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ABSTRACT 

Realistic estimates of standard deviations of the formation constants of metal ion complexes 

calculated from potentiometric titrations can be quantified by a Monte Carlo-based 

technique from estimates of the experimental errors in titration parameters. This Monte 

Carlo analysis has also potential implications for model selection. 

A Matlab® programme is presented to quantify the statistical uncertainty on the optimized 

stability constants in complex models. The programme consists of a data generation part and 

a refinement part. The refinement algorithm uses the nonlinear least squares method to 

minimize the sum of weighted squared differences between the experimental and calculated 

electrode potentials. It is demonstrated from an analysis of simulated and experimental data 

of Ag(I)-diamine complex equilibria in certain cases the risk of accepting a false model is 

real! Residual plots show that the χ2 test is the least convincing and most controversial 

criterion for model selection. Some new criteria to increase the reliability of potentiometric 

data are formulated. 
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INTRODUCTION 

The calculation of formation constants of metal complexes is an important and active area of 

modern solution chemistry. A crucial factor in equilibrium studies is the design of the 

chemical model. In order to identify the “best” model, a set of  hypotheses that describe a 

number of complexes and their stoichiometric coefficients should be formulated. The 

corresponding stability constants may be evaluated either approximately by different 

graphical methods [1] or more precisely by a variety of  regression techniques [2-5]. The 

influence of the computational strategy used on the reliability of stability constants is also 

discussed in the literature [6-7].   

Recently, most of the work related to quantifying the accuracy of equilibrium models and 

their corresponding stability constants is based on chemometrical methods [8-12]. However, 

a well-founded statistical error analysis is lacking in the majority of these optimisation 

programs. The present work shows a detailed error analysis in the determination of stability 

constants that is rarely done. Better assessment of experimental and systematic errors and 

structural perturbations in the model makes it possible to select the set of parameters which, 

when optimized, yields the result with greatest probable accuracy. Moreover, this approach 

accounts for many discrepancies in the formation constant literature.  

 

EXPERIMENTAL 

Materials 

Most of the reagents used were commercially available. Detailed information on all products 

and particularly on the preparation of the diamines used in the complexometric Ag(I)-

diamine titrations (1,4-Diaminobutane and 1,5-Diaminopentane) has been published 

elsewhere [13].  
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Automated Apparatus 

Potentiometric data were obtained with a Radiometer pHM 84 (resolution 0.1mV), equipped 

with a glass (Ingold pH0-14 HA265-S7/120) and a reference (Ingold Argental 363-S7) 

electrode couple. Combined  pH/pAg measurements were performed with a Radiometer 

pHM 84 (pH) and a Knick pH Meter 764 multicalimatic (pAg) (resolution 0.1mV). The 

following electrode couples were used : a glass (Ingold pH 0-14 HA265-S7/120) in 

combination with a reference (Ingold Argental 363-S7) electrode and the reference electrode 

(Ingold Argental 363-S7) combined with a Ag/Ag2S (Orion 94-16) electrode. The design of 

the fully automated experimental set-up for both pH and combined pH/pAg measurements 

has been presented in the literature [14-17].  

Titrations 

The specific procedures used for the potentiometric acid-base titrations as well as the Ag(I)-

diamine complexometric titrations have been described elsewhere [13].  

 

RESULTS AND DISCUSSION 

The simulated titration curves for two artificial systems ‘sys1’ and ‘sys2’ (table 1) made of 

80 points each were generated using the data generation part of the MatLab program [18] 

of which the algorithm is based on the program ‘EQUIL’, a general computational method 

for the calculation of solution equilibria [19]. The curves were subjected to the same 

analysis as the experimental data with the use of the refinement part of the MatLab 

program suite [18]. The core of  the refinement algorithm is a Gauss-Newton minimization 

of a sum of weighted squared residuals in electrode potential based on implicit 

differentiation in accordance with the program SUPERQUAD [5,20-23]. It is demonstrated 
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in recent publications dealing with the analysis of experimental Cu(II)- and Ag(I)-diamine 

complexation data using SUPERQUAD that two main problems arise when interpreting the 

results [17,24]: on the one hand the residuals in pH or electrode potential do not show a 

normal distribution character or tend to deviate systematically in certain regions of the 

titration curve. On the other hand the calculated standard deviations on the optimized 

constants are not realistic. The literature reports on a qualitative study handling the 

reliability of computer analysis by means of deviations in the model [7]. Our aim is 

analysing quantitatively the effects of experimental and structural errors in the chemical 

model to formulate some new criteria to increase the reliability of potentiometric data.  

 
Quantifying accuracy by means of experimental errors:  analysis of ‘sys1’ and ‘sys2’ 

In order to quantify the effects of systematic and other experimental errors on the optimized 

stability constants and to make the curves more realistic, each titration point was biased by 

computer generated random errors with gaussian distribution. As the introduced 

perturbations are of the same order as in a real experiment, the results can be used for 

verification of  reliabilty of  results from  analysis of  real system data.  

The effects of noise in the following titration parameters on the optimized constants have 

been evaluated : 

• Perturbations in pH or electrode potential 

• Perturbations in added volume of titrant 

• Perturbations in total concentration of metal, ligand and proton 

• Perturbations in total initial volume 

Considering the vast number of various possible hypotheses and number of simulated 

experiments for all relevant titration parameters, we have compiled our figures to include 
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some representative examples ( e.g. analysis of the artificial model ‘sys1’ and ‘sys2’ related 

to perturbations in pH or electrode potential).  

The free concentration pHideal has been generated using the data generation part of the 

MatLab program [18]. Errors in pHideal were modellated by means of a computer generated 

random variable εi with gaussion distribution:  

                                       pHerror (i) = pHideal (i)  +  εi       εi ∼ N (0, σ2)                                    (1)                                   

where i represents the titration point and σ2 is constant over the whole titration area. 

Moreover, we assume that there is no correlation between the errors in different titration 

points.  In the example presented in figures 1a. and 1b., the mean value of different stability 

constants β in the trail-models ‘sys1’ and ‘sys2’ is plotted against log σ.  

β is defined as the overall formation constant of the following reaction: 

      pM  +  qL  + rH                  MpLqHr                   βpqr = [MpLqHr] / [M]  p [L]  q [H]  r 

A regression analysis of the standard error (s.e.) on the individual optimized parameters as a 

function of the perturbation in pH (σ) illustrates linearity in ‘sys1’ (figure 2a.) but non-

linearity in ‘sys2’ (figure 2b.)! Thus, the influence of a perturbation in a titration parameter 

(e.g. pH) on the precision of the optimized constants strongly depends on the chosen system 

and the magnitude of the individual constant. These effects probably indicate that the linear 

error propagation model fails when handling potentiometric data.  

Quantifying accuracy by means of structural errors in the model:  analysis of ‘sys1’and‘sys2’ 

The reliability of the computer calculations has been evaluated using structural errors in the 

models ‘sys1’ and ‘sys2 (table 1). 

Extended model of ‘sys1’ 

The results of  different optimization cycli using an extended model of ‘sys1’ - the specie 

MLH is added - , are summarized in table 2. The corresponding initial values of β111 in the 
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different cycli are: 103, 105, 107, 108, 109 and 1011. Each simulation counts ten titrations with 

a constant perturbation in pH of 0.002 units,. This perturbation is present in all the following 

simulation experiments. The starting values for β110, β120, β011 and β012  deviate at least 50% 

from their “real” values. U represents the mean quadratic sum of ten titrations of weighted 

residuals in pH upon convergence. The mean sample deviation S ( S = (U/n-m)1/2 ), where n 

is the number of titration points and m is the number of parameters to be optimized) is also 

tabulated as well as the standard error. Table 2 illustrates that in all cases the parameters 

β110, β120, β011 and β012 converge to their “real” value in the model system. This of course is 

a first indication that the wrong model is accepted! In figure 3 (to the left) the initial value 

for  β111 is plotted against the final value of U upon convergence. U seems to be acceptable 

in the interval β111 = [105, 108] (U = 372 for the defined starting model). S should not exceed 

3 [13], this means that the maximal acceptable value of U is around 700 (n = 80 and m = 5). 

On the basis of this criterion, once again, the wrong model is accepted! However, if the 

initial value of β111  is of order 109 or higher, the value of U goes up drastically. Thus, we 

can conclude that by adding a “spurious” and very stable complex no problems are 

encountered in selecting the right model in this region. Figure 3 (to the right) shows the 

initial value of β111 versus the value of β111 upon convergence. It becomes clear from this 

figure that in case of adding the complex MLH with starting values for β111 in the interval 

[105, 107], these parameter values fade out upon convergence, which is an indication that the 

added complex can be discarded or the trial-model is not accepted. In figure 4 (to the left) 

the concentration of all the components and species in the defined model ‘sys1’ at 

equilibrium over the whole titration area is plotted. Figure 4 (to the right) shows the 

corresponding concentration curve for the extended model (MLH is added). The starting 

value of β111  is taken to be 22, which is the mean value after optimization, starting from an 
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initial estimation of  β111 = 108.  It can be concluded from this figure that neither the 

concentration of the individual components (M, L and H)  nor the concentration of all 

formed complexes has been changed fundamentally in the region under study, so that the 

added complex can be discarded on the basis of non-existence. 

Incomplete models of ‘sys1’ 

For the sake of clarity, the evaluation of the model selection procedure for incomplete trial- 

models of ‘sys1’ is presented in tabular form (table 3). The values for U and S upon 

convergence are indicated. The data in table 3 illustrate that the selection of all tested 

incomplete models leads to unacceptable results: the magnitude of U (S) exceeds the 

maximal value of 700 (3). Moreover, inspection of the residuals in pH suggests the same 

conclusion (figures 5a. and 5b., to the left). Some model selection criteria have been stated 

in a previous paper [13]. To our opinion, verification of two extra characteristics, which are 

the normal character and the independence of the data in the distribution, is of crucial 

importance in selecting the “best” model. These characteristics are examined by means of a 

normal probability plot and a plot of the autocorrelation of residuals. A linear normal 

probability plot points to a symmetric gaussian distribution, which is shown in figure 5a. (to 

the right) for the defined model ‘sys1’ (acceptable value of U (S)=372 (2.21)). On the 

contrary, for the incomplete model  (figure 5b. to the right) - the species ML and ML2  are 

missing – the corresponding normal probability plot is not linear. This is a serious indication 

for not accepting the wrong model. In figure 6 (to the left) the autocorrelation of the 

residuals is shown for the trial-model ‘sys1’ and for the incomplete model where ML and 

ML2  are missing (figure 6 to the right). The autocorrelation plot gives information about the 

independence of data: the correlation between the ordered row of residuals and itself after a 

shift over a certain distance , the ”lag”, is examined.  This “lag” is typical for the structure of 
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the noise and should be as small as possible. For the incomplete model we can conclude that 

there are systematic tendencies in the residuals (figure 6 to the right).      

Extended model of ‘sys2’ 

The data in table 4 show, that despite the fact that all parameters converge to acceptable 

values, the wrong model can be discarded on the basis of a huge value of U and S.    

Incomplete model of ‘sys2’ 

An illustration is provided by the results of the refinement procedure of an incomplete model 

of the more complicated and unstable trial-model ‘sys2’- the complex ML2 is missing (table 

5). The increased number of degrees in freedom in ‘sys2’ could be expected to make the 

refinement easier. However, this is not the conclusion in the present analysis. It is seen from 

table 5 that the magnitude of U is not too high and deviates only a factor 10 in comparison 

with the trial-model. Verification of residuals seems to be recommended. In figures 7a. and 

7b. the residuals in pH are plotted for the whole titration area (80 points) together with their 

corresponding normal probability plots. Figure 7b. gives evidence for some systematic 

trends in the residuals of the incomplete model. Indeed, only in the basic region of the 

titration curve the residuals deviate systematically ( the complex ML2 which is normally 

detected in the basic region [13] is missing in the model!). The computer calculations cannot 

compensate for these effects! This is confirmed by a plot of the autocorrelation length 

(figures 8a. and 8b.), which is small in the case of the starting model ‘sys2’ and rather large 

for the deviating model. 

Figure 9 shows a distribution curve of the trial-model ‘sys2’ (to the left) and the 

corresponding curve (to the right) for the incomplete model where ML2 is missing. It is 

illustrated that the concentration curves for the individual components and the species are 
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not influenced when a complex is missing in the model, also on this basis the deviating 

model can be discarded.         

Combined model of ‘sys2’ 

Table 6 summarizes the results for the refinement procedure of a combined model of ‘sys2’ 

where the complex MLH is missing and ML2H has been added. Here, some problems arise 

in selecting the correct model: all parameters converge to an acceptable value and the value 

of U (S) is realistic! It becomes obvious that the “S-criterion” is not sufficient for model 

selection . On the other hand examination of the distribution curves (figure 10) and 

verification of residual plots is absolutely indispensable. It becomes clear from figure 10 (to 

the right) that the “spurious” complex ML2H is only present in a minor quantity and does 

not influence the concentration curves of the individual components and species. 

Quantifying accuracy using experimental data of Ag(I)–1,4-diaminobutane complex 

equilibria  

Inspection of residuals in EAg for the Ag(I)-1,4-diaminobutane model that fits best the 

experimental data (S = 2.33) [13], shows a linear normal probability plot (figure 11) and a 

small autocorrelation length (figure 12). This confirms our foregoing conclusions which are 

of course stated on the basis of “well-known” models. It follows from our experience that in 

optimizing real systems, the χ2 criterion is the most controversial and least convincing test 

for model selection: a large value of χ2  (> 12.60 indicates systematic trends in the residuals 

[18]) is neglected if the sample standard deviation S is favourable (<3)! 
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TABLE 1 

Composition and overall formation constants β (log units) characterizing the artificial model 

systems ‘sys1’ and ‘sys2’. The initial parameters for both systems: CM = 0.001 mol l-1, CL = 

0.005 mol l-1, CH = 0.1 mol l-1, titrant concentration CKOH = 0.1 mol l-1. CM, CL and CH 

respectivily being the initial total concentration of metal, ligand and proton 

 

 
 

 
‘sys1’ ‘sys2’ 

complex log β complex log β 

ML 8 MLH 12 

ML2 14 ML2 6 

HL 9 ML 3 

H2L 11 HL 10 

  H2L 17 

  OH- -14 
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TABLE 2 

List of the mean value of the minimization function U (ten titrations), s.e. and the sample 

standard deviation S (between brackets). The optimized parameters βpqr  , upon convergence,  

of an extended model of ‘sys1’ are summarized. The complex MLH is added to the system 

with the following initial estimations of β111: 103, 105, 107, 108, 109, 1011 



 14 

  

TABLE 3 

Results for the optimized overall formation constants of some incomplete models of the 

model system ‘sys1’. The “real” parameter values are indicated between brackets. The U-

statistic and (sample standard deviation S)  are also indicated   

 

 

  

Model

 
log βpqr 

initial value 

 
log βpqr 

optimized value

 
U (x109) 
S (x103) 

(convergence) 

1) ML 8.17609 (8) 8.45327 5.35 
8.23 

2) ML 
ML2 

8.17609 (8) 
13.69897 (14)

7.77895 
-5.87324 

2.84 
6.03 

3) HL 
H2L 

9.17609 (9) 
10.69897 (11)

9.11257 
-3.27768 

2.79 
5.98 

4) ML2 
HL 
H2L 

13.69897 (14)
9.17609 (9) 

10.69897 (11)

13.60352 
7.27167 
10.47695 

0.083 
1.04 

5) ML 
HL 
H2L 

8.17609 (8) 
9.17609 (9) 

10.69897 (11)

7.56829 
7.27180 
10.32212 

0.035 
0.68 
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TABLE 4 

Results of the optimisation procedure of an extended model of ‘sys2’ - the complex ML2H has 

been added . The “real” parameter values are indicated between brackets. The U and (S)- 

statistics are also mentioned 

 

Model log βpqr 
starting value 

log βpqr 
optimized value

Ux107 (Sx103) 
upon convergence

MLH 12.17609 (12) 12.17615 8.28 (1.07) 

ML2 5.77085 (6) 5.77084  

ML 3.17609 (3) 3.17612  

HL 9.69897 (10) 9.69900  

H2L 17.15299 (17) 17.15226  

OH- -14.22915 (-14) -14.22914  

ML2H 5.17609 7.95654  
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TABLE 5 

 

Results of the refinement procedure of an incomplete model of ‘sys2’ – ML2 is missing. The 

“real” parameter values are between brackets. U- and S- statistics are also mentioned 

 

Model log βpqr 

initial value 
log βpqr 

optimized value
Ux103 (S) 

upon convergence
MLH 12.17609 (12) 11.98612 6.09 (9.01) 

ML 3.17609 (3) 2.65716  

HL 9.69897 (10) 9.80500  

H2L 17.15299 (17) 16.82029  

OH- -14.22915 (-14) -14.09657  
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TABLE 6 

 

List of optimized constants and U (S)-statistics in the incomplete model of ‘sys2 – the 

complex MLH is missing and ML2H has been added to the model. The “real” parameter 

values are between brackets. 

 

model log βpqr 

initial value 
log βpqr 

optimized  value
U x 102 (S) 

upon convergence

ML2 5.77085 (6) 6.03878 1.64 (1.49) 

ML 3.17609 (3) 1.76893  

HL 9.69897 (10) 10.02018  

H2L 17.15229 (17) 16.98589  

OH- -14.22915 (-14) -13.99346  

ML2H 5.17609 15.12163  
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Figure 1a. 
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Figure 1b. 
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Figure 2a. 
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Figure 2b. 
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Figure 3 
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 Figure 4 
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 Figure 5a. 
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Figure 5b. 
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Figure 6 
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Figure 7a. 
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Figure 7b. 
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Figure 8a. 
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Figure 8b 
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Figure 9 

 

number titration point number titration point 

log  concentration 

log  concentration 



 32 

Figure 10 
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Figure 11  
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Figure 12 
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List of descriptive legends of figures 

 

Figure 1a.: Mean β011 (left) and mean β012 (‘sys1’) (right) as a function of σ, the magnitude 

of error in pH (log units). The number of titrations is ten. Error bars equal the standard error 

on β. The horizontal line represents the “real” β (table 1).    

 

Figure 1b.: Mean β111 (left) and mean β120 (‘sys2’)  (right) as a function of σ, the magnitude 

of error in pH (log units). The number of titrations is ten. Error bars equal the standard error 

on β. The horizontal line represents the “real” β (table 1). 

 

Figure 2a.: S.e. on mean β011 (left) and s.e. on mean β012  (right) versus σ (‘sys1’). The 

number of Monte Carlo cycles is ten. 

 

Figure 2b.: S.e. on mean β111 (left) and s.e. on mean β120 (right) versus σ (‘sys2’). The 

number of Monte Carlo cycles is ten. 

 

Figure 3: Curve of the initial estimation of β111 (left), added to the trial-model, as a function 

of the minimisation function U (upon convergence). Curve of the initial estimation of β111 

versus the optimized value of  β111 (right) upon convergence. The number of simulated 

experiments is ten. 

 

Figure 4: Concentration curve at equilibrium of the individual components and all the 

species in the trial-model ‘sys1’ (left). Corresponding concentration curve but MLH (β111 

=22) is added to the trial-model (right). 
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Figure 5a.:pH residual plot versus titration point (left) and corresponding normal probability 

plot for the defined model ‘sys1’ (right). 

 

Figure 5b.: pH residual plot versus titration point (left) and corresponding normal 

probability plot for the deviating model of ‘sys1’- ML and ML2 are missing (right).  

 

Figure 6: Autocorrelation plot of pH residuals in the starting model ‘sys1’(left) and 

corresponding plot for the deviating model of ‘sys1’ - ML and ML2 are missing. 

 

Figure 7a.: pH residual plot versus titration point (left) and corresponding normal probability 

plot for the trial-model ‘sys2’(right).  

 

Figure 7b.: pH residual plot versus titration point (left) and corresponding normal 

probability plot for the deviating model of ‘sys2’- ML2 is missing (right). 

 

Figure 8a.: Autocorrelation plot of the residuals for the starting model ‘sys2’. 

 

Figure 8b.: Autocorrelation plot of the residuals for the deviating model of ‘sys2’- ML2 is 

missing. 

 

Figure 9: Concentration curve for the individual components and all species in the starting 

model ‘sys2’(left). Corresponding curve for the model where the complex ML2 is missing 

(right). 
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Figure 10: Concentration curve for the individual components and all species in the starting 

model ‘sys2’(left). Corresponding curve for the model where the complex MLH is missing  

and ML2H (β121 = 1.5 105) has been added to the starting model (right). 

 

Figure 11: EAg  residual plot over the whole titration area for all  CAg/ CL ratios (left) and 

corresponding normal probability plot for the experimental system Ag(I)-1,4-diaminobutane 

(right). 

 

Figure 12: Autocorrelation plot of  the EAg  residuals for the experimental system Ag(I)-1,4-

diaminobutane. 

   

 

  

 

 

 

 

 
  

 


