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Abstract 

Classical information retrieval and overlap measures such as the Jaccard index, the Dice 

coefficient and Salton's cosine measure can be characterized by Lorenz curves. This 

result demonstrates the existence of a link between information retrieval and the 

information sciences on the one hand, and concentration and diversity theory, as used, 

e.g., in social economics and ecology on the other. 
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Introduction 

The use of presence-absence data is a basic approach for representing 

categorical data. As presence is often represented by 1 and absence by 0, such 

data are also known as 1 - 0 data. Their binary nature is especially suited for 

computing, and makes their use in science ubiquitous. This is also the case in 

the information sciences (Huot et al., 1992; Magurran, 1991). Indeed, a standard 

approach to information retrieval and the study of overlap represents documents 

by an array of keywords and/or phrases. Note that we chose the term 'array' and 

not 'vector' because these entities are not vectors in the strict mathematical 

sense of the word. If keywords are chosen in a particular order, a document is 

represented by a presence-absence (1 -0) array. Similarity between documents is 

determined by comparing these document representations. In information 

retrieval and in overlap studies it is customary not to consider common zeros 

(Salton & McGill, 1983). Indeed, keywords or phrases that do not occur in at least 

one of the documents do not make the documents more similar. Medical articles 

are not more similar if they both do not use the keyword "Tanzania". For this 

reason we will refer to this approach as the zero insensitive case. This will be the 

only case studied in this article. 

Another way of representing such data is through set theory. An entity such as 

a document is represented by the set of properties it possesses (here keywords 

or phrases present in the document, or by which the document is indexed). Note 

that absence data are usually not explicitly represented in the set-theoretic 



approach. This corresponds to the fact that in the array representation, common 

zeros are not considered. Figure 1 illustrates these different approaches 

Patents F=l 1 DOCUMENT B 1 

Fig.1 a : Two document representations (using keywords) 

Fig.lb: The same documents represented as presence-absence data (in the 
order: patents - citations - mapping - publications) 

Publications / 

u 

Fig. I c  The same documents represented as sets 



We will show how a Lorenz curve approach leads to an intrinsic notion of 

similarity. These Lorenz similarity curves define a partial order in the set of 

presence-absence data representations. We will further show that for zero 

insensitive presence-absence data well-known measures such as the Jaccard 

index, the Dice coefficient and Salton's cosine measure respect this partial order, 

hereby revealing new good properties of these important measures. 

Lorenz similarity curves 

Let r =   XI)^.,, ..., N and s = (Y~)~=,,...,~ be two presence-absence arrays of length N 

(in short: N-arrays) for the documents r and s. The similarity of D = {r,s) must not 

depend on the order in which we consider rand s. It must, moreover, not depend 

on the order in which the keywords of r and s are enumerated. Of course, in 

practice one uses a particular order (always the same for the two items involved) 

but the point is that this must not influence their similarity. These requirements 

are also imposed in concentration studies, hence it seems natural to consider 

Lorenz curves (Lorenz, 1905) in a similar vain as for 'concentration' and 

'diversity' studies. In a first step we will construct a Lorenz curve suited to the 

study of similarity. Only in a second step will similarity be measured by a function 

respecting the partial order introduced in the first step. An infinite number of such 

functions are mathematically possible. In order to emphasize the fact that it is 

irrelevant in which order document representations for similarity studies are 

considered we refer to D = {r,s) as a duo, a word that has no "rank" connotations. 



Construction of Lorenz curves for duo similarity 
Let r = (xi),=?, ..., N and s = (yi)i=~,.,.,~ be two presence-absence N-arrays of the 

documents r and s (such arrays will also be called keyword arrays) and let 

(ai)i=I,...,N and (bi)i=l,...,N denote their relative arrays. This means that each value is 

divided by the total sum, and hence the new sum of all components becomes 

equal to one. Formally: 

N N 
with T, equal to EX,  (the total sum of the 1-array) and Ts equal to z y ,  (the fotal 

j=l j=l 

sum of the 2-array). Next, the components of the difference array d = (di)i=~,...,~ 

with di = - bi are ranked from largest to smallest. 

Finally, putting 

the Lorenz similarity curves are obtained by joining the origin (0,O) with the points 

with coordinates 

This construction was introduced in (Egghe & Rousseau, 2001) in the more 

general context of so-called 'symmetric relative concentration theory'. The c- 

arrays will be called the (Lorenz curve) ordinate arrays. The first coordinate of 

equation (3) will be referred to as the x-coordinate, or the abscissa, while the 

second one will be called the y-coordinate or the ordinate. Note that these curves 

always end in the point E = (I ,0) as 



In this sense these Lorenz curves differ from the classical ones that end in the 

point (1,l). Figure 1 gives some examples of Lorenz similarity curves. 

Fig.1 Lorenz curves of the duos D' = {(1,0),(0,1)), above, and of 
D ={(l,l,l,l,l,l,O,O,O,O),(O,O,l,l,l,l,l,l,l,l)}, under. 

Similar to other (namely the standard) Lorenz curves also these lead to partial 

orders and functions respecting the partial order are the ones we are interested 

in. Yet, these partial orders are not completely trivial. Indeed, there are two 

complicating factors, the first one being related to the question: what happens if 

we use the array d' with components (b,-a,), instead of d with components (at-bJi? 

Recall that this must lead to the same similarity. Yet, the corresponding Lorenz 

similarity curves are clearly different. Luckily, there exists a simple relation 

between these two Lorenz similarity curves: they are symmetric with respect to 



the line x = 0.5, see Fig.2. (For a proof in the general case, i.e., not necessarily 

presence-absence data, we refer the reader to (Egghe & Rousseau, 2001)). 

Figure 2. The similarity Lorenz curves of D = {(1,1,1,1,1,1,0,0,0,0),(0,0,1,1,1,1.1,1,1,1)} 

and D' = {(0,0,1,1,1,1,1,1 ,I.?), (1,1,1,1,1,1,0,0,0,0)} are each other's mirror image with 

respect to the line x = 0.5. 

The second point is that many duos lead to the same Lorenz similarity curve. 

We will hence consider equivalence classes. Two duos are equivalent if they 

lead to the same Lorenz similarity curve or to curves which are reflections with 

respect to the line x = 112. The duos {r" = (1,1,1), r" = (1,1,1)} and {r"' = 

(1,1,1,1,1), r"" = (1,1,1,1,1)} are equivalent. This example leads to the line 

connecting the origin 0 = (0,O) and the point E = (1,O). This line will be referred to 

as the equality line. Other examples of equivalent duos will be given when the 

notion of replication invariance is introduced. 



Notation 
The similarity Lorenz curve of (r,s) - in this order - will be denoted by L,,,. 

Consequently the Lorenz curve of (s,r) is denoted as L,,, . As L,,, is the reflection 

of L,, with respect to the line x = 0.5, L,,, is also denoted as R(L,,). Here, the 

symbol R stands for the reflection operation. In what follows these curves will be 

considered as being equivalent, and, if no distinction is necessary, they will be 

denoted as LD, with D = {r,s). A Lorenz similarity curve can be considered as a 

function of the abscissa. In such case it will be denoted as L,,(x) or LD(x). 

The partial order derived from Lorenz similarity curves 
For D = {r,s) and D'= {r',s') we will say that the Lorenz similarity curve LD(x) is 

situated below the Lorenz similarity curve Lv(x) if for every x E [0,1] either L,,(x) 

5 L,.,,,(x), with strict inequality in at least one point (and hence in infinitely many), 

or L,,(x) 5 Lr',s,(x), with strict inequality in at least one point. Note that by the 

previous observation L,,(x) 5 L,.,,(x) automatically implies that L,,,(x) 5 L,,,r,(x). 

Similarly, we say that the Lorenz similarity curve LD(x) coincides with the Lorenz 

similarity curve Lo(x) if for every x E [0,1] either L,,(x) = L,,,,,(x), or L,,,(x) = 

Lr.,s'(x). 

We are now in a position to define a partial order derived from Lorenz similarity 

curves. 

Definition: Lorenz similarity 



Let D = {r,s} and D' = {r7,s'}. Then the Lorenz similarity between r and s is 

intrinsically larger than the Lorenz similarity between r' and s' if the Lorenz 

similarity curve of D, LD, is situated below the Lorenz similarity curve of D', Lo. 

Fig. 1 gives an illustration of such a situation. 

Notation 
If D = {r,s}, D' = { r ' ,~ ' }  and the Lorenz similarity between r and s is intrinsically 

larger than the Lorenz similarity between r' and s', or if the Lorenz curves 

coincide then we denote this fact as: 

D 2 D' or {r,s} 2 {r',sl} or equivalently: L,, 2 Lr,,s, 

If the Lorenz similarity between r and s is intrinsically (strictly) larger than the 

Lorenz similarity between r' and s', this fact is denoted using the symbol >. 

Comments 

1. In (Egghe & Rousseau, 2001) the larger curve was the one situated on top. 

Here, the larger is the lower one, because we consider the notion of 

'similarity' as a kind of opposite to the notion of 'concentration'. 

2. In general, we do not require the length of r (= the length of s) to be equal to 

the length of r' (= length of s'). 

3. Lorenz similarity curves may intersect, and will often do so. Then the 

corresponding similarities are intrinsically incomparable (in our framework). Of 

course once acceptable similarity functions are defined (see further) Lorenz 

curves are mapped to numbers, and hence the corresponding duos usually 

become comparable. Within our framework intrinsic comparability based on 



Lorenz curve is the fundamental notion. Comparability based on a function 

such as the cosine measure leads only to a second order type of comparison. 

General properties of Lorenz similarity 
In this section we will prove properties that are intrinsically true for Lorenz 

similarity. This means that these properties always hold whatever the similarity 

function one uses. Such properties are the most important, basic, ones for the 

notion of Lorenz similarity. 

Theorem. Lorenz similarity is replication invariant. 

Replication means that every absence-presence value is transformed to f times 

this value, with f a natural number larger than one. Some examples: the duo D = 

{(I ,0,1),(1 ,I ,0)} is transformed to D'= { ( I  , I  ,0,0,1,1),(1 ,I ,I ,I ,0,0)} (for f = 2), or to 

D = {(1,1,1,0,0,0,1,1,1), (1,1,1,1,1,1,0,0,0)} (forf = 3), and so on. The proof, an 

immediate consequence of the way in which Lorenz curves are constructed, is 

omitted. 

As replicated arrays lead to the same Lorenz similarity curves, they are 

considered to be equivalent. This property shows that if the pattern of zeros and 

ones is not changed then the length of corresponding arrays has no influence on 

Lorenz similarity. 

Notation (zero-insensitive case for absence-presence data) 
Consider a duo D = {r,s}, with respectively lrl and Is1 (both f 0) ones, where the 

number of ones in a general array g is denoted by lgl. Assume that these arrays 



are of length N, having c ones in common. Then N = Irl + Is1 - c and, considering 

array r first, and then s, their difference array consists of (Irl - c) times the value 

~r r ' ,  c times the value (~rl-' - IS['), and (Is1 - c) times the value - IS['. 

The corresponding Lorenz similarity curve consists of three line segments (in 

general), connecting the points with coordinates (0,0), 

, (1,O) (some of these may coincide, leading to two or even one line 

segment). Note that these are the coordinates if we consider r first and then s 

(otherwise the Lorenz similarity curve connects (0,0), 

and (1,O) in this order). With this notation it is easy to see that one 

curve is symmetric to the other with respect to the line x = 0.5. If Is1 > Irl the top of 

IsI-c the Lorenz curve is situated at the point with ordinate - , otherwise the top is 
Is I 

I r l -c at the point with ordinate - , We will further denote max (Irl,lsl) by o and min 
lrI 

(Irl,lsl) by p. Then, the top, denoted as T, is situated at the point with ordinate 

I-?. The other non-end point of the Lorenz similarity curve will be called the 
a 

sub-top and will be denoted by S. Its ordinate is always equal to 1-C. If c = 0 
P 

then S coincides with T = - , I  ; if c = p, then S coincides with 0, and T = (G 1 



. If p = a (f c) then the ordinates of top and sub-top are equal, (To) 
D-c  

namely - and the Lorenz similarity curve has a horizontal line segment. 
0 

Finally, if c = p = a, then S = 0 and T = E, and we obtain the equality line. 

In order to simplify calculations we will normally, i.e. if we do not state otherwise, 

assume that Lorenz similarity curves are drawn in such a way that the abscissa 

of the sub-top is never strictly larger than the abscissa of the top. We will simply 

say that "the sub-top comes before the top". Under these assumptions the 

coordinates of sub-top and top are: 

with N = a + p - c. 

With this notation we are able to prove the following important proposition. 

Proposition 

If Lr,s > R(Lr,,,<), then L,, > Lr.,,* 

Recall that L,, and L,',,. are drawn with the sub-top before the top. 

Proof. Sub-tops and tops of L,, , L,,,,, and R(L?,,,) are denoted respectively by S,  

T, S', T ', S" and 7. Their coordinates are: 



p a - c  s = [ p ; c , y ) ( n  T ( , ] )  w i t h N Z o + P - C  

a' p ' -c '  
(10) with N' = 0' + p' - C' 

The proof is divided into several steps, 

Step 1. abscissa(S') 5 abscissa(S) 

From the fact that Lr,% > R(Lr.,=.) it follows that the absolute value of the slope of 

TE is larger than or equal to the absolute value of the slope of S"E. This means 

that 

a - c  -. p ' -c '  

a 2 P'  
P 0' 1 - 1 - 

a + p - c  o l + p ' - c '  

N N' e -2- if o #  c and p '#c '  
a P'  

As p 5 o and p' 5 o' we conclude that 



If a = c then c = p = a and L,, is the equality line, which is in contradiction with 

L,,, > R(L,>,=.) . Hence this case cannot occur. The case c' = p' will be studied in 

step 5 of the proof. 

Now, abscissa(S1) 5 abscissa(S) holds if: 

The last inequality is true by (1 1). This proves this first step. 

Step 2. The slope of the line OS' is smaller than or equal to the slope of 0s. 

N '  N 
The slope of the line 0s' is equal to -, while the slope of OS is - .  The 

P' P 

required inequality again follows from (1 1 ) 

Step 1 and 2 put together show that the point S' is situated below or on the line 

segment 0s. 

Step 3. The abscissa of T ' is larger than or equal to the abscissa of T 

P' P We have to show that: - -. This follows immediately from (1 1 ). 
N' N 

Step 4. The absolute value of the slope of T'E is smaller than or equal to the 

slope of TE. 



0 ' - c '  0 - C  - -- 

We have to prove that: a' <- 
N' N 

N'Lp'  - a . This is equivalent with I 5 - ~f a' # c' 
N-P  - -- 0 a 

N' N 

and a # c. Again this inequality follows from (1 1). We already noticed that the 

case a = c cannot occur. 

Step 3 and 4 together show that T' is situated under or on the line segment TE. 

This proves that in general L' is situated strictly under L (note that it is impossible 

that S = S' and T = T' because then L,, and R(Lr.,,,) would coincide). 

Step 5. Exceptions 

We now have a look at the exceptional cases. If p' = c' then S' = 0, and hence by 

steps 3 and 4 the proposition holds (unless maybe if a' = c'). Yet, if o' = c' then 

L,,,,, is the equality line, and again the inequality of the proposition holds strictly. 

This proposition is the crucial step of the following theorem. 

Theorem. If L,,, and L,',,, are intrinsically incomparable (where the sub-top 

precedes the top), then also L,,, and R(Lrl,,>) are intrinsically incomparable. 

This theorem implies that when studying Lorenz similarity it suffices to consider 

the case that the sub-top precedes the top, because if under these 



circumstances the Lorenz similarity curves are incomparable, then considering a 

reflected curve will not make them comparable. 

Proof. We have to show that if L,,, and L,.,,. intersect, then L,, and R(L,,,,<) also 

intersect. This statement is by contraposition equivalent with: if L,, and R(Lr>,,.) 

are intrinsically comparable then L,, and L,,,,, are intrinsically comparable. This is, 

in turn, equivalent with the expression: if L,, 5 R(L,,,,< ) or L,, 2 R(Lr,,,.) then L,, s 

Lr,,s Or Lr3,s' 5 Lr,s. 

If now L,, S R(Lr,,,. ) then L,,,,. 2 R(L,s) and the previous proposition 

implies that L,.,,. 5 L,,. If, L,, 2 R(Lr.,s.), then L,,, 2 L,~,,~ (immediately by the 

previous proposition). This proves the theorem. 

Note 

It is still possible that L,, > L,.,,, (strictly) while L,, and R(L,n,,>) are intrinsically 

incomparable. Indeed, consider the following example: 

D={r,s)withr=(1,1,1,0,0,0)ands=(0,1,1,1,1,1) 

D'= {r', s') with r' = ( I  , I  ,I ,I ,O,O) and s' = s. 

Then the coordinates of S, T, S', T', S" and T are: 



Clearly (see Fig.3) L,s > L,,,s, (strict) while L,, and R(L,,,,,) intersect. 

Fig.3 L,s > Lr,,s, (strictly) while L,,, and R(L,:,-) intersect. 

Considerations related to smallest and largest similarify 

The equality line connecting the origin 0 = (0,O) with the point E = (1,O) is 

situated under all other Lorenz similarity curves. This line corresponds to the 

equivalence class with the largest similarity. 

If the length, say N, of the keyword array is fixed, then the ordinate of the top is 

at most one, a case occurring when c = 0; its abscissa may be any of the values 

{IIN, 2lN, ..., (N-1)IN). These abscissas lead to N-I different (but pairwise 

equivalent) and intersecting curves. Consequently there is no minimum intrinsic 



similarity curve, even when N is fixed (unless N = 2), and certainly not for 

variable N. 

Theorem 
Adding one keyword to the two keyword arrays of a duo (not equivalent to the 

equality line) such that the corresponding keyword is present, strictly increases 

similarity. 

Proof. Without loss of generality we may consider the array r first and then s. 

Adding one 1 to the two N-arrays yields the following new difference array (of 

length N+l): (Irl - c) times the value ()rl+l)", c+l times the value ((lrl+l)-' - 

(~sl+l)-'), and (Is1 - c) times the value - (~sl+l)-'. 

If we assume that Is1 2 Irl then u = Is1 and p = Irl, leading to the situation 

schematically represented in Fig. 4. Using the notation S, T and S', T' as in Fig.2 

we have to show that this figure correctly (although schematically) represents the 

transformation. This is: we will show that the curve 0 - S'-T'-E is situated under 

the curve 0-S-T-E. 



Fig.4. Schematic representation (shifts are exaggerated) of the result of adding 

ones to two document representations 

The coordinates of point S are[?,?), while point T has coordinates 

( 5 , ~ ) .  After the transformation ( i e  adding ones to each array) we obtain 

p-c p-c p+ l  0 - c  
the following points: S'= . Clearly the 

abscissa of S' is smaller than that of S (unless p = c). As, moreover, the slope of 

the line segment OS', namely - N N+l  , is strictly smaller than the slope of OS, -,  
p + l  P 

(unless p = N) this proves that generally S' is situated below the line 0s. 

Further, the abscissa of T' is clearly larger than that of T, unless p = N. The 

N absolute value of the slope of TE is - (use the relation N = p + o -c) , while the 
0 

absolute value of the slope of TE' is E. This proves that T' is situated below 
o i l  



the line segment TE. Finally, we have a look at the exceptions. First, if p = c then 

S = S'= 0, while T' is still situated under TE. Finally, if p = N, then also o = c = N 

and we are dealing with the equality line, a case that has been excluded. 

Lorenz similarity functions 

Definition 
A Lorenz similarity function, f, is a real-valued function mapping a duo D to its 

Lorenz similarity value f(D). This function must, moreover, respect the Lorenz 

similarity partial order. This means that, if 

D < D' then f(D) < f(D') 
and if D and D" are equivalent then f(D) = f(D") 

In the case the function f only satisfies the requirement 

D c D' then f(D) S f(D') 

and if D and D" are equivalent then f(D) = f (D)  

then we say that f is a weak Lorenz similarity function 

These requirements imply that f({r,s)) = f({s,r)). Hence, expressing Lorenz 

similarity functions directly as functions of the difference array d, the 

requirements express that similarity functions must be symmetric, in the sense 

that f(d) = f(-d). The approach taken here is closely related to the approach we 

took when studying so-called symmetric relative concentration (Egghe & 

Rousseau, 2001 ; Rousseau, 2001). Indeed, replication invariant Lorenz similarity 

curves are the same as the Lorenz curve variant used to study symmetric relative 

concentration. Yet, when concentration increases, similarity decreases and vice 



versa. The point is that we can derive Lorenz similarity functions from the 

corresponding symmetric relative concentration functions. Recall that the ultimate 

proof that these functions respect the Lorenz similarity partial order is based on 

Egghe's general theory of concentration measures and their construction (2002). 

In order to study the Jaccard measure (and the Gini similarity measure) we first 

prove the following lemma. 

Lemma 

1 " 
The expression -- id, is equal to the area under the Lorenz similarity 

N i=l 

curve. 

Proof. The area under the Lorenz similarity curve is, using (2), equal to: 

1 
= -(dl + (2d1 + d ,  ) + (2d, + 2d, + d,) + 

2 N 
. . . + (2d1 + . . . + 2di + d,,,) + 
...+( 2d1 +...+ 2dN., +dN_,)+(d1 +d2 +...+ dN_,))  

, N-I 1 =-Z(N- j)d, - - N C d j  
N ,=I N j=, 

by (4) 



The Gini similarity measure 

One of the best known concentration measures is the Gini index (Myles, 1995). It 

is easy to derive a Gini similarity measure, denoted as Gs, from the Gini 

concentration index: 

where the dl are ranked in decreasing order. This is, by the lemma, nothing but 

one minus twice the area under the Lorenz similarity curve. This normalizes the 

Gini similarity measure in such a way that all minimal Lorenz similarity curves 

correspond to a Gini-value of zero, and the equality line has a similarity value of 

one. As shown in the next proposition, the Gini similarity measure coincides with 

the Jaccard index. Recall that in information retrieval the Jaccard index is equal 

to the number of keywords that the two items have in common, divided by the 

number of keywords used by at least one of the two items. In set-theoretic 

notation as used in the introduction of this article, it is the number of elements 

present in the intersection of sets A and B, divided by the number of elements in 

their union. Hence, with the notations introduced above, the Jaccard index J is 

equal to c/N. In citation analysis the relative co-citation (Egghe & Rousseau, 

1990, p. 240) is nothing but the Jaccard index applied to presence-absence 

citation data. 

Proposition 

The Gini similarity measure for absence-presence data is equal to the Jaccard 

index, J. 



Proof. We may assume, without loss of generality, that the array with the 

smaller number of ones is considered first. This gives: 

Consequently: 

Equality (13) shows that J is a Lorenz similarity measure as defined above. 

In order to show how other classical retrieval and overlap measures fit into the 

Lorenz framework we study the overlap measures 01 and 0 2  (Egghe & Michel, 

2002). 

Theorem 
C C 

The overlap measures O2 = - and 01 = - are weak Lorenz similarity 
0 P 

measures. 



The proof of this theorem is based on the following lemma. 

Lemma 

If sub-top precedes top then the following two statements are true: 

a) If the tops of two Lorenz similarity curves coincide then their sub-tops also 

coincide. 

b) If the sub-tops of two Lorenz similarity measures coincide then their tops 

also do, except in the case that the sub-tops are in the origin 0. 

This lemma implies that (in most cases) if either the tops or the sub-tops of two 

Lorenz similarity curves coincide then the curves themselves coincide, a rather 

surprising result. 

We first prove the lemma 

Clearly: 

p' a ' -c '  
We first show that if the tops coincide, this is ($, - - (Tic) = (F.T) (*). then 

also the sub-tops coincide. For this to hold we have to show that 

P P'  C C' ( - = (  From equality (*) we see that -=_ ,  and - = --, 
N p a  N ' p ' o  N N (T CT' 

a - C  (TI-c' - hence - - - . Dividing numerator and denominator by c (left-hand side, if 
P P'  



a a' - 1  
c # 0) and by c' (right-hand side, if c' # 0) yields L-- = d.-.- . From this equality 

P - - P' 
C c ' 

C c '  
and (*) we derive that -=: (if a # c , a' # c'). This proves that the ordinates of 

P P 

N p+o-c p'+al-c' N '  S and S' coincide. Finally, - = - - = -, showing that also the 
C C c ' c ' 

abscissas coincide. We will now consider the exceptional cases. If c = 0, then S 

= T and the ordinate of T = 1. As T = T' this implies that c'= 0, and hence also S' 

= T', and the two curves coincide. Similarly, if c' = 0, then from T'= T, we see that 

c = 0 too, and thus S = T. If a =c and a' =c', then, since c 5 p 5 a, and c' 5 p' 5 a' 

we conclude that a = p = c and o' = p' = c'. This means that we have the equality 

curve in both cases. 

p-c p-c p'-c' p'-c' If the sub-tops coincide, this is - - ( N p )=(F'T] (**), then, in 

order to prove that also the tops coincide, we again have to show that 

p-c p'-c' - ) - )  . Now from the equality -=- 
N p a  N ' p ' a  N N' 

(by "1 we 

p+a-c - p'+ol-c' - a 
derive: o' 

(if p # c, and p' # c'); hence also -= -. 
P-c p'-c' p-c p'-c' 

Dividing numerator and denominator by c (left-hand side, if c # 0) and by c' (right- 

- - 
. 0' hand side, if c' # 0) yields: C-=-&, and hence, again by ( ). -=,. This 

P P --I C C 

result, together with (**) proves that the ordinates of the tops coincide. Finally: 



N - p + a - c  p t + a ' - c '  N '  
-- - - - 

-- , proving that also the abscissas of the tops 
C C c ' C' 

coincide 

We will now consider the exceptional cases. If c = 0, then S = T and the 

ordinate of T = 1. As S = S' this implies that c'= 0, and hence also S' = T' and the 

two curves coincide. Similarly, if c' = 0, then S'= S, also c = 0 and thus S = T. If p 

= c, then S = 0, hence also S'= 0. Under these circumstances it is still possible 

that T and T' are different. An example of this situation is D ={ r = (1,1,1,0), s = 

( l , l , l , l )}andD'={r l=(l , l ,O,O),s'=(l , l , l , l )} .  He reS=S1=O,  butT=(3/4,114), 

while T'= (214,214). 

This proves the lemma 

Proof of the theorem 

Assume that D'= {r',sl} > D = {r,s}. The Lorenz curve of D (respectively D') will 

be denoted by L (respectively L'). The relation D' > D means that either L is 

situated strictly above L' or that L is situated strictly above R(L'), the reflection of 

L' with respect to the line x = 1 12 . 

If the ordinate of T (the top of the D-curve) is strictly larger than the ordinate of 

the top of D' (denoted as T') then clearly, 0 2 '  < 02. If, however, the ordinates of 

the two tops coincide, then the curves should be equivalent. Yet, it is possible 

that one Lorenz curve is situated strictly under the other while the ordinates of 

the tops coincide. This may happen when one curve has a horizontal segment. 



An example of this situation is D = {(1,1,1,1,0,0),(0,0,1,1 , I  ,I)} and D1= 

{(I  , I ,  1,0,0,0), (1,1,1,1 , I ,  1 )}. D' is strictly below D, but the ordinates of their tops 

coincide. Recall that a horizontal segment only occurs if p = a, and c # 0. This 

proves that 0 2  is only a weak Lorenz similarity measure. 

We next consider the overlap measure 0 1 .  It suffices to consider the case that 

L is situated above L' (by the theorem proved above the case that L is situated 

above R(L') must not be considered). Then the absolute value of the slope of TE 

N' N is Nla, while the absolute value of the slope of T'E is N'I a'. Then -I- 
0' 0 

p'-c' p-c  
(because L is situated above L'), and consequently -5- , or: the 

N N 

abscissa of S' 5 abscissa of S. Again, because L is situated above L', this implies 

that the ordinate(S1) < ordinate(S) . If ordinate(S1) = ordinate(S) and abscissa of 

S' 5 abscissa (S) then automatically SJ= S, and hence, by the lemma the two 

Lorenz curves coincide, unless S' = S = 0. If ordinate(S1) is not equal to 

ordinate(S), then ordinate(S') < ordinate(S), and hence 01' > 01 .  So, in general 

we can only say that D' > D implies 01' 2 Ol. This proves that the overlap 

measure 0, is a weak Lorenz similarity measure. 

The relation between retrieval and overlap measures, and Lorenz similarity 

We first show that the cases where strictly different Lorenz similarity measures 

lead to the same overlap value do not co-occur for 01 and 0 2 .  



Proposition (using the same notation as above) 

Assume that D' > (strictly) D, then either 01' > 01 or 021 > 0 2 .  

Proof. We know already that under this assumption 0 1 '  2 01 and 0 2 '  2 02.  If the 

conclusion of this proposition were not correct then 0,' = 01 and 0; = 02. Under 

c c' c C' . N N '  
this assumption ~mplying that - = _ .  Now three cases are 

P P O O  C C 

possible: 

p-c p'-c' p p '  
(1) 7 <- o-iy N '  N N  

p-c p'-c' p p' 
(11) --f- >- e->- N '  N  N '  

p-c - p'-c' p p' 
(111) - - - a-=- 

N  N '  N  N '  

In the third case S=S' and T=T', hence the curves coincide, which is excluded 

by the strict inequality D' > D. In the two other cases the Lorenz curves intersect, 

and hence we have a contradiction. This shows that it is impossible that 0,' = 0, 

and 0; = 0 2 .  This proves the proposition. 

Because we consider this to be an important result, we provide a second proof. 

The difference between the abscissas of top and sub-top is always dN,  which is 

also equal to the Jaccard index. If now D' > (strictly) D, then J' > J, and hence the 

difference between the abscissas of D' is larger than that between the abscissas 

of D. If 0; = O2 then S' must be situated to the left of S (even if T and T' 



coincide). Hence the ordinate of S' is strictly smaller than that of S, or 01' > O1. If 

0,' = 01 and from the fact that D'> D, if follows that S must be situated to the left 

of S' (or that they coincide). Then T must be situated strictly above T', or OZ1 + 

0 2 .  

Corollary 

Any average of the overlap measures 01 and 0 2  is an acceptable Lorenz (non- 

weak!) similarity measure. 

Taking the harmonic mean leads to the well-known Dice coefficient. Indeed, the 

harmonic mean of 01 and 0 2  is: 

Note that in an information retrieval context, p + o denotes the number of 

keywords in document representation r plus the number of keywords in 

document representation s; c is the number of keywords they have in common. 

The geometric mean of 0, and O2 is Salton's cosine measure: 



Hence this is also an acceptable measure in our framework. We further note 

that all basic measures of information retrieval (precision, recall, fallout and miss) 

(Egghe, 2004) can be expressed using the overlap measures 01 and 0 2 ,  but they 

are all weak similarity measures in our sense. 

Another example of an acceptable similarity measure is 

This is the adapted Simpson or Herfindahl index of the relative difference vector. 

It is related to the squared coefficient of variation, hence the notation vsZ. The 

N 

factor x d :  is equal to (P-c)+(ff-c) , hence in an information retrieval setting 
I = ~  P.U 

it can be interpreted as the number of unique keywords (keywords that are either 

unique to r or unique to s) divided by the product of the number of keywords in r 

with the number of keywords in s. In this form the adapted Simpson index has 

the drawback that if r = s the similarity value becomes +-. The similarity of 

minimal Lorenz curves tend to zero as N increases. 

We finally note that any increasing function of a Lorenz similarity function is 

again an acceptable Lorenz similarity function. 

Conclusion 



We have shown that classical measures used in information retrieval, studies of 

indexer consistency and overlap studies can be characterized by Lorenz 

similarity curves. This provides a visual, geometric picture of similarity, different 

from the geometric approach based on iso-similarity curves, as studied by Jones 

and Furnas (1987). We have shown that the Jaccard index, the Dice coefficient 

and Salton's cosine measure respect the partial order determined by these 

Lorenz similarity curves, hereby revealing new good properties of these 

important measures. Our approach explains how, at least formally, the 

information sciences can be linked to the big economic and social theories where 

the Lorenz curve and derived measures are basic tools (Atkinson, 1970; Dalton, 

1920; Myles, 1995). From a conceptual point of view the importance of such a 

relation cannot be underestimated. 
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