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Abstract

In this report, we focus on the consequences ofraltability and observability on the
number of distinct exponential terms in the fluoersce decay and on the identifiability
analysis of the photophysical model of intermolacuivo-state excited-state processes.
Controllability and observability prove to be udeftoncepts in photophysics for
exploring methodically the conditions under whiakermolecular two-state excited-state
processes lead to single-exponential fluoresceticesponse functions. A detailed
discussion on the distinction of the possible miggof mono-exponential fluorescence
decays is presented. We also show that the sityilaransformation approach to
identifiability leads to erroneous conclusions aming which model parameters can be
identified if this photophysical system is not goiiable or not observable. The results
obtained for this relatively simple photophysicgstem can be extended in a systematic

way to more complicated photophysical models.
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1. Introduction

Time-resolved fluorescence is a valuable tool awdé to the photophysicist for
investigating the dynamics of excited-state proesss” ® When a specific model is
proposed to describe the kinetics of fluoresceneaxation, initially one should
investigate if the underlying parameters definirfge tmodel can be determined
unambiguously from error-free fluorescence decaya.ddhis is the topic of the
deterministic (ora priori) identifiability (or identification) analysi$.> ® " The terma
priori indicates that the analysis can (and should) e d@fore a proposed experiment
is carried out. Identifiability is of great pradicimportance because it tells one which
information is theoretically accessible from theoflescence decay surface and therefore,
it allows one to evaluate if the parameter estiomatian succeed at all.

Since the first identification analysis of an im@lecular two-state excited-state
proces$, identifiability studies of a broad range of phdigpical models of
intermolecular as well as intramolecular two-statel three-state excited-state processes
have been reported (see Refs [9] and [10] for ditee data). Recently, we have
described identifiability analyses of models fotatmnal diffusion monitored by time-

12,13 14 15and of models for fluorescence

resolved fluorescence depolarizatibn
quenching in aqueous micellar systeths’

In this report, we introduce the important concegtsontrollability and observability
into the field of photophysics. It will be shownaththe investigated non-controllable or
non-observable, intermolecular, two-state excitaflessystem always leads to single-

exponential fluoresceno®&response functions instead of the bi-exponentmsofound

for controllable and observable systems. Contrditgband observability are useful



concepts to investigate systematically the casesravimono-exponential fluorescence
decays are observed. We will also illustrate — gisthe same, relatively simple,
photophysical model — that controllability and atvsdility are both required for the
similarity transformation criterion to identifiallijf to be applicable. Indeed, the
identification analysis via similarity transformati leads to erroneous results for this

photophysical system when it is not controllabl&or observable.

2. Time-resolved fluorescence, controllability, anebservability of the photophysical

system of intermolecular two-state excited-state picesses

Consider a linear, time-invariant, dynamic, intelacalar photophysical system,
consisting of two different ground-state speciebd¢ledl and2), which is photoexcited
with a pulseu(t) as shown in Figure 1. Photo-excitation createspiinciple, two
corresponding excited species (labeledand 2°, respectively). As a response to that

input, the concentrations (t) of the excited speciek and2 change as a function of

timet and can be described by the following differemtiitrix equatiorf=®
X (t)=AX [t)+b,u(t), x(07)=0 1)
with % (t) = & )

t

d
0L

(ay an) (—(ky k21[|\/|]) k.,
A= (azl azzj - ( k21[M] - (k02 + klz)} (3)



and b; = (by bs)', where T symbolizes transpose and the subsdriptfers to the
excitation wavelengthAdependence ob. [M] stands for the experimentally known

concentration of co-reactant.
< Figure 1 >
In fluorescence decay experiments, one does ndbwothe time course of the

concentrations (t) of the individual excited species, but one observ within a selected

emission band around emission wavelengtf" - the composite experimental

fluorescence decay(t) originating from the contributing excited speciegand?':
d(t) =g x'(t) (4)
where ¢; = (g Q,-)lg and the subscripi refers to the emission wavelengi{”

dependence of the spectral emission coefficients

4-6,18

Integration of eq lyields (t) and substitution of (t) in eq 4 gives

d(t) =J'; f(t-s)u(s) dszj'; f(s)u(t-s)ds (5)
with the fluorescenc&-response functiof(t) given by ® 2

f(t) =¢ €* by (6)
The triple @, bj, ¢) is called aealization of f(t).

57 204nto

Now we introduce the important notions agntrollability andobservability
photophysics. The photophysical system is contot@léf an inputu can be constructed
which will bring x* to any preselected state in a finite amount ofefiiThe 2x 2

controllability or reachability matrix R for the photophysical system of intermolecular

two-state excited-state processes is defined ift 24°



(7)

R=(b Abi)z(bﬁ anbu+a12b2ij

b, a,b;, +a,b,

with ay, defined by eq 3. The photophysical system is oflatsle if and only if the
associated controllability matri is of rank 2> 2% #'or, equivalently, if deR # 0.

RankR = 2 if detR = byj(az1b1i + a22ba) — boi(ag1by; + a1oy) # 0.

The following two cases reduce the rank of ma®ito 1:

(@) If by = 0 (i.e., ground-state speci@s does not absorb light at the excitation

wavelength)®™), then deR = ayib;”. To have a controllable systems; (= ko)[M]) must

be different from zero. l&; = 0 (i.e.,k.s = 0 and/or [M] = 0) andb,; = 0, excited species
2" is not formed (i.e.2” cannot be reached, Figure 2a): the system isomitallable and
this results in a mono-exponential fluorescebicesponse functiof(t):*°

f(t) = by ¢y exp(Kot) (8)
(b) If by = O (i.e., ground-state specig#gloes not absorb light at™), we have deR

= —ayy”. To have a controllable system; (= ki) must be different from zero. &, =
ki> = 0 andby = 0, excited species cannot be reached (i.&, is not formed, Figure 2b)
and the system is not controllable under theseitiond. Then, a mono-exponentiél)
is found:

f(t) = by ¢y exp(Koat) )
< Figure 2 >
The criterion for observability in terms of the mets of the photophysical system is
analogous to that of controllability. The currehibpophysical system described by eqgs 1
and 4 is observable if and only if thex2 observability matrix O (eq 10) is of rank 2,

requiring that de© # 05 7.20.21



_[ G| Cyj Cyj
O= A7 .\ . (10)
Ci .G Ta,,Cy; Q0 Ta,,0,;

RankO = 2 if detO = cyj(a12Cyj + a22Cy) — Cyj(@11Cyj + @21Cy) # 0.
The next two cases reduce the rank of madribo 1:

(@) If c; = 0 (i.e., the fluorescence of only excited spetieis being monitored aki"),

we have de© = a;.ci°. To have an observable syster, must be different from zero. If
a2 = ki = 0 andcy = 0O, the photophysical system is not observabéedbse?” is not
observable, Figure 3a) and a single-exponefitial found:

f(t) = baicyj expl—kos + kaa[M]) ] (11)

(b) If ¢ = O (i.e., the fluorescence of only excited speRieis being monitored ak{"),

we have de© = —a,1c5°. To have an observable systemm, must be different from zero.
If a;y = 0 andcy = 0O, the photophysical system is not observab&edbsel” is not
observable, Figure 3b) and the mono-exponefitjals given by'°

f(t) = bacy exp[—tkoz + ki)t] (12)
< Figure 3 >
In the previous paragraphs, the non-controllablen@n-observable systems depended
exclusively on the excited-state exchange coefitsiday; or a;2) and the parameters
associated with excitatiorbf or by, for controllability) or emissioncf; or ¢y, for
observability). By looking at the form of tHe andO matrices (and by creating rows or
columns containing all zeros), it may appear that cases discussed above, yielding a
non-controllable systemdg; = 0, by = 0) and & = 0, by = 0)] and the parallel cases
giving a non-observable systenajf{ = O, c;; = 0,) and &1 = 0, ¢c;; = 0)] are the only

possible cases reducing the rank of the matitesndO to 1. However, as the elements



a;1 anday; are dependent on [M], the rank of the matriReandO can be reduced to 1 at
certain, non-zero, co-reactant concentrations [M].
The unique concentration [M] leading tman-controllablesystem is calculated from det

R =0 and is given by

[M] - b2i I,bn (koz + k12 - k01)+ b2i k12J

13
uby (b, +b,) 13)

It is not evident if this [M] value is physicallyceessible. Indeed, it is possible that [M]
given by eq 13 (and by eq 15 for the non-observapiétem, see further) has a negative

value or is too high to be experimentally accessilifi [M] is given by eq 13f(t) is

single-exponential at all observation wavelengtfis and is expressed by
_ ¢ DiKor +Bsiky
( ) - (b.l.lcl] b2IC2j r‘{ bll + b: 2 (14)
The unique concentration [M] leading taman-observablesystem is derived from d&x

=0 and is given by

- C; |-y ks + Co (Kop + K — ko)

M
[ k21C2] (Cl] _CZJ)

(15)

For this particular [M], the functiof{t) is mono-exponential at all excitation wavelengths

L™ and is specified by

¢ (t) _ (bh-Clj N bZiCZj)EXF{—t Cy; (koz + k12)_C1j kizj (16)

C,,
It should be noted that the mono-exponential fumsti(t), described by egs 14 and 16,

have not been described before.



3. Identifiability via similarity transformation of the model for intermolecular two-

state excited-state processes which are non-contiaddle or non-observable

The true realizationsA(| b;, ¢;) and the alternative realizatiorﬁ,ﬁi ,C;) are similar if

they produce the sanat) [or f(t)] and are related as in eqs 173-%:

A=TAT (17a)
b, =T™b, (17b)
¢ =c,T (17¢)

whereT is a constant, non-singular (i.e., invertible) nxaidet T # 0) having the same (2

x 2) dimension a&. The matrixT should be independent of the experimental contstio

(i.e., A7, A", and [M])° The equivalence relations (egs 17a—c) show thattamative

triple (A,Ei,éi) realizing the samed(t) [or f(t)] can be found by similarity

transformation. For the photophysical system careid here] is given by

tl t2
o) &

Now we shall show that controllability and obsemliib are both required for the
similarity transformation approach to lead to cotreonclusions. It must be emphasized,
however, that controllability and observability aret sufficient conditions to guarantee

identifiability of the model.



3.A. Non-controllable system with ay =0and by =0

Now we calculate the alternativd (eq 17a) andb, (eq 17b) for the non-controllable

photophysical system withp; = 0 andby = 0. The matrix multiplication in eq 17a yields

the following three useful equations:

_t1E01 = _t1k01 + t3k12 (193-)
tlElZ -1, (Eoz + ElZ) = _t2k01 + t4k12 (19b)
tsEiz -1, (Eoz + lz12) =-t, (koz + k12) (19¢)

From the multiplication in eq 17b, we obtain
th; =h; (20a)
t,b, =0 (20b)
From eq 20a with;; # 0 we can conclude that# 0 andb, # 0, so that from eq 20b we
have thatt; = 0. Therefore, botly andt, should be different from zero (otherwise, we
have a singular matrid). Equation 19a now gives,, =k,, while eq 19c yields
ko, + ki, = ko, + ki,. The alternativey; (eq 20a) is known up to a scaling factor.

Now we consider the fluorescen€esponse functiof(t) (eq 8) for this non-controllable
system. The only kinetic information that can b&@sted from the mono-exponentié)
= a explyt) isy = —ko1. Sincef(t) does not includ&y, andk;, it is impossible to identify

(ko2 *+ k12) as the identification analysis via similaritynisiormation wrongly indicates.
3.B. Non-observable system with a1 =0and ¢ =0

For the alternativeA of this non-observable photophysical system, vierr® section

3.A. The components of the alternatigg calculated according to eq 17c are
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0=t3C2 (21&)
c, =t,c, (21b)
From eq 21a, we have thigt= 0, so that from eq 21b we have that the alter@ad, is

known up to a scaling factots(must be different from zero to have an invertible
matrix).

The single-exponentid(t) (eq 12) for this non-observable system does aotainky;, SO

it is impossible to identifiky;. Also for the non-observable system, the idergtfan via

the similarity transformation technique leads t@peeous conclusions.
3.C. Non-controllable system with a;, =0and b;; =0

Matrix multiplication in eq 17a for the non-contiaddle system witha;, = O yields the

following three informative equations:

- tl(lzm + lz21[M ]) + t2l221[M] = _tl(k01 + k21[M]) (22a)
—1 (Em + lz21[M ])+ t4E21[M] = tlk21[M] ~t3Kp, (22D)
- t4E02 = t2k21[M] ~ Koy (22c)

From eq 17b, we obtain

t,b, =0 (23a)

t,b, =b, (23b)
From eq 23b withhy # 0 we can conclude that# 0 andb, # 0, so that from eq 23a we

have thatt, = 0. Now eq 22a witht; # O (non-singularT matrix!) simplifies to

Ko, + Koy [M] = kg, +k,y[M], from which we obtairk,, = k,, and k,, =k,,. Equation 22c

with t, = 0 gives k,, =k,,. Grouping the terms in [M] in eq 22b shows that O.
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Equation 22b simplifies tm4E21[M] =t1k21[M], from which we have; =t, andT =1t; I,
(I, represents the 2 2 identity matrix). Equation 23b shows that theralative b, is
known up to a scaling factor.

The single-exponentid(t) (eq 9) for this non-controllable system does inctude ko
and kp;. Hence, it is impossible to identify these ratensgtants. Once more, the
identification via similarity transformation leads incorrect conclusions for the non-

controllable photophysical system.
3.D. Non-observable system with a;, = Oand c;; = 0

For the alternativeA of this non-observable photophysical system, setéan 3.C. The

components of the alternative (eq 17c) are
C,; =tc (24a)
0=t,c, (24b)
From eq 24b, we have that= 0, so that from eq 24a we have that the alterad; is

known up to a scaling factot;(must be different from zero to have an invertilble
matrix).

The mono-exponentid{t) (eq 11) for the non-observable system does notagokyy;
hence, it is impossible to identikg,. Once again, these results are in disagreemeht wit

those from the identification via similarity transmation.
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3.E. Non-controllable and non-observable systems with [M] given by egs 13 and 15,
respectively

Now we investigate the identification via similgritransformation of the non-
controllable, intermolecular, two-state excitedstsystem with [M] given by eq 13 and
of the corresponding non-observable system with §ddressed by eq 15. In Ref [10],
we have studied the identifiability of the conteddle and observable, intermolecular,
two-state excited-state system via the similarinangformation approach. The
identifiability analysis for the non-controllableystem is formally equivalent to that
described in Ref [10], but one has to exploit tequired independence &f of the

excitation wavelengti.™ (i.e., throughbs; andby). For the non-observable system, one
should use the necessary independenct of the observation wavelength™ (i.e.,

through cy; and cy). Since the identifiability analysis for the noorntrollable or non-
observable systems of intermolecular two-statetedestate processes is very similar to
that already publishelf,we shall only present the results here. As befove,cases are
found.

Case (i): Whery =t4, t, =t3 = 0, we havel =t; |,. The matrix multiplication in eq 17a
with T =t; 1, gives ko, =K,,, Ky =k,,, k, =k, and k,, =k,,. The corresponding
matrix multiplication in eq 17b withl = t; I, for the non-controllable system gives

b, =b, /t, andb, =b, /t,. The analogous multiplication in eq 17c with= t, | for the
non-observable system givég =c,;t, and C,; =c,; t,. Hence, the alternativebf , b, }
and {¢,;,C,; } are only known up to the scaling factiar However, the pre-exponential

factor in egs 14 and 16 is uniquely definégc,; +b, C,; =b; ¢, +b, c,;.
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Case (ii): Alternatively, we havé, =k, +K;,, Ky =Ky, K, =Ky, =Koy, and Ky, =Ko, .

The matrixT takes the form

tt O
T=|" (25)
t3 tl + t3

Yet again, the identification via similarity traosfation indicates that for the non-
controllable and non-observable, intermolecularp-state excited-state systems more
distinct parameters could be identified than issgae from the mono-exponentif{t) =

o explt) (eqs 14 and 16). Indeed, for the non-controllaystem, it is impossible to
determine the separate model parameters frem(01ikos + bakoo)/(byi + b2i) (see eq 14).
Similarly, for the non-observable system, the imdlial model parameters cannot be

determined frony = —[cy(koz + ki2) — CijkiZ] /cy (see eq 16).
4. Discussion and conclusions

In the deterministic identifiability analysis, tikentral question is whether it is possible to
find a unique solution for each of the unknown pasters of the proposed model,

assuming perfect (i.e., without noise) data. Idexdility is also of importance in the

design of time-resolved fluorescence experimentsoi¢@ of excitation, A, and

emission, k‘jm,

wavelengths; the number and the nature of thel usereactant
concentrations; the need to add quencher to theophygsical system; etc.) that lead to
unique solutions. A number of alternative approache identifiability analysis are
available and have been employed for the analysithe identification of common

photophysical models. We have extensively used Mankarameters and elementary

functions of the rate constants for this purpose (gerature references in [9] and [10]).
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This identifiability method is closely related tbet Laplace transform approach (or
transfer function approach)The Taylor series expansion of the fluorescehoesponse
function f(t) is an alternative method, which was used in theniifiability of
fluorescence quenching of stationary probes by taahiencher molecules in micelf€s.
The advantage of the Taylor series expansiori(tpfis its applicability to nonlinear
models.

Similarity transformation is a powerful identifidiby technique because it offers an

excellent method of finding an alternative real@at (A,Ei,éi) of f(t) and of

determining whether the model is uniquely or logcaentifiable or not identifiable at all.
In time-resolved fluorescence, a model is uniquegntifiable if all parameters can be
uniquely determined fromi(t). If there are several parameter values that spard to
exactly the samt), the model is locally identifiable. An unidengéible model is found
when there is an unlimited number of alternativedel@arameter values corresponding
to the samd(t). In the latter case it is problematic to attertgpestimate the parameter
values, because the solution found is only one afiyrand has no reason to be favored.
An extra bonus of the similarity transformation eggech is that the relationships between
the true and alternative model parameters are@ttplprovided by eqs 17a—c. However,
the disadvantage of this identifiability technigaehat one should not apply it when the
conditions for its validity do not hold (i.e., botontrollability and observability).One
can convincingly argue that — since there are séweher identification methods — one
can always use a quite straightforward technique.,(¢ransfer function approach) for

which controllability and observability are not issue.
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There is, however, another important feature totrotlability and observability in
photophysics without direct relation to identifigtyt methods. Indeed, non-controllable
or non-observable systems are found whenever thke o the matricesR and O,
respectively, is reduced. For the intermoleculag-state excited-state system studied,
rankR = 1 for the non-controllable system and r&nk 1 for the non-observable system.
For the controllable and observable photophysigatesn, one always observes two
exponential terms if(t) representing the two eigenvalues of ma#fixeq 3), whereas the

non-controllable or non-observable system alwagsldeto single-exponentifft) at all

observation wavelengths™ or at all excitation wavelengths™, respectively. If one

observes a mono-exponentié), while expecting a bi-exponentift), controllability
and observability are useful, systematic tools xpl@e the reason for this: either a
ground-state species is not excited or an excipatties is not observed in addition to
some zero-value exchange rate constants. The twb peagraphs summarize the
possible causes for the “pathological’”, mono-exmbiaé responsesf(t) for an
intermolecular two-state excited-state system.

For intermolecular two-state excited-state processe have aon-controllablesystem

under three conditions (see sections 3.A, 3.C,3RJl In these three caséd) remains
mono-exponential, whatever the emission wavelength For intermolecular two-state
excited-state processes, one usually measureg$lcemce traceai{t) as a function of co-
reactant concentration [M], excitation wavelendtfi, and emission wavelength®",

and one extracts the relevant decay parametef@)dirom the resulting fluorescence

decay surface via a global nonlinear fitting. (B Isingle-exponentidi(t) is found for

[M] = O for all observation wavelengths™, this implies that only ground-state spedes
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is being excitedl = 0). (b) A single-exponentid(t) found for all [M] and at allA{"

01

indicates that eithek;> = 0 and only ground-state speci2ss being excited l;
Figure 2b, eq 9) oky,; = 0 and only ground-state specikss being excitedky = 0O,
Figure 2a, eq 8). In both cases, the single-expgailef{t) is independent of [M].
Absorption spectra af and/or2 can possibly be used to make a distinction betvileen
two cases. (c) When a mono-exponeriiglis observed at a single, non-zero [M] and at
all A5", then that particular [M] is given by eq 13 aff by eq 14. At [M] values
different from that given by eq 18}) is bi-exponential.

For intermolecular two-state excited-state procgsa@on-observablesystem is found

under three conditions (see sections 3.B, 3.D,3B)l These three cases result in mono-

exponentialff(t), independent of the excitation wavelengtfi. (a) A single-exponential
f(t) at [M] = 0 and at all.* means that the fluorescence of only excited spetiés

being observedc(; = 0). (b) A single-exponentid(t) found for all [M] and at all,*
indicates either that, = 0 and the fluorescence of exclusively exciteecisl is being
monitored ¢; = 0, Figure 3a, eq 11) &5, = 0 and only the fluorescence 2fis being
observed §; = 0, Figure 3b, eq 12). In the former case, thwrscenced-response
functionf(t) depends on [M] (eq 11), while in the latter c§$eis independent of [M] (eq
12). (c) When a mono-exponenti@) is observed at a single, “critical”, non-zero [M]
and at allA™, this [M] is given by eq 15 anift) by eq 16. At [M] values different from
that given by eq 15(t) is bi-exponential.

To summarize, single-exponential fluorescence decdgerved for intermolecular two-

state excited-state processes are always the aoerse® of non-controllability or non-
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observability of the photophysical system. For oolfdble and observable systems,
fitting of the experimental fluorescence decay datgires the same number of distinct
exponential terms as the number of excited specesversely, if the number of
exponential terms irfi(t) is less than the number of excited species, tiwophysical
system is not controllable or not observable. Timpartance of controllability and
observability to the field of photophysics liestire fact that these concepts allow one to
systematically investigate the origins of the rethaumber of exponential termsfit),
and to extend the study to more complicated phagtsipal systems than that considered

here.
Figure captions

Figure 1. Kinetic model of an intermolecular, twats excited-state process. The
excited-state processes are described by the datat rate constants; andky,, and

the excited-state exchange rate constkntandk;,. The transformation of speciésand
1 into, respectively? and2"” is mediated by co-reactant M. Photoexcitatiori gt is
symbolized byu(t).

Figure 2. Non-controllable photophysical systera3bg = 0 anday; = 0. (b)by; = 0 and
ai» = 0. Photoexcitation & ™ is symbolized byi(t).

Figure 3. Non-observable photophysical systemscy&) 0 andai, = 0. (b)cy; = 0 and

a1 = 0. Observation a{" of the fluorescence from a specific, excited speds

depicted by an eye on top of that excited species.
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