d  searching 

The recall value is s d  R = p/k while the precision is 

n - i  i-1 
T b s e  values o c m  ( p  (k -p )  times (i = It-p+l, ...p-~+ 1). The bct that n-i+l is a p p e b g  

in the denominator of P and that n-i occurs in the frequency of occurrence, gives rise to serious 

calculating difficulties : we will explain this in the sequel. 

We have : 



using formula (4) but wi& 0 t h  symbols. Since this is p-independent and since p ranges in {1, ..., k) 
(we exclude retdevrng an empty set when p= 0; p 2 1 since Di is relevant) we have now that optimal 

searching via T is governed via the bivadate dismbution 

~ ( x / = i , y / = p )  = (37 

The macgmal distributions are 

using (7) but with other symbols. Hence the conditional distributions are 



Again as in the previous seaion we have here that (41) represents a hypergeometric 

disoibution with parameters k-1, p-1 and with n replaced by n-1 and i by i-1 ( i-1 = k-p, ...,n-p). The 

average is now 

I n - i  
Pi = (k -1)  - . 

n - 1  

Hence, average R and P values can be calculated : 

- k - 1  n - i  + - - 1 
n - 1  n - i + l  n - i + l  

Of course, according to the other conditional distribution we have that 

- 
For P,, we have 



(46) 

The reader m@t so far find this appendix very similar to section two. However, as far as 

we know, fornula (46) does not allow for analyttcal reductions. This is due to the occurrence of n- 

i+l in the denominator of P and of n-i -i one of the combinations. This shght difference is the basis 

of the difficulties. Of course (46) equals 

with n' = n-1, kt = k-1, p' = p-1,i' = i-1. Om could then approximate this by d d e q  l/(nl-i'+l) and 

by assuming that 

in the summation over i'. Then applying formula (14) yields 



Figure 7 

Recall-precision graph for opdmal searching, using the retrieval 
topology, for a document space containing n = 10 documents 

Even the case p = k (R = 1) will show that this approximation is rather rough. Still it is hardly 

possible to calculate the sum in (46) directly since i runs &om k-p+l to n-p+l. Now p < k << n 

since k denotes the number of relevant (wanted) documents and n is the number of documents in 

the database. Hence n can easily be in the order of lo5 or even lo7 while k usually is of the order of 

10 or 10'. To get an idea what (46) looks like, w e  7 has been consttucted for n = 10, which is the 

analogue of figure 2, but now for the case of optimal searchug. 

It is obvious that figure 7 resembles figure 2 very much. The horizontal k = constant lines 

of figure 2 are slightly decreasing now. The p = constant lines are comparable with the hyperbolae 

of figure 2. 



The reminder of this section is devoted to the case k = p where we will find more 

information on the inmate formula (46) and where approximations, better than (47) are gven. 

The case p = k (i.e. R = 1) 

In this case, formula (46) reduces to 

- 
This function is depicted in figure 8 for n = 5,7,10, 15 and 20, where P, is shown in function of 

k/n. 

Although a workable exact analpal  expression of (48) is unknown to us we are able to 

explain figure 8 to a large extent Indeed, we have the f o l l o w  theorem. 



Average precision, using the retrieval topology and optimal searching, 
for document spaces containing n = 5,7,10,15 and 20 documents. 

The x axis shows k/n values, the y axis shows the corresponding average precision 

Theorem A1 

Consider 

as a function of n. Then we have 

- 
(9 P ,(n) decreases in n (tixed k) 

(4 lim P p ( n )  = o 
n-' 



k 
(iii) 

lim Fp ( n )  = - (here we look at veicical k/n = constant trajectories). 
~t-- n 

k/n=cst 

The proof is given in Appendix E. 

The graph in figure 8 should also be compared to the non-optimal search case. There we 

found figure 3, which shows a similar behavior except for the jnitial decrease at the lower values of 

k/n. This part of the curve, however, is the most important one in practice since, in reaieval, k << 

n. Again we can say that, for the lower values of k/n, better approximations (better than k/n) are 

required in order to have workable and accurate approximations. This is done in the rest of this 

subsection. 

We will approximate 

as follows. 

Theorem A2 

t / n € N , & € N , k < n :  

where 

If we denote 



then, 'Ji = 1, ...,k- 1 

if k is fixed 

The proof is p e n  in Appendix F. Note that (49) is exact and only requires the calculation 

of k terms. In fact, we have reduced the summation to n in (48) to a summation of k terms and the 

calculation of j=k  f: ' j which is well-lmown (accurate tables exist and moreover: 

f: -? - On 
+ y - e 4 , for n large). Here , denotes Eder's number. For a p o d  

j = k  1 1-1 1 

- 
approximation of P, even less thank terms are required (by (52)). We go into h in more detail. 

- 
Suppose we did not wish to use the exact formula (49) but to approximate Pp by using just 

a few terms. Could this be done? Formula (52) shows that this must be possible at least for large n. 

To see what happens we calculated cp,,cp,,...,cp, for n = 10 (not at all large but enough to see what 

happens) and k = 2, ..., 10. Note that 

and so on. We have the following table. 



Table 1 
- 

Comparison between P, and consecutive approximations 

One can see that the 6t to the perfect P,-value is good and is reached quickly. It is now dear 

that the rough estimate k/n as mentioned in formula (47) is not particularly accurate but gets better 

the closer we are to k/n = 1, a fact that also follows from the graphs in figure 8. In table 1, the 

underlined values are the best approimations. This is surprising : at first it seems that the best values 

are on the dagonal but this stops at cp, : all cppalues below the dqonal are now best How can this 

be explained? 

Consecutive rehnements can only be expected if the corrections get smaller and smaller. 

This gives the inequality : 

1451 2 l%+Il 

Using formula (50) this gives : 

Hence 



One can venfy that 1 qt 1 increases from [n/2] + 1 on ([XI = the largest integer smaller than or equal 

to x). (53) implies that P = [n/2] (n odd) or P = n/2 - 1 (n even) are the critical limits. Let us continue 

with the latter. Since P 5 k - 1 < k we hence hnd the critical condition 

Interpretation 

(i) In practice k is smaller than ( 4 2  - 1) since n is the size of the database and k is the number 

of relevant documents. In this case we use the dtagonal elements (or even better : use (49) - 
exactly, the dtagonal elements are in fact P, - 9). If this is too much work then use any cpt , P 

< k-1 as a good approximation. 

(ii) If k > n/2 - 1 then it is better a to use the dmgond elements : it is then optimal to use cp,? 

P=n /2 -1  <k(inthetable:P=4). 

Part 2. The case of reaieval via 7-" 

2.1 The general case p 5 k 

We still work with DS = {D ,,... P,} and retrieve now {D ,...,Dm} (i 5 m, jm = 1 ,..., n) 

because of the use of 7". Suppose k documents are relevant and that we retrieve p of them @ s k 

5 n). As said in this section on o p d  searching, D; and Dm belong to these p documents. Hence 

we have a situation as depicted in iigure 9. 



Figure 9 : RemeVal via T I 1 ,  optimal searcluug 

The recall value is s d  R = p/k whde the precision is 

These values occur 

[rn;:;~) (n-;;:-I) 

times : p-2 documents in {D,, ,... P,,} and k-p documents in {D ,,... P,,} u {Dm+ ,,..., D,} (m = 

i+p-1, ...p; i = 1, ...p-p+ 1; p = 2, ...,k). Hence here p = 0 or p = 1 is excluded since we have already 

the relevant documents Di and Dm. We have now that opdmal seahug via 7 " is governed via the 

Here we use that 

where n' = n-2, k' = k-2, p' = p-2, m' = m-1, i' = i-1. We make again use of formula (22) but now 

with primes. In this way we obtain that (57) equals 



yields the denominator of (56). 

The margud distcibutions are 

using (7) again. From this the conditional dismbutions follow (m = i+p-1, ..., n; 

i = 1 ,... p-pfl;  p = 2 ,... JK) 



a hypergeometcic distribution with parameters k-2, p-2 and with n replaced by n-2. 

The average is now 

We now find the average R and P-values 



- - k m - i -  + 2 ( n - m + i - 1 )  

k ( n - 2 )  

and 

As e x p h e d  in the previous section this last formula cannot be transformed into elementary 

functions. Of course, the f "-analogue of figure 7 can be consttucted. Its graph is depicted in hgure 

10. 



Recall-precision graph for optimal searching, using the 
slrmlanty topology, for a document space containing n = 10 documents 



For p = k, formula (67) reduces to 

- 
Its graph can be depicted as in figure 11 : Pp versus k/n for n = 5,7,10,15,20. 

Figure 11 

Avexage precision, uslug the simikritty topology and optimal searching, 
for document spaces contahng n = 5,7,10,15 and 20 documents. 

The x axis shows k/n values, the y axis shows the corresponding average precision. 



Based on this graph we make the following observations. 

For a fixed k/n-value, the average precision deaeases with n (except, of course, in 1, ie. k = a). In 

addition, it seems that here too this average precision tends to k/n. The average precision in l/n 

always begins at the value L For a fixed value of k, the average precision also deaeases (probably to 

zero), except fork = 1. Finally, for a fixed value of n, the minimum value of the average precision 

deaeases, but occurs at a latger value for k : it is &st at k = 2, then at k = 3, and Met calculadons 

(not shown on the graph) show that it moves on to k = 4. 

Note: if you allowed not only remevals for the similatity topology, but also finite unions 

and intersections (ie. the complete topology) this would always result in a precision equal to one. 

Yet, droppmg the requirement that all similarity values are different, would reveal another aspect 

of the renieval process. Indeed, in that case the precision in reaie-ving one document would be equal 

to the reciprocal of the number of documents with the same simiiarity value as the requested 

document In general, remevlng k documents would yield a precision equal to k divided by the 

number of documents that have the same shihi ty  values as - at least - one of the requested 

documents. So, in that case, the precision gmes us information about the dustedng of similarity 

values. 



APPENDIX B: Topological spaces 

In this appendix we recall, for the reader's convenience, some basic notions on topological spaces. 

Let X be a set Denote by 6'0 the set of all subsets of X A topology t on X is, by definition, a 

subset of 8 0  satis*g the following four &oms. 

(01) The empty set 0 belongs to t. 

(02) The set X itself belongs to t. 

(03) Any union @ence, also infinite unions) of elements in t belongs to t. 

(04) Any hnite intersection of elements of t belongs to t. 

The elements of t a re  called open sets. The couple (X, t) is called a topological space. Note that the 

same set X can have many different topologies. 

Given two topologies t, and t, on X, then t, is said to be weaker or coarser than t, if every 

element of t, is also in t, This relation between these topologies is also expressed by s a p g  that t, 

is stronger or fines than t,. 

If Kt) is a topological space, then a subset B of 8 0  is a base for t if every element o f t  can be 

written as a union of elements in B. A subbase for a topology t is a subset C of such that 

every element of t is a union of finite intersections of elements of C. h can also be expressed by 

saylng that all hnite unions of sets in C fom a base for t. Any collection of subsets of X is a 

subbase of some topology on X 

Consider a function f &om the topological space (X,t) to the topological space (Y,t'). The function 

f is said to be continuous if the inverse image f = { x E X ; f(x) E U } of each open set U in 

(Y,t') is open in @,t) . 



APPENDIX C 

Theorem 

is attained for 

then 

- ( k - p ) n  in - 
k  

Proof: 

We note first that for p = k, i, = 0, hence (69) is conea for k = p. Let now, p < k and let 

i,,, E No be such that for every i * i, : 

Now, C/O) is equivalent with : 



a) Assume that i < &, then (71) is equivalent with : 

i m . .  . (i+l) (n- i -p)  . . . (n- ip-p+l)  
2 1  

( n - i )  . . . (n - i_+ l )  (im-k+p) .. - ( i - k + p + l )  

n - i - p  n - i m + l  - p  i m -  (k-p) 
0 

0 . .  

i + 1 - (k-p) 
2 . . . 

n - i  n - i m + l  'm i + l  

"I'hs inequality is ceaainly satisfied if, for, every j = i,...&- 1 : 

b) Assume now that i > &. 
Interchangq the roles of i and i, and those of the numerator and the denominator of (71) leads 

to : 

i-l 
k - P  

( 1 )  ( - i . r ]  - 1 =i. 

This inequality is certaiuly satisfied if, for every j = k, ...,i- 1 : 



Combining (72) and (73) proves this theorem. 



APPENDIX D 

Proof: 

Thefomulacmreadilybe&edcedforn=1 (casesk=p=O,p=Oandk= l , k = p =  1). Wenow 

prove the formula directly if k = n (Vn N). Then we have 

since P E {p ,..., n-i} - n - P E {i, ..., n-p}. 

Next, we prove the fomula directly if k = p (Vn E N). 

In this case (74) is 

where we used (4) twice (with different symbols) and k = p. This proves (74) in case k = p. 

The rest of the proof is done by induction on n : by the above we can suppose (74) to be 

valid for n, b'p s k k nand have to prove it for n+l, Vp < k k n+l (since the cases k = p and k = 

n+l  have alteady been proved). We have 



we have that the above equals 

We now apply the induction hypothesis on n and p < k < n for the first term, the induction 

hypothesis on n and p r; k-1 < n, for the second term and formula (4) on 

This yields 





APPENDM E 

Theorem 

The function 

satisfies - 
(i) P,(n) decreases in n (1 fixed) 

(iii) 
k lim Fp(n) = - . 

n-- n 

Proof: (i) 

- 
Pp(n+l) s Pp(n) 

But 



The last equality follows from the lemma below this proof (this lemma will also be needed in 

Appendix E). Hence 

Consequently, 

(iii) From the above we have 

But n - m - k - - since k/n = constant. 

Hence 

k 
lim Fp(n) s - . 
n-- n 

- 
We will now prove that P,(n) 2 k/n, Vn E N, Vk = l,...p. 

- 
The proof goes by complete induction. For n = 1 is k = 1 and P,(n) = 1 = k/n. Let now 

chis inequality be valid for n and all k = 1 ,..., n. Let now k = 1 ,..., n+l. For k = n+l the inequality is 

hivial. Let now k = 1, ...p. 



by the induction hypothesis since k = 1, ..., n. 

Hence 

Lemma : Vn E N, Vm = O,l, ...+ 

Proof: 

For m = 0 we have to show that 

for all n E N. This is ttue for n = 1 and induction on n yields 



Now follows the induction step on m : for m+l 

by the induction hypothesis. 

- - - )  1 
1 1  k - m  j l - ,  



APPENDIX F 

Proof: 

Hence 

We now apply the lemma in Appendix E. This yields (77) directly. 

Proof: 

We repeatedly apply the above lemma, yieldmg : 

2 (;I;] 
j =k j 



From this it is dear that : 

where 

Proof: - 
This follows readily from lemma 2 and the formula (48) for P,,. 1 



Theorem 2 

If we denote 

then, Vi = 1, ...&- 1 and k hxed 

Proof: Vi = 1, ...&- 1 

BUG for k fixed is 

0 < lim n'-I lim 1 ! k 2  n'-' 
= 0 

D-- 0-- (k-P) n '  

and 

0 < lim lql nk-' 2 lim - 1  ! k Z  nk-I Pn n = o  . 
n--- n-- n 

Here we used the fact that 

and that 



Hence we have 

U m l $ l n i  +lim 191 n i  
I = i * 1  n- u-' 

since P-1 2 i and i s k-1. 



APPENDIX G 

In this tinal apppendix we refer aga in  to the problems of dealtng with formula (48) 

and similar formulae, all in the context of optma1 searhug. Formula (48) above refers to the case 

p = k and to retrieval via 7 (the simplest case). We have presented a non-aivial but proper 

approximation to (48), hereby reduung the sum up to n (large) to a sum up to k (small). 

Another way to study the average behavior of P is to look at the median. We proceed as 

follows. Since there are (in to t4  cases we must hnd s E {1, ..., n) such that 

But 

hence we have to solve 

Hence 

3-1 n - i  
n = 2 

i ~ O  n - k - i  



1 1 ..... 1 
k 

= 2 
k I - -  I - -  1 - k 

n  n-1 n - j  +1 

Since k << n we can delete second (and hgher) order factors (we assume that also k << n-j, as j is 

a median). This yields: 

= 2 

i-0 n-i 

But 

again since n-j is hgh. Together, formulae (86) and (87) yield 

Hence 

For the median precision M,(P) we have 



- 
This is, roughly, of the order of k/n, a result that was already found for P,. Some values for n = 100. 

Note. We can say that all "average" P-values (in all cases) are around k/n baag the precision value 

obtained when we retrieve (or take) the complete database DSI 


