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Abstract

Neurons can transmit information about the characteristics of a stimulus via

the spike rate of neurons and via synchronization of the neurons. To describe

how ‘synchronous’ two spike trains are, a variety of association measures

can be used. We propose a new measure of synchrony, the conditional syn-

chrony measure, which is the probability of firing together given that at least

one of the two neurons is active. Focus is on the specification of a flex-

ible marginal model for multivariate correlated binary data together with a

pseudo-likelihood estimation approach, to adequately and directly describe the

measures of interest. A joint model must allow different time- and covariate-

depending firing rates for each neuron, and must account for the association

between them. The association between neurons might depend on covariates

as well.
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1 Introduction

Neurons in the nervous system transmit information by sequences of action poten-

tials, but the neural code used is a matter of debate. Firing rate and temporal

correlation are two of the codes the nervous system can use to transmit information

(Shadlen and Newsome 1994, Eggermont 1998). The important characteristic of

a train of spikes is the mean firing rate; this implies that the parameters of the

stimulus can be coded by adjusting the firing rate to some parameter of the stimu-

lus, and the neural response would be de-codified by counting the action potentials

(Eggermont 1998). There is evidence for association between spike rate and psy-

chophysical performance (Mountcastle et al. 1990, Newsome et al. 1989, Romo

and Salinas 1999). Alternatively, neurons can behave as coincidence detectors; they

can only fire if a reduced number of excitatory events arrive simultaneously in a

temporal scale of milliseconds (Abeles 1982, Konig et al. 1996). These temporal

coincidences are called synchronized activity and it is hypothesized that it should be

correlated to perceptual grouping of feature (Malsburg 1999, Usrey and Reid 1999,

Shadlen and Movshon 1999, Abeles et al. 1994).

The aim of this work is to develop a statistical method of analysis which allows

us to study synchrony between simultaneously recorded neurons under a variety

of conditions. Furthermore, new electrophysiological methodology allows recording

multiple neural data simultaneously. The challenge is to developed statistical tools

to study this simultaneous recorded neural activity (Brown et al. 2005). The ap-

proach presented here allows this analysis. The orientation of a line in visual space

is represented by neurons in an orientation column of the primary visual cortex (V1),

i.e., a small volume of visual cortex (Hubel and Wiesel 1969). Neurons in a given

column prefer lines with a certain orientation (i.e., orientation selectivity). Preferred
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orientation refers to the maximal firing rate of the neuron provoked by some line

orientation. Columns of preferred orientation systematically change as we move

across the visual space (Hubel et al. 1978). A long line with a particular orientation

which falls on several receptive fields, each with different orientation, would pro-

duce individual neural responses of different strengths. How does the visual system

recognize it as a single line even though the response of each neuron is different?

The neural mechanisms underlying perceptual grouping may use synchrony, and

this hypothesis suggests that neurons responding to features belonging to the same

perceptual group are synchronized such that they fire together (Singer and Gray

1995, Shadlen and Movshon 1999, Gray et al. 1989). Therefore, as a first step,

we set out to asses synchrony between simultaneously registered activities of pairs

of neurons in V1 associated with changes in the orientation of lines placed on the

neurons receptive fields during performance of a discrimination task. The use of

the discrimination task guarantees subjects’ active perception of the orientation of

a line. Our main goal is to validate our statistical approach. Later, we can use the

proposed methods to asses the influence of other behavioral variables, such as eye

movements.

Nowadays the study of multiple neural spike trains and synchrony are still in

development and constructing new multivariate statistical models to solve the prob-

lem are strongly encouraged by the physiologists’ community (Brown et al. 2005).

Conventional approaches are based on the use of cross-correlation techniques, usu-

ally applied to the activity of pairs of neurons recorded under appropriate stimulus

conditions. In this context, the basic tool is the cross-correlogram, representing a

time-averaged correlation among the spiking events of the participating neurons.

Extensions of this analysis are the Gravitational Clustering (Gerstein and Aertsen

1985) and the Joint-Peristimulus Time Histogram (Aertsen et al. 1989), which

address the dynamics of the correlation between cells on a very short time scale.

However, although the dynamics of synchronicity can be observed as a function of

time by averaging over trials, with these approaches it is not possible to analyze
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individual spike coincidences on a trial-by-trial basis.

Recent investigations have focused on the detection of individual instances of

synchronized activity between groups of two or more neurons. One of the most

commonly used methods for this task is the Unitary-Event (UE) analysis (Grün

1996, Grün et al. 1999, Grün, Diesmann, and Aertsen 2002a, 2000b, Riehle et

al. 1997). This approach allows us to ascertain the statistical significance of

brief epochs of synchronous spiking. The statistical null-hypothesis is formulated

in terms of the individual firing probabilities of the participating neurons. This

method searches recordings from multiple single neurons for epochs with distinctly

more (approximately-)coincident spikes than expected from independent neurons

obeying Poissonian spike statistics. The core of UE analysis consists of computing

the probabilities (joint p-values) for the occurrence of a given minimum number of

coincident spikes in short time segments, under the null hypothesis of independence.

Segments with a joint p-value below a fixed level of significance are identified as

significant epochs where the null hypothesis is rejected. Gütig, Aertsen and Rotter

(2002) reformulated the statistical test underlying this method using a coincidence

count distribution based on empirical spike counts rather than on estimated spike

probabilities. Recently, Kass, Ventura and Cai (2003) considered a more general

framework that could handle problems of alternative structures avoiding the as-

sumption that spike trains are Poisson processes and suggest a (simulation-based)

significance test for synchrony, in which p-values are calculated by using bootstrap

techniques.

Alternative procedures to assess synchrony were suggested recently and lie within

the general regression framework. Models for multivariate correlated binary data

can be grouped into different classes along the distinction between conditionally

specified models, marginal models and cluster-specific models. The answer to the

question which model family is to be preferred principally depends on the research

question(s) to be answered. Conditional models describe the distribution of the

outcomes conditional on (a subset of) the other outcomes. Well-known members
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of this class of models are log-linear models. Martignon et al. (2000) introduced a

log-linear model for representing firing rates on a set of neurons and showed that

nonzero coefficients or effects of these models are a natural measure for synchronous

firing. Advantages of the log-linear model are that it provides a relatively simple

representation of association: the main effect terms may be taken to be smooth

functions of time using regression splines and then the model may be fitted by using

standard software for generalized linear models. In this way, standard likelihood-

based estimation and testing of the interaction coefficients provide an assessment for

association. Generalization to more than two neurons involving two-way interactions

is easy. Higher order interactions may also be examined, and in a sense this is an

attractive feature of the approach. On the other hand there are obvious complexities

in including large numbers of terms. Another disadvantage of this approach is that

the main effect terms are not interpretable as marginal firing rates. Indeed, as

many authors have pointed out (e.g., McCullagh and Nelder 1989) the lack of

compatibility between marginal models and joint models is a general feature of

loglinear models.

So far, non of the existing methods included trial-specific covariates to assess

their possible effect in the individual firing rates of the neurons involved or in their

synchrony. In this paper, we will consider an alternative approach based on a

marginal model for multivariate correlated binary data. This model was designed to

(i) describe the individual activity of the neurons involved and (ii) detect correlations

of any order in a unified way. This method allows to jointly analyze the firing rates

of the individual neurons as well as the synchrony between the neurons. Both

the temporal evolution, as well as trial-specific covariates, can be investigated in a

flexible way. In addition, the extension to more than two neurons is also possible.

The paper is structured as follows. Section 2 introduces the electrophysiological

experiment. In Section 3 we describe some measures of synchrony that are used

in the literature and offer a new methodology to measure the neuronal synchrony.

Section 4 discusses specific and general issues in modelling the data. In Section 5,
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Figure 1: Temporal sequence of the discrimination task.

specific tools for analysis will be exemplified.

2 The Experiment

Experiments were carried out on a male monkey (Macaca mulatta). The exper-

imental set-up, description of the stimuli, and behavioural tasks are described in

detail elsewhere (Vazquez et al. 2000). The monkey looks binocularly at a monitor

screen placed at 114 cm from their eyes. He has his head fixed during the task,

and his right arm operated a lever. A panel with three buttons was in front of the

monkey within hand reach. Right and left buttons were used in the discrimination

tasks to signal the orientation of the visual stimuli to the right and to the left,

respectively. The monkey used the third button in the eye fixation task to signal

the tilt of the fixation bar. The eye fixation task is use to calibrate the set up

and to map the visual receptive fields. The stimuli were stationary bright lines.

Three different reference orientations were used: 85◦, 90◦, and 95◦. Different test

lines, 8 per reference stimulus, were presented clockwise and counter-clockwise to

the reference line in steps of 1◦. The stimuli, oriented lines, were presented in the

center of the monitor screen. During the trial, This is an area of current interest

for the authors eye movements larger than 2.5◦ aborted the task. A masking white
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noise signaled the beginning of the trial, and was initiated with the presentation of

the fixation target when the monkey pressed the lever key with his free hand (FT,

Figure 1). The FT disappears through a variable pre-stimulus delay (600-900 ms),

and then, two stimuli (reference and test), each of 500 ms duration, were presented

in sequence, with a fixed interstimulus interval (ISI, 1s). At the end of the second

stimulus, the subject released the key (KU) and pressed one of the two buttons,

indicating whether the orientation of the second stimulus was clockwise or counter-

clockwise to the first (PB). Monkeys were rewarded with a drop of liquid for correct

discriminations.

The activity of neurons in the primary visual cortex were recorded simultaneously,

through the insertion of different micro-electrodes into the monkey’s brain, while the

monkey performed the visual discrimination task. To study the synchrony between

cell pairs the analysis was restricted to the effect of the three reference stimuli (500

ms). The 200 ms before the reference stimulus comes on can be taken as control

(baseline cell activity), due to the fact that during this period there was no visual

stimulus whatsoever. Another period of 200 ms out of the 1000 ms of the Inter-

Stimulus Interval (ISI) was also taken as control, i.e., recovery of the cell activity.

We emphasize the fact that subjects can only solve the discrimination task by paying

attention to both stimuli in each trial. In fact, when in the discrimination task the

first stimulus is not shown, humans and monkeys cannot solve the task (Hernandez

et al. 1997, Vazquez et al. 2000). This indicates that subjects cannot anticipate

the orientation of the stimulus. Per trial, every action potential is recorded during

these 900 ms, resulting in 900 binary outcomes. We examine data from 19 trials,

with stimuli at different orientations.

Figure 2 shows the raster plots and peri-stimulus time histograms (PSTHs) of

the neuron 1 (top) and neuron 2 (bottom) simultaneously recorded through two

independent electrodes 305 microns apart while the monkey performs the discrimi-

nation task. On the time axes, 0 ms corresponds to the appearance of the stimulus

and 500 ms to the removal of the stimulus. The raster plot shows the spike trains

7



Time (ms)

T
ria

l N
um

be
r

-200 0 200 400 600

5
10

15

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+
+

+
+

+
+

+
+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
+

+

+

+

+

+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+
+

++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+

+
+
+

++

+

+

+

+

+

+

++

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+
+

+

+

+

+

+
+
+

+
+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+
+
+

+

+

+

+

+
+

+
+

+

+
+
+

+

+

+

+

+
+
+
+
+

+

+

+
+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

+
+
+

+

+

+
+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+
+
+

+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+
+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+
+
+

+

+

+

+

+

+
+

+
+

+

+
+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+
+
+
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+
+
+

+

+

+
+

+
+
+

+

+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+
+

+

+
+

+
+

+

+

+

+
+
+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+
+
+

+
+
+

+

+

+
+

+
+

+

+
+

+
+

+

+

+

+
+

+

+
+

+

+
+
+

+
+
+

+
+

+

+

+

+
+

+
+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
+

+

+
+

+

+

+

+
+
+

+

+

+

+

+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+
+

+
+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+
+

+

+
+
+

+

+

+

+
+

+
+

+

+

+
+

+
+

+
+

+

+

+
+

+

+
+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+
+

+
+
+

+

+

+

+

+
+

+
+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+
+
+
+
+
+

+
+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+
+

+
+
+
+

+
+

+

+
+

+

+
+

+

+

+

+
+

+

+
+

+
+
+

+

+

+

+
+
+

+

+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+
+
+

+
+
+
+

+
+
+
+

+
+

+
+

+
+

+

+
+

+
+

+

+
+

+
+

+

+
+

+

+

+
+

+

+
+
+
+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+
+

+
+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+
+

+
+
+
+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+
+
+

+
+

+
+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+
+
+

+
+
+
+

+

+

+

+
+
+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+
+
+

+

+

+

+

+
+

+
+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+
+
+

+

+
+

+

+
+
+

+
+
+

+

+

+

+

+
+
+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+
+
+

+

+

+
+

+
+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

++

+

+
+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
+
+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+
+

+
+

+

+

+

+
+
+
+
+

+

+

+
+

+

+

+

+

+

+
+
+

+

+
+
+

+

+

+

+
+
+

+

+

+

+
+

+
+
+

+
+

+

+

+

+

+
+

+

+

+

+
+
+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+
+

+
+
+

+

+
+
+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+
+
+

+

+

+
+
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+
+

+

+

+

+

+

+

+
+
+

+
+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+
+

+
+

+

+
+

+

+
+

+

+
+

+

+
+
+

+

+
+

+
+
+

+

+
+

+

+
+

+

+
+

+

+

+

+
+
+

+

+
+
+

+
+

+
+

+

+

+

+

+

+

+
+
+

+

+
+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+
+

+
+
+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+
+
+
+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+
+
+
+

+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+
+
+
+
+

+

+
+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+
+

+

+
+
+
+
+

+
+

+

+
+
+
+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+
+
+

+

+

+
+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+
+
+

+
+

+

+

+
+

+

+

+

+
+
+
+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+
+

+

+
+

+

+
+
+
+

+

+
+
+

+

+

+

+

+
+

+
+

+
+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+
+
+

+

+

+
+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

+
+
+

+

+

+

+

+
+
+
+
+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+
+

+

+
+
+
+

+

+

+

+

+

+

+
+

+

+

+
+

+
+
+

+

+

+

+

+
+

+

+

+
+
+

+

+

+
+

+

+
+

+

+
+
+

+

+

+
+
+

+

+
+
+

+

+
+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+
+
+

+
+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+
+
+
+

+
+
+
+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

+

+
+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+
+

+
+
+

+

+

+

+

+
+

+
+

+
+
+

+
+
+

+

+
+

+

+

+
+
+

+

+

+
+

+
+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+
+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+
+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+
+

+

+

+

+
+

+

+

+

+

+

+
+
+
+
+
+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+
+

+

+
+
+

+
+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+
+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+
+
+
+

+
+
+

+

+

+
+

+

+

+
+

+
+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+
+

+

+
+
+
+

+
+

+

+

+

+

+
+
+
+

+

+

+

+

+

+
+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+
+

+
+

+

+

+

+
+

+

+
+

+
+

+

+

+
+
+

+

+
+

+

+

+
+
+

+

+

+

+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+
+
+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+
+
+

+

+

+
+
+
+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+
+

++

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+
+

+
+

+

+
+
+

+

+

+

++

+
+

+

+
+

+

+

+

+

+
+
+

+
+
+
+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+
+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+
+

+

+

+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

Time (ms)

F
iri

ng
 R

at
e

-200 0 200 400 600

0 

100   

200   

300   

Time (ms)

T
ria

l N
um

be
r

-200 0 200 400 600

5
10

15

++

+

+

+

+
+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+
+

+
+

+

+

+

+
+

+

+
+

+

+

++

++
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+
+

+

+

++

+

+

+
+
+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+
+

+

+
+
+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+
+

+
+

+

+
+

+
+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+
+

+
+
+

+

+

++

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+
+

+
+
+

+

+

+

+
+
+
+

+
+
+
+

+
+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+
+

+

+

+

+

+

+
+

+

+
+
+

+

+
+

+

+

+

+

+

+

+
+

+

+
+
+

+

+
+

+

+
+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+
+

+

+

+

+

+

+
+
+

+
+
+
+

+

+

+

+

+
+

+

+

+

+
+
+

+
+

+

+

+
+
+

+

+
+
+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+
+

+
+
+

+
+

+

+

+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+
+
+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+
+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+
+

+
+

+
+
+
+
+

+

+
+

+

+

+
+
+

+
+

+
+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+
+

+
+

+
+
+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+
+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

+
+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+

+

+
+
+
+

+
+
+

+

+

+

+

+

+
+

+

+
+

+

+
+
+

+

+

+

+

+
+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+
+
+

+

+
+
+

+

+
+

+

+
+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+
+

+

+
+
+

+

+

+
+

+

+

+

+
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+
+

+

+
+

+
+
+
+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+
+
+

+
+

+

+

+
+

+

+

+
+
+

+

+

+
+
+
+

+

+

+
+
+
+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+
+

+
+
+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+
+

+
+

+

+

+

+

+
+
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+
+
+

+

+

+
+

+
+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+
+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+
+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
+
+

+
+
+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+
+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+
+
+
+

+

+

+
+
+
+

+
+

+

+

+

+
+
+

+

+

+

+
+

+

+

+
+

+

+

+
+
+
+

+

+

+

+

+
+

+

+
+

+
+
+

+

+
+

+
+

+

+

+
+

+
+

+

+

+
+

+

+
+

+
+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+
+

+
+
+

+

+
+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
+

+

+

+
+
+

+

+
+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
+

+
+

+
+
+

+

+

+
+

+

+

+

+

+
+
+

+
+

+

+
+
+

+

+

+
+

+

+

+

+

+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+
+
+

+
+
+

+
+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

++

+

+

+

+
+

+
+

+

+

+

+
+
+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+
+

+

+

+
+

+

+

+
+
+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+
+
+
+
+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+
+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+
+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+
+
+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+
+

+
+
+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+
+

+
+

+

+

+
+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+
+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+
+

+
+

+
+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+
+

+
+

+

+
+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+
+

+

+

+
+

+

+
+
+

+
+
+
+
+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+
+

+

+

+
+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+
+
+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+
+
+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+
+

+

+
+
+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+
+

+
+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

Time (ms)

F
iri

ng
 R

at
e

-200 0 200 400 600

0 

100   

200   

300   

Figure 2: Raster plot (left) of spikes and corresponding peristimulus time his-

togram (right) with smoothed (kernel) version of the counts for neuron 1 (top)

and neuron 2 (bottom).

for each of the trials on separate lines. Trial numbers 1 to 7 correspond with a ref-

erence line of 85◦, trial numbers 8 to 14 with an orientation of 90◦, and in trials 15

to 19 a reference line of 85◦ was shown. The peristimulus time histogram (PSTH)

displays the firing rate, i.e., the number of spikes per second. The firing rate is

calculated in 10 ms bins and averaged over all trials. The solid curve is a smoothed

version of the counts obtained with a kernel density estimator. After the appearance

of the stimulus, the intensity of spikes increases rapidly up to some maximum, and

then remains high. After removal of the stimulus, the intensity of spikes gradually

drops back. The intensity of spikes in the first neuron is higher than in the second

neuron.
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Table 1: A contingency table of the number of matches and mismatches for two

neurons at a certain time point.

Neuron k

1 0 Totals

Neuron i
1 n11 n10 n11 + n10

0 n01 n00 n01 + n00

Totals n11 + n01 n10 + n00 N = n11 + n10 + n01 + n00

3 Measures of Synchrony

Synchrony refers to the observation that action potentials emitted from different

neurons are emitted at the same time, or very close in time. In this paper, two

neurons are considered to discharge in synchrony if they fire together in a 1 ms

window. However, methods can easily be extended to less precise coincidences.

First, focus is on the synchrony of two neurons only. Later, an extension of the

methodology to more than two neurons is proposed. To describe how ‘synchronous’

two spike trains are, a variety of methods can be used. Let us first introduce the

necessary notation.

Let Yit be the binary outcome of the ith neuron at time t, for t = 1, 2, . . . , T .

The frequency of matches and mismatches over the different trials for neurons i

and k at time point t can be written in the form of a contingency table, such as

displayed in Table 1. In this table, n11 represents the frequency of 1 − 1 matches

(at time t), n10 is the frequency of 1 − 0 matches, and so forth. The matching

rate for neuron 1 and neuron 2 at different time points are pictured in Figure 3.

The probability of coincidence increases rapidly after appearance of the stimulus

and decreases gradually after removal of the stimulus. Note however that one has

to be careful in interpreting the increase in the number of synchronous events,

since a certain number of synchronous events would always occur due to purely

9
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Figure 3: Raster plot (left) of spike coincidence of neuron 1 and 2, and cor-

responding joint peristimulus time histogram with smoothed (kernel) version of

the counts (right).

random coincidence. In the next section, we give an overview of possible synchrony

measures.

3.1 Odds Ratio

One possible measure for synchrony is the odds ratio, indicating the association

between two neurons. The odds ratio is often a measure of choice to capture the

association in a contingency table. The odds ratio at time t is defined as

ψ(t) =
n11n00

n10n01
=
π11(t)

[
1 − π1+(t) − π+1(t) + π11(t)

]
[
π11(t) − π1+(t)

][
π11(t) − π+1(t)

] , (3.1)

with π11(.) the joint probability of 2 neurons to fire and π1+(.) and π+1(.) the

marginal probabilities to fire. Using this relationship, the joint distribution of neuron

1 and 2 can be written as function of the marginal probabilities and the odds ratio

(Plackett 1965):

π11(t) =





1+[π1+(t)+π+1(t)][ψ(t)−1]−R(π1+(t),π+1(t),ψ(t))
2[ψ(t)−1] , if ψ 6= 1,

π1+(t)π+1(t), otherwise,
(3.2)

with

R(π1+, π+1, ψ) =
√

[1 + (π1+ + π+1)(ψ − 1)]2 + 4ψ(1 − ψ)π1+π+1. (3.3)
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Figure 4: Plot of odds ratio (left panel) and dependence ratio (right panel)

between neuron 1 and neuron 2.

The Plackett-Dale distribution has been used extensively in the modelling of many

biomedical applications. For example, it turned out to be very useful in the mod-

elling of clustered binary data together with a pseudo-likelihood estimation approach

(Geys, Molenberghs, and Lipsitz 1998).

A plot of the odds ratio as function of time between neuron 1 and 2 is given

in the left panel of Figure 4. All values are higher than 1, indicating a positive

association between the two neurons. But, in contrast with the probability of joint

firing, there is a decrease at the start of the stimulus, and a small increase at the

end of the stimulus. The elevated odds ratios before the appearance of the stimulus

might be explained by the low activity rate, or high number of 0 − 0 matches, in

this time interval (Figure 2). Note however that synchrony is a process defined

as happening only during activity of the neurons. Thus, although the odds ratio

is an attractive association measure, with nice mathematical properties, such as

the absence of range restrictions, regardless of the marginal probabilities, it is less

suitable to quantify synchrony due to its symmetry, treating 0− 0 matches of equal

importance as 1 − 1 matches. Ideally, the fact that a 0 − 0 match is a less strong,

or even no, indication for synchrony should be reflected in the measure to be used.
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3.2 Dependence Ratio

As an alternative, synchrony can be measured as the proportion of observed number

of synchronous events to the expected number from two independent stochastic

processes. This measure expresses to which extent the probability of having a

spike simultaneously for two neurons is different from the product of the marginal

probabilities. This idea was exploited by several authors (Gütig, Aertsen and Rotter

2002, Grün et al. 1999, Riehle et al. 1997).

Based on the same idea, Ekholm (1995) defined the dependence ratio as

τ(t) =
π11(t)

π1+(t)π+1(t)
. (3.4)

It is easy to see that (τ − 1) × 100 indicates the increase (as %) in probability for

both neuron 1 and neuron 2 to have a spike, compared to what it would be under

independence; that τ = 1 if and only if neurons 1 and 2 are independent; and that

the following relationship between τ and ψ holds:

ψ =
τ − 1

(1 − τπ1+)(1 − τπ+1)
+ 1. (3.5)

In Figure 4, the dependence ratio between neurons 1 and 2 is depicted. The

τ -curve is almost identical to the plot of the odds ratio. There is a downwards shift

of about 0.2. Similar to the odds ratio, it seems that the dependence ratio is highly

affected by the small number of spikes at the start and end of the experiment. Fur-

ther, note that when neurons are dependent, they are not necessarily in synchrony.

For example, consider two neurons with the following spikes during several trials:

neuron 1: 110011101001,

neuron 2: 001100010110.

These neurons are asynchronous (none of the events collapse), although the neurons

are dependent (π11 6= π1+π+1). Thus, one should be cautious with the use of

independence as a basis for a measure of synchrony.

12



Table 2: Some Possible Similarity Measures in Terms of Frequencies.

Measure Rationale

n11
n11+n10+n01

No 0−0 matches in numerator or denominator. The 0−0 matches

are treated as irrelevant.

2n11
2n11+n10+n01

No 0 − 0 matches in numerator or denominator. Double weight

for 1 − 1 matches.

n11
n11+2(n10+n01)

No 0 − 0 matches in numerator or denominator. Double weight

for unmatched pairs.

n11
n10+n01

Ratio of matches to mismatches with 0 − 0 matches excluded.

3.3 Conditional Synchrony Measure

A measure of synchrony is to be regarded as a specific measure of ‘closeness’, or

‘similarity’, and should treat a 1−1 match as a stronger indication of similarity than

a 0 − 0 match. Indeed, the evidence that two neurons react is stronger evidence

of synchrony than the absence of a spike in both neurons. Thus, it might be

reasonable to discount the 0 − 0 matches or even disregard them entirely. Table 2

lists some similarity measures in terms of the frequencies. The first three measures

are monotonically related (Johnson and Wichern 1989, p. 732–733). The different

measures of similarity are pictured in Figure 5. These plots all give the same idea

of synchrony. After the stimulus is given, there is an increase in synchrony. After

the end of the stimulus, there is a decrease.

One possible appealing measure of synchrony, which could be used in the context

of neuronal synchrony, is the first one from Table 2. The main advantage is the

absence of the nuisance (0, 0) pairs. The conditional probability of firing together,

given there is a spike in one of the neurons, could be used to measure the ‘strength’

of synchrony. This measure, which we call the Conditional Synchrony Measure

13
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Figure 5: From left to right and from top to bottom: a plot of similarity measures

proposed in Table 1, for neuron 1 and neuron 2.

(CSM), reflects how much the neurons fire together during activity in one of the

two neurons. It can be written as a function of the joint probability of firing and

the two marginal probabilities:

CSM(t) =
π11(t)

π1+(t) + π+1(t) − π11(t)
, (3.6)

estimated by

ĈSM(t) =
n11

n10 + n01 + n11
. (3.7)

The CSM has an easy to understand interpretation, and is based on the definition

of synchrony. The top left panel in Figure 5 shows a plot of the CSM for neurons 1

and 2. This plot shows an increase of synchrony after the stimulus, and a decrease

of synchrony after the end of stimulus.

In what follows, we will use the CSM as a measure of synchrony. A few remarks

14



are in place. First, by developing this measure further, we do not claim it is the

only one of interest, and other choices from Table 2 are worthy of exploration as

well. However, due to the monotonic relationship between the first three, it is

sufficient to consider a single one. Second, the asymmetry comes at the price of

range dependence of the CSM on the marginal probabilities, unlike the odds ratio.

Note, however, that even the Pearson correlation coefficient in the case of two

binary outcomes cannot attain its full range [−1, 1]. In Section 4, a model based on

the conditional probability is described, and is combined with a pseudo-likelihood

estimation method. Section 5 describes the analysis of the experiment.

4 Model Formulation and Pseudo-likelihood

4.1 The Model

Suppose that for each neuron i (i = 1, 2) under study a set of binary responses

{Yit, t = 1, . . . , T} is observed, together with a vector of covariates x. Assume that

observations at different time points are independent for now. Later, in Section

4.2, their dependence will be incorporated in the analysis. We want to establish

the dependence of each of the two neurons on the covariate vectors, taking the

correlation between both responses into account.

The model arises from the decomposition of the joint probabilities

πj1j2(t) = P (Y1t = j1, Y2t = j2|x), (j1, j2 = 0, 1), (4.1)

into ‘main effects’ and ‘effect of synchrony’. Let the marginal probabilities of neu-

rons 1 and 2 at time t be π1+(t) and π+1(t), respectively. The Conditional Syn-

chrony Measure, or conditional probability of observing two spikes at time t, given

there is a spike in at least one of the two neurons, as defined in (3.6). Formally, the

15



decomposition of the joint probabilities πj1j2 is given by

h1

(
π1+(t)

)
= βT1 x,

h2

(
π+1(t)

)
= βT2 x,

h3

(
CSM(t)

)
= βT3 x,

(4.2)

with h1, h2, and h3 monotonic differentiable functions. As such, the marginal

structure can be modeled in a flexible fashion: the marginal probabilities can be

fitted within the generalized linear models framework. And also the synchrony can

be modeled in a general way, including time-varying covariates as well as trial-specific

covariates.

Solving these equations for the joint probability πj1j2(t) yields:

π11(t) =
CSM(t)

1 + CSM(t)
[
π1+(t) + π+1(t)

]
. (4.3)

Based upon this probability, we can derive the joint density function

g(y1t, y2t) =





π11(t) if y1 = 1 and y2 = 1,

π1+(t) − π11(t) if y1 = 1 and y2 = 0,

π+1(t) − π11(t) if y1 = 0 and y2 = 1,

1 − π1+(t) − π+1(t) + π11(t) if y1 = 0 and y2 = 0.

(4.4)

Sometimes, interest is in the synchrony of three or more neurons, or in the

probability of joint firing of three or more neurons. The above model can be gener-

alized to model M neurons simultaneously in the presence of explanatory variables

x. Let {Yit, t = 1, . . . , T} be the random vector for neuron i (i = 1, 2, . . . ,M).

Let πj1,j2,j3(t) be the joint probability

πj1j2j3(t) = P (Y1t = j1, Y2t = j2, Y3t = j3|x), (4.5)

with j1, j2, j3 equal to 0 or 1. The synchrony of 3 neurons can be defined as the

conditional probability of joint firing in the three neurons, given there is activity in

at least one of the neurons

CSM123(t) =
π111

π1++ + π+1+ + π++1 − π11+ − π1+1 − π+11 + π111
, (4.6)
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where all probabilities depend on the time t. Using this equation, one can rewrite the

joint probability as function of the ‘main effects’, ‘synchrony between two neurons’

and ‘synchrony between three neurons’:

πj1j2j3 =
CSM123

1 − CSM123

[
π1++

1 − CSM12CSM13

(1 + CSM12)(1 + CSM13)

+π+1+
1 − CSM12CSM23

(1 + CSM12)(1 + CSM23)
+ π++1

1 − CSM13CSM23

(1 + CSM13)(1 + CSM13)

]
.

To simplify notation, we ignored the time-dependency in the above equation. As

such, one can jointly investigate the firing rates in the three neurons and test the

synchrony between three neurons. A generalization to more than three neurons is

also possible.

4.2 Pseudo-likelihood Estimation Method

Arguably, observations at different time points are not independent. Three different

types of associations, depicted in Figure 6, can be present: the association between

two different time points from the same neuron (ω), the association between two

neurons at the same time point (δ), and the association between two neurons at

two different time points (γ). Although there is only one association of direct

interest, namely the association between two neurons at the same time point, the

other associations cannot be neglected. Indeed, ignoring the associations in the

data overestimates precision and hence underestimates standard errors and lengths

of confidence intervals. One can treat such associations as a nuisance, correcting

for them to obtain suitable variance estimates. In such a case, we can use pseudo-

likelihood, rather than considering full likelihood. The pseudo-likelihood approach

was proposed by Arnold and Strauss (1991), and studied in Connolly and Liang

(1988), Liang and Zeger (1986), le Cessie and Van Houwelingen (1994) and Geys,

Molenberghs and Ryan (1997). In addition, the pseudo-likelihood method provides

a way to deal with nuisance parameters. Details of the pseudo-likelihood approach

are given in the appendix.
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Figure 6: Four different types of contributions for the pseudo-likelihood (for a

fixed trial).

The principal idea of the pseudo-likelihood estimation method is to replace the

numerically intractable joint density by a simpler function that is a suitable product

of ratios of likelihoods of subsets of the variables that do not necessarily multiply

to the joint distribution. The full likelihood function for trial j (j = 1, . . . , N), i.e.,

fj(y11j , . . . , y1Tj , y21j , . . . , y2Tj), can be replaced by

p`j =
N∑

j=1

ln g(y1tj , y2tj), (4.7)

where the index j indicates the outcomes of trial j. As such, we avoid the com-

putational complexity of the full likelihood distribution of each trial. The value of

the parameters that maximize the log pseudo-likelihood function p` =
∑N

j=1 p`j

are the pseudo-likelihood estimates.

Arnold and Strauss (1991) presented a formal and more general definition of

the pseudo-likelihood estimation method, and established consistency and asymp-

totic normality of the pseudo-likelihood estimator. Geys, Molenberghs and Lipsitz

18



(1998) compared pairwise likelihood with other estimation equation approaches in

marginally specified odds ratio models with exchangeable association structure, and

showed that the efficiency of pseudo-likelihood estimators was comparable to the

efficiency of GEE estimators. Further, in order to perform a flexible model selection,

one would need extensions of the Wald, score or likelihood ratio test statistics to

the pseudo-likelihood framework. These were proposed by Geys, Molenberghs and

Ryan (1997).

4.3 Test for Synchrony

A possible information processing strategy in the nervous system is the use of syn-

chrony between neurons. In this mechanism, the selection of specific sensory infor-

mation is implemented by increasing the synchrony between neurons that represent

the information. Therefore, it is of interest to test whether there is an increase of

synchrony during the task.

A sensible approach is to compare the CSM during the experiment with the

CSM at baseline (CSM0):

H0 : CSM(t) = CSM0. (4.8)

The period before the stimulus comes on (time −200 ms until −1 ms) can be used

to estimate the baseline cell activity. The condition to be checked is very simple: is

the ĈSM(t) different from the estimated baseline ĈSM
0
.

Often however, one thinks about synchrony in terms of the probability of joint

firing. But, as mentioned before, one needs to be careful in interpreting the mech-

anisms of joint firing. We cannot just compare the joint firing rate with the back-

ground firing rate, to test whether there is an increased or decreased synchrony

between two neurons. Indeed, an increase of joint firing might be induced by an

increase of synchronous action potentials or might be a byproduct of the increased

firing rates. Yet, we can translate the above test hypothesis for synchrony in terms

of a test on the joint firing probability. Assume the stimulus has no effect on the
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Conditional Synchrony Measure, and is equal to the background CSM0. Then, the

probability of joint firing at time t, under the null hypothesis of a constant CSM,

equals

πH0
11 (t) =

CSM0

1 + CSM0

[
π1+(t) + π+1(t)

]
. (4.9)

By comparing this joint probability πH0
11 (t) with the true probability of joint firing

π11(t), one can test whether the increase of joint firing is due to an increase of

synchronous action potentials. The null hypothesis, in terms of the probability of

joint firing, is

H0 : τ(t) = π11(t) − πH0
11 (t) = 0. (4.10)

Using the delta method, the confidence bounds of τ(t) under the null are determined

by

τ̂ (t) ± z1−α/m

√
V̂ar

(
τ̂ (t)

)
, (4.11)

and the variance of the joint probability of firing is estimated as

V̂ar
(
τ̂ (t)

)
=

(∂τ(t)
∂β

)T
Ĉov(β)

(∂τ(t)
∂β

)∣∣∣
β=β̂

, (4.12)

with Ĉov(β̂) the estimated covariance matrix of β̂. At each time t, one can decide

that there is a significant increase in synchrony if 0 lies out of the confidence bands.

Since multiple comparisons are of interest in this situation (one test for each time

point), the Bonferroni method can be used. Here, the use of α/m is recommended

instead of α, with m the number of comparisons to be made. This test reveals

excess -positive or negative- in synchrony provoked by the stimulus or any other

behavioral condition. This is an interesting test which allows us to compare and

quantify levels of synchronization between different situations at different moments,

e.g., control (absence of stimulus) versus presence of stimulus. This methodology

will be illustrated in the next section.

Note that other test can be of interest as well. One could be interested in

testing whether the CSM stays equal to the ‘independent’ CSM, given that the

20



marginal probabilities of firing change. The independent CSM has to be calculated

under the assumption π11 = π1+π+1. This test removes the effect of the stimulus on

synchronization. Therefore, this test complements the previous described because it

compares the CSM based on the real data to CSM under an independent hypothesis.

However, it could reveal correlation induced by changes in neurons firing rate but

not due to synchrony.

5 Data Analyses

In neurophysiology, interest is in the temporal evolution of the firing rate and the

synchrony between certain neurons, both being important neural mechanisms to

transmit information about the characteristics of a stimulus. Further, one wants to

investigate the effect of the stimulus properties (in this case, different orientations

of the stimulus) on the firing rate and synchrony.

5.1 Time Course

As a first application of the model, we jointly investigate the temporal structure of

spike trains and spike coincidences of neurons 1 and 2. Flexible models to describe

the time trends are needed. For both the marginal probabilities as well as the

synchrony, the model will be fit in a generalized linear models framework

logit
(
π1+(t)

)
= f1(t), (5.1)

logit
(
π+1(t)

)
= f2(t), (5.2)

logit
(
CSM(t)

)
= f3(t), (5.3)

with f1(t), f2(t) and f3(t) some functions of time. Any flexible and parsimonious

model for f1(t), f2(t), and f3(t) could be chosen. We investigated both a parametric

and a semi-parametric method: first a parametric polynomial with an orthonormal

basis on f1(t), f2(t) and f3(t) was chosen, then a semi-parametric piecewise cubic

spline f1(t), f2(t) and f3(t) was considered. As a model selection criterion, we
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Table 3: A description and comparison of models. The pseudo-likelihood value is

displayed, together with the number of parameters in the model and the pseudo-

likelihood AIC value.
Model Description degree p` # par AIC

1 orthonormal polynomials 5 -16661.13 18 -16679.13

2 orthonormal polynomials 10 -16623.70 33 -16656.70

3 piecewise-cubic splines 5 -16646.77 18 -16664.77

4 piecewise-cubic splines 10 -16604.55 33 -16637.55

suggest to use the pseudo-likelihoodAIC = p`−r, with r the number of parameters

in the model. Larger values of AIC indicate a better fitting model. A summary of

model fit is given in Table 3. In addition, pseudo-likelihood ratio tests comparing

Model 2 with Model 1 (G2
a = 72.08, p-value< 0.0001) and comparing Model 4 with

Model 3 (G2
a = 93.47, p-value< 0.0001) are conducted. The piecewise-cubic spline

of degree 10 seems to give the best fit. The estimated firing rate of a spike, i.e.,

the number of spikes per second, and the conditional synchrony measure, based on

the piecewise cubic spline of degree 10, are shown in Figure 7 (solid line). The

smoothed observed rates are represented by the dotted line. The natural spline

model closely follows the observed rates, providing extra strength to believe the

analysis.

Based on this model, several quantities of interest can be investigated. Both

the firing rates in the two neurons, as well as the firing synchrony change during the

discrimination task. Reactions on the stimulus are reflected in growing firing rates

and increasing synchrony between the two neurons. After removal of the stimulus,

the firing rates of both neurons and the synchrony drops back to the initial state.

The maximal firing rate of neuron 1 appears 125 ms after the start of the stimulus,

with a firing rate of 0.31. The maximal firing rate of neuron 2 appears already at

100 ms after the start of the stimulus, with a firing rate of 0.27.
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Figure 7: Model 1. The top panels present the estimated firing rate for neuron 1

and 2, respectively. The bottom panel presents the estimated synchrony between

neurons 1 and 2.

To test whether the neurons are firing in synchrony, we use the test as proposed

in Section 4.3. In the left panel of Figure 8, the joint firing rates (per second) under

the null and alternative hypothesis are displayed. The full line is the estimated joint

firing rate in the experiment. The dotted line represent the joint firing rate based

on the baseline CSM. The joint probability of firing, under the null hypothesis of a

constant conditional synchrony measure CSM=CSM0 changes over time, due to the

varying firing probabilities of the two neurons individually. To test for synchrony, we

compare the true probability of joint firing with the null hypothesis of joint firing

with a background CSM, as displayed in the right panel of Figure 8. The bold line

is the estimated difference in the probability of joint firing. The 95% confidence
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Figure 8: Test for synchrony. Left: test based on the conditional synchrony

measure. Right: test based on the probability of joint firing.

bounds (grey band) and Bonferonni corrected confidence bounds (dotted lines) are

displayed. By comparing the confidence bounds with 0, one can see that there is

a there is a significant increase of synchrony almost immediately after the stimulus

is shown (after 53 ms), which disappears again at 11 ms after removal of the

stimulus. Note however that the Bonferroni method is highly conservative and may

miss real differences, since the multiple tests are possibly highly correlated. Further,

since the marginal probabilities and the association are freely varying, none of the

methods developed for specific cases will apply (Hochberg and Tamhane, 1987).

Since we believe that no off-the-shelf methods are available, we will consider both

the corrected and uncorrected confidence bounds. This allows us to draw some first

conclusions. However, the issue of multiple testing is important and needs more

research.

5.2 Orientation

The orientation of the stimulus (85◦, 90◦ or 95◦) can have an important effect on

the firing rate and on the synchronization of the neurons. One goal of this study

is to quantitatively determine and formally compare how the temporal patterns of

neuronal activity are affected by the different orientations of the stimuli.
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Figure 9: Model 2. The top panels present the estimated firing rate of neuron 1

and 2, respectively. The bottom panel presents the estimated synchrony between

neurons 1 and 2.

Consider a model with inclusion of the orientation α:

f(t, α) =
(
β1 +

5∑

i=1

β1+if1(t)
)

+
(
β7 +

5∑

i=1

β7+if2(t)
)
Iα=85

+
(
β13 +

5∑

i=1

β13+if3(t)
)
Iα=95, (5.4)

where Iα=85 and Iα=95 are dummy variables corresponding to orientations of 85◦

and 95◦, respectively, and f1(t), f2(t), and f3(t) natural splines in time t of degree

5. Results are presented in Figure 9. The solid line corresponds to 90◦, the dotted

line with 85◦, and the dashed line with 95◦. The firing rates in neurons 1 and 2

are slightly different for stimuli with orientations of 85◦ or 95◦, but they are quite
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Table 4: Pseudo-likelihood ratio test statistic G2
a and corresponding p-value for

all pairwise comparisons on π1+, π+1, CSM and on the overall effect.

Comparison π1+ π+1 CSM

85◦ = 90◦ 25.58 (<0.001) 21.06 (0.002) 19.49 (0.003)

95◦ = 90◦ 17.08 (0.009) 20.03 (0.003) 7.76 (0.256)

85◦ = 95◦ 4.59 (0.597) 5.05 (0.538) 1.44 (0.964)

85◦ = 95◦ = 90◦ 32.04 (0.001) 31.13 (0.002) 16.36 (0.175)

different for the 90◦ oriented line. The thin lines represent the smoothed observed

rates. This shows the model fits sufficiently well. In the primary visual cortex the

receptive field position and its orientation preference changes across the visual space.

For that reason, a long oriented lines, such as the ones used in the experiment, will

provoke different responses in each cell. This explains the differences seen in the

graph.

A pseudo-likelihood ratio test statistic, as proposed in Section 4.2, is calculated

to test whether the effects of different orientations are different. Table 4 displays

the pseudo-likelihood ratio test statistic G2
a and the corresponding p-value for the

null hypothesis that the orientations have the same effect on π1+, π+1 and CSM

separately, as well as for the overall effect. The effect of a 90◦ stimulus on the firing

rate of the neurons is significantly different from the effect of a 85◦ or 95◦ stimulus

(all p-values < 0.001). In contrast, there is no evidence for a difference between

a 85◦ or 95◦ stimulus (p-value > 0.05). The differences on the synchrony are less

pronounced, with only a different effect between stimuli of 85◦ and 90◦.

In Figure 10, it is displayed whether there is a significant increase in the number

of joint coincidences due to the stimulus, for each of the orientations separately.

Based on the 95% confidence bound, we see that there is an immediate increase

of joint firing when a stimulus of 85◦ or 95◦ is given. For a stimulus of 90◦, the

reaction is somewhat later in time. The difference between observed and expected
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Figure 10: Test for synchrony, based on the probability of joint firing. From

bottom to top: orientations 85, 90 or 95 degrees.

probability of synchronous spikes may be explained by postulating a common input

or some other form of functional connectivity due to the stimulus. When we carry

out the Bonferonni correction, a significant increase in joint firing is seen for a 85◦

stimulus, whereas there is almost no evidence for a difference when a 90◦ or 95◦

stimulus is given. However, note that the power of the Bonferonni test is diminished

due to the lack of independence between the tests, and thus possibly does not detect

true differences in the population.
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6 Discussion

In this paper, we defined synchrony as the observation that action potentials emitted

from different neurons are emitted at the same time. But, there is no “true”

definition of synchrony, this term is dependent on the question and experimental

situation. Synchrony can be defined at different temporal resolutions, e.g., 1, 3 and

5 ms. That is, spikes in one neuron were considered synchronous if they occurred

at 0, ±1, or ±2 ms, relative to spikes in the second neuron, respectively. The

proposed conditional synchrony measure is flexible enough to allow extensions of

the definition.

The conditional synchrony measure is the probability of firing together, given

that at least one of the two neurons is active. The advantage of the CSM is that

it is robust against the high number of (0, 0) matches, since these do not provide

information about synchrony. While most association measures treat both (0, 0)

and (1, 1) matches as synchronous events, the Conditional Synchrony Measure only

uses the (1, 1) match as relevant synchronous event.

If one assumes that two spike trains have a certain background CSM, then

the number of coincidences will depend on the firing rates of the neurons (this

number will increase as the rates increase). Therefore, one cannot just compare the

probability of joint firing with the baseline probability of joint firing, but one needs

to include the firing rates of the neurons separately. By use of the CSM, one corrects

for the probability that there is activity at a certain time point. Thus, comparing

the CSM with the baseline value is a justifiable comparison. Our method allows the

joint estimation of firing rates and synchrony measures adjusted by covariates. In

this paper we have illustrated the model accounting for the effect of trial-specific

covariate ’orientation’. This is a fixed covariate. This method is very flexible

and allows also the introduction of time-varying covariates, such as the saccade

(movement eyes).

Neurons of the visual cortex respond to oriented lines by modifying their firing
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rate, and the reaction to the stimulus depends on the position of the line over the

receptive field of the cell. A long oriented line that falls on several receptive fields

provokes different reactions. However, although each cell might respond differently

and transmit different information, neighboring cells might synchronize their activity

to such common stimulus and therefore constitute an assembly (Abeles 1982). CSM

analysis of activity of two simultaneously recorded neurons reveals that the strength

and temporal course of synchrony is modulated by the orientation of a common

stimulus. This dynamic engagement of neural assemblies might transmit additional

information about common features of a stimulus (Singer and Gray 1995, Shadlen

and Movshon 1999).

The results shown here indicate that when the receptive fields of two simulta-

neously recorded neurons, close in visual space, are stimulated by long lines with

different orientations, the response of each neuron varies (Figure 9, top panels).

Changes in the relative position of each line (85◦, 90◦, 95◦) over the receptive fields

accounts for this variability. The level and time course of the synchrony provoked

by the long lines varies according to the relative orientation of the stimulus over

the neurons receptive fields (Figure 9, bottom panel; Table 4; Figure 10). This

synchronization is associated with attentive perception of the orientation of the line

stimulus, indicating that synchronization plays a functional role. In fact, monkeys

cannot solve the task without paying attention to, and retain in working memory,

the orientation of the line. These results agreed with others from the literature; syn-

chrony between neurons depends on their relative receptive position in visual space

(i.e., how far apart they are) and on orientation selectivity, and it its suggested

to play a role in perception (Gray et al. 1989, Singer and Gray 1995, Vazquez et

al. 1999, Kreiter and Singer 1996). In this regard our results confirmed previous

ones, and therefore validate the statistic method we have developed. Our statistical

approach will allow us to simultaneously compare synchronous activity of several

neurons and to asses the effect of other behavioral events, such as eye movements,

on synchrony (Martinez-Conde et al. 2000, Vazquez et al. 1999, Cano 2002).
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This is especially important due to the growing interest for statistical methods for

analysis of multiple neural activities simultaneously recorded in electrophysiological

preparations.

Although the method is presented in the specialized field of neurophysiology,

the methodology is applicable in other medical and epidemiological areas where

the similarity of a rare binary outcome among subjects is of interest (for example,

twins studies). Thus, use of the proposed modelling approach is far beyond the

neurophysiological context.
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Appendix

The principal idea of the pseudo-likelihood methodology is to replace the numerically

challenging joint density by a simpler function. The method is well described by

Arnold and Strauss (1991), and also found in Conolly and Liang (1988), Liang

and Zeger (1986) and Le Cessie and Van Houwelingen (1994). While the method

achieves important computational economies by changing the method of estimation,

it provides consistent and asymptotical normal estimates (Arnold and Strauss 1991)

and it does not affect model interpretation.

Let Y i be the vector of binary outcomes for subject i (i = 1, . . . , N). Without

loss of generality we can assume that Y i has constant dimension L. The extension

to variable lengths of Y i is straightforward. Define S as the set of all 2L − 1

vectors of length M , consisting solely of zeros and ones, with each vector having

at least one nonzero entry. Denote by y
(s)
k the subvector of yk corresponding to

the components of s ∈ S that are nonzero. The associated joint density is written

as fs(y
(s)
k ;Θk), with Θk = Xkβ. Specify a set δ = {δs|s ∈ S} of 2L − 1 real

numbers, with at least one nonzero component and define the log pseudo-likelihood

as:

p` =
N∑

i=1

∑

s∈S
δs ln fs(y

(s)
i ;Θi), (6.1)

where some (thought not all) of the δs’s may be negative. This must correspond

to a product of marginal and conditional densities.

One example of a possible pseudo-likelihood function is to replace the full like-

lihood function for trial j (j = 1, . . . , N), i.e., fj(y11j , . . . , y1Tj , y21j , . . . , y2Tj)

by

p`j =
N∑

j=1

ln g(y1tj , y2tj), (6.2)

where the index j indicates the outcomes of trial j. In this setting the pseudo-

likelihood definition is completed using equations 4.4. The value of the parameters
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that maximize the log pseudo-likelihood function p` =
∑N
j=1 p`j are the pseudo-

likelihood estimates.

Arnold and Strauss (1991) established consistency and asymptotic normality of

the pseudo-likelihood estimator. Similar in spirit to generalized estimating equations

(Liang and Zeger 1986), the asymptotic normality result provides an easy way to

consistently estimate the asymptotic covariance matrix:

Ĉov(β̂) = J−1KJ−1 =
( N∑

j=1

∂Uj
∂β

)−1( N∑

j=1

Uj(β)Uj(β)T
)( N∑

j=1

∂Uj
∂β

)−1∣∣∣
β=β̂

.(6.3)

with Uj the pseudo-likelihood estimating equations

Uj(β) =
∂ ln g(y1t, y2t)

∂β
. (6.4)

This approach acknowledges the fact that, while the synchrony between different

neurons on the same time point is often of scientific interest, the association be-

tween different time points is usually considered a nuisance. The sandwich variance

estimator (6.3) is then used to adjust for potential bias in the variance estimator.

An important advantage of the pseudo-likelihood approach is the close connec-

tion with likelihood, which enabled Geys, Molenberghs and Ryan (1999) to con-

struct pseudo-likelihood ratio test statistics that have easy-to-compute expressions

and intuitively appealing limiting distributions. We restrict attention to the pseudo-

likelihood ratio test statistic. Suppose we are interested in testing the null hypothesis

H0 : γ = γ0, where γ is an r-dimensional subvector of the p-dimensional vector

of regression parameters β and write β as (γT , δT )T . Then, the pseudo-likelihood

ratio test statistic, defined by

G∗2
a = 2

[
p`(β̂N ) − p`(γ0, δ̂(γ0))

]
/λ̄,

is approximately χ2
r distributed. In this definition, β̂N is the pseudo-likelihood para-

meter estimate of β and δ̂(γ0) denotes the maximum pseudo-likelihood estimator

in the subspace where γ = γ0. Further, λ̄ is the mean of the eigenvalues of

(Jγγ)−1Σγγ , where Jγγ is the r × r submatrix of the inverse of J and Σγγ is the

submatrix of Σ = J−1KJ−1.
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