
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Controllability and observability of the photophysical system of  

intermolecular two-state excited-state processes

Non Peer-reviewed author version

Boens, N; Novikov, E & AMELOOT, Marcel (2008) Controllability and observability of

the photophysical system of   intermolecular two-state excited-state processes. In:

JOURNAL OF PHYSICAL CHEMISTRY A, 112(12). p. 2738-2742.

DOI: 10.1021/jp710050e

Handle: http://hdl.handle.net/1942/8185



Controllability and Observability of the Photophysical System of 

Intermolecular Two-State Excited-State Processes 

REVISED: January 10, 2008 

Noël Boens,* ,a Eugene Novikov,b Marcel Amelootc 

aDepartment of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f – bus 

02404, 3001 Heverlee (Leuven), Belgium 

bInstitut Curie, Service Bioinformatique, 26 Rue d'Ulm, Paris Cedex 05, 75248 France 

cBiomedical Research Institute, Hasselt University and transnationale Universiteit 

Limburg, Agoralaan, Building D, 3590 Diepenbeek, Belgium 

Abstract 

In this report, we focus on the consequences of controllability and observability on the 

number of distinct exponential terms in the fluorescence decay and on the identifiability 

analysis of the photophysical model of intermolecular two-state excited-state processes. 

Controllability and observability prove to be useful concepts in photophysics for 

exploring methodically the conditions under which intermolecular two-state excited-state 

processes lead to single-exponential fluorescence δ-response functions. A detailed 

discussion on the distinction of the possible origins of mono-exponential fluorescence 

decays is presented. We also show that the similarity transformation approach to 

identifiability leads to erroneous conclusions concerning which model parameters can be 

identified if this photophysical system is not controllable or not observable. The results 

obtained for this relatively simple photophysical system can be extended in a systematic 

way to more complicated photophysical models.  
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1. Introduction 

Time-resolved fluorescence is a valuable tool available to the photophysicist for 

investigating the dynamics of excited-state processes.1, 2, 3 When a specific model is 

proposed to describe the kinetics of fluorescence relaxation, initially one should 

investigate if the underlying parameters defining the model can be determined 

unambiguously from error-free fluorescence decay data. This is the topic of the 

deterministic (or a priori) identifiability (or identification) analysis.4, 5, 6, 7 The term a 

priori  indicates that the analysis can (and should) be done before a proposed experiment 

is carried out. Identifiability is of great practical importance because it tells one which 

information is theoretically accessible from the fluorescence decay surface and therefore, 

it allows one to evaluate if the parameter estimation can succeed at all.  

Since the first identification analysis of an intermolecular two-state excited-state 

process,8 identifiability studies of a broad range of photophysical models of 

intermolecular as well as intramolecular two-state and three-state excited-state processes 

have been reported (see Refs [9] and [10] for literature data). Recently, we have 

described identifiability analyses of models for rotational diffusion monitored by time-

resolved fluorescence depolarization11, 12, 13, 14, 15 and of models for fluorescence 

quenching in aqueous micellar systems.16, 17  

In this report, we introduce the important concepts of controllability and observability 

into the field of photophysics. It will be shown that the investigated non-controllable or 

non-observable, intermolecular, two-state excited-state system always leads to single-

exponential fluorescence δ-response functions instead of the bi-exponential ones found 

for controllable and observable systems. Controllability and observability are useful 
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concepts to investigate systematically the cases where mono-exponential fluorescence 

decays are observed. We will also illustrate – using the same, relatively simple, 

photophysical model – that controllability and observability are both required for the 

similarity transformation criterion to identifiability to be applicable. Indeed, the 

identification analysis via similarity transformation leads to erroneous results for this 

photophysical system when it is not controllable or not observable.  

2. Time-resolved fluorescence, controllability, and observability of the photophysical 

system of intermolecular two-state excited-state processes 

Consider a linear, time-invariant, dynamic, intermolecular photophysical system, 

consisting of two different ground-state species (labeled 1 and 2), which is photoexcited 

with a pulse u(t) as shown in Figure 1. Photo-excitation creates, in principle, two 

corresponding excited species (labeled 1* and 2*, respectively). As a response to that 

input, the concentrations x*(t) of the excited species 1* and 2* change as a function of 

time t and can be described by the following differential matrix equation:4–6, 18 
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and bi = (b1i    b2i)
T, where T symbolizes transpose and the subscript i refers to the 

excitation wavelength ex
iλ dependence of b. [M] stands for the experimentally known 

concentration of co-reactant.  

< Figure 1 > 

In fluorescence decay experiments, one does not follow the time course of the 

concentrations x*(t) of the individual excited species, but one observes – within a selected 

emission band around emission wavelength em
jλ  – the composite experimental 

fluorescence decay d(t) originating from the contributing excited species 1* and 2*:  

d(t) = cj x
*(t)                 (4) 

where cj = (c1j     c2j)
19 and the subscript j refers to the emission wavelength em

jλ  

dependence of the spectral emission coefficients c.  

Integration of eq 1yields x*(t)4–6, 18  and substitution of x*(t) in eq 4 gives 

( ) ( ) ( ) ( ) ( ) sstusfssustftd
tt

dd
00 ∫∫ −=−=              (5) 

with the fluorescence δ-response function f(t) given by4–6, 18 

f(t) = cj e
tA bi                (6) 

The triple (A, bi, cj) is called a realization of f(t).  

Now we introduce the important notions of controllability  and observability5, 7, 20 into 

photophysics. The photophysical system is controllable if an input u can be constructed 

which will bring x* to any preselected state in a finite amount of time.20 The 2 × 2 

controllability or reachability matrix R for the photophysical system of intermolecular 

two-state excited-state processes is defined in eq 7: 5, 20 
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with amn defined by eq 3. The photophysical system is controllable if and only if the 

associated controllability matrix R is of rank 2,5, 7, 20, 21 or, equivalently, if det R ≠ 0. 

Rank R = 2 if det R = b1i(a21b1i + a22b2i) – b2i(a11b1i + a12b2i) ≠ 0.   

The following two cases reduce the rank of matrix R to 1:  

(a) If b2i = 0 (i.e., ground-state species 2 does not absorb light at the excitation 

wavelength ex
λ i ), then det R = a21b1i

2. To have a controllable system, a21 (= k21[M]) must 

be different from zero. If a21 = 0 (i.e., k21 = 0 and/or [M] = 0) and b2i = 0, excited species 

2* is not formed (i.e., 2* cannot be reached, Figure 2a): the system is not controllable and 

this results in a mono-exponential fluorescence δ-response function f(t):10 

f(t) = b1i c1j exp(–k01t)               (8) 

(b) If b1i = 0 (i.e., ground-state species 1 does not absorb light at ex
λ i ), we have det R  

= –a12b2i
2. To have a controllable system, a12 (= k12) must be different from zero. If a12 = 

k12 = 0 and b1i = 0, excited species 1* cannot be reached (i.e., 1* is not formed, Figure 2b) 

and the system is not controllable under these conditions. Then, a mono-exponential f(t) 

is found:  

f(t) = b2i c2j exp(–k02t)               (9) 

< Figure 2 > 

The criterion for observability in terms of the matrices of the photophysical system is 

analogous to that of controllability. The current photophysical system described by eqs 1 

and 4 is observable if and only if the 2 × 2 observability matrix  O (eq 10) is of rank 2, 

requiring that det O ≠ 0.5, 7, 20, 21 
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Rank O = 2 if det O = c1j(a12c1j + a22c2j) – c2j(a11c1j + a21c2j) ≠ 0.  

The next two cases reduce the rank of matrix O to 1:  

(a) If c2j = 0 (i.e., the fluorescence of only excited species 1* is being monitored at emλ j ), 

we have det O = a12c1j
2. To have an observable system, a12 must be different from zero. If 

a12 = k12 = 0 and c2j = 0, the photophysical system is not observable (because 2* is not 

observable, Figure 3a) and a single-exponential f(t) is found: 

f(t) = b1ic1j exp[–(k01 + k21[M]) t]            (11) 

(b) If c1j = 0 (i.e., the fluorescence of only excited species 2* is being monitored at emλ j ), 

we have det O = –a21c2j
2. To have an observable system, a21 must be different from zero. 

If a21 = 0 and c1j = 0, the photophysical system is not observable (because 1* is not 

observable, Figure 3b) and the mono-exponential f(t) is given by:10 

f(t) = b2ic2j exp[–(k02 + k12)t]            (12) 

< Figure 3 > 

In the previous paragraphs, the non-controllable or non-observable systems depended 

exclusively on the excited-state exchange coefficients (a21 or a12) and the parameters 

associated with excitation (b1i or b2i, for controllability) or emission (c1j or c2j, for 

observability). By looking at the form of the R and O matrices (and by creating rows or 

columns containing all zeros), it may appear that the cases discussed above, yielding a 

non-controllable system [(a21 = 0, b2i = 0) and (a12 = 0, b1i = 0)] and the parallel cases 

giving a non-observable system [(a12 = 0, c2j = 0,) and (a21 = 0, c1j = 0)] are the only 

possible cases reducing the rank of the matrices R and O to 1. However, as the elements 
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a11 and a21 are dependent on [M], the rank of the matrices R and O can be reduced to 1 at 

certain, non-zero, co-reactant concentrations [M]. 

The unique concentration [M] leading to a non-controllable system is calculated from det 

R = 0  and is given by 

[ ] ( )[ ]
( )iii

iii

bbbk

kbkkkbb
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+−+
=            (13) 

It is not evident if this [M] value is physically accessible. Indeed, it is possible that [M] 

given by eq 13 (and by eq 15 for the non-observable system, see further) has a negative 

value or is too high to be experimentally accessible. If [M] is given by eq 13, f(t) is 

single-exponential at all observation wavelengths emλ j  and is expressed by  
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The unique concentration [M] leading to a non-observable system is derived from det O 

= 0 and is given by 
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For this particular [M], the function f(t) is mono-exponential at all excitation wavelengths 

ex
λ i  and is specified by  
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It should be noted that the mono-exponential functions f(t), described by eqs 14 and 16, 

have not been described before.  
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3. Identifiability via similarity transformation of  the model for intermolecular two-

state excited-state processes which are non-controllable or non-observable 

The true realizations (A, bi, cj) and the alternative realizations ),, ji cbA(  are similar if 

they produce the same d(t) [or f(t)] and are related as in eqs 17a–c:5, 20 

TATA 1−=              (17a) 

ii bTb 1−=              (17b) 

Tcc jj =              (17c) 

where T is a constant, non-singular (i.e., invertible) matrix (det T ≠ 0) having the same (2 

× 2) dimension as A. The matrix T should be independent of the experimental conditions 

(i.e., ex
λ i , em

jλ , and [M]).10 The equivalence relations (eqs 17a–c) show that an alternative 

triple ),, ji cbA(  realizing the same d(t) [or f(t)] can be found by similarity 

transformation. For the photophysical system considered here, T is given by 









=

43

21

tt

tt
T               (18) 

Now we shall show that controllability and observability are both required for the 

similarity transformation approach to lead to correct conclusions. It must be emphasized, 

however, that controllability and observability are not sufficient conditions to guarantee 

identifiability of the model.  



 9 

3.A. Non-controllable system with a21 = 0 and b2i = 0 

Now we calculate the alternative A  (eq 17a) and ib  (eq 17b) for the non-controllable 

photophysical system with a21 = 0 and b2i = 0. The matrix multiplication in eq 17a yields 

the following three useful equations: 

123011011 ktktkt +−=−            (19a) 

( ) 12401212022121 ktktkktkt +−=+−           (19b) 

( ) ( )1202412024123 kktkktkt +−=+−           (19c) 

From the multiplication in eq 17b, we obtain 

ii bbt 111 =              (20a) 

013 =ibt              (20b) 

From eq 20a with b1i ≠ 0 we can conclude that t1 ≠ 0 and ib1  ≠ 0, so that from eq 20b we 

have that t3 = 0. Therefore, both t1 and t4 should be different from zero (otherwise, we 

have a singular matrix T). Equation 19a now gives 0101 kk = , while eq 19c yields 

12021202 kkkk +=+ . The alternative ib1  (eq 20a) is known up to a scaling factor. 

Now we consider the fluorescence δ-response function f(t) (eq 8) for this non-controllable 

system. The only kinetic information that can be extracted from the mono-exponential f(t) 

= α exp(γ t) is γ = – k01. Since f(t) does not include k02 and k12, it is impossible to identify 

(k02 + k12) as the identification analysis via similarity transformation wrongly indicates.  

3.B. Non-observable system with a21 = 0 and c1j = 0 

For the alternative A  of this non-observable photophysical system, we refer to section 

3.A. The components of the alternative jc  calculated according to eq 17c are 
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230 ct=              (21a) 

242 ctc =              (21b) 

From eq 21a, we have that t3 = 0, so that from eq 21b we have that the alternative 2c  is 

known up to a scaling factor (t4 must be different from zero to have an invertible T 

matrix). 

The single-exponential f(t) (eq 12) for this non-observable system does not contain k01, so 

it is impossible to identify k01. Also for the non-observable system, the identification via 

the similarity transformation technique leads to erroneous conclusions. 

3.C. Non-controllable system with a12 = 0 and b1i = 0 

Matrix multiplication in eq 17a for the non-controllable system with a12 = 0 yields the 

following three informative equations: 

[ ]( ) [ ] [ ]( )MMM 2101121221011 kktktkkt +−=++−         (22a) 

[ ]( ) [ ] [ ] 02321121421013 MMM ktktktkkt −=++−         (22b) 

[ ] 024212024 M ktktkt −=−            (22c) 

From eq 17b, we obtain 

022 =ibt              (23a) 

ii bbt 224 =              (23b) 

From eq 23b with b2i ≠ 0 we can conclude that t4 ≠ 0 and ib2  ≠ 0, so that from eq 23a we 

have that t2 = 0. Now eq 22a with t1 ≠ 0 (non-singular T matrix!) simplifies to 

[ ] [ ]MM 21012101 kkkk +=+ , from which we obtain 0101 kk =  and 2121 kk = . Equation 22c 

with t2 = 0 gives 0202 kk = . Grouping the terms in [M] in eq 22b shows that t3 = 0. 
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Equation 22b simplifies to [ ] [ ]MM 211214 ktkt = , from which we have t1 = t4 and T = t1 I2 

(I 2 represents the 2 × 2 identity matrix). Equation 23b shows that the alternative ib2  is 

known up to a scaling factor. 

The single-exponential f(t) (eq 9) for this non-controllable system does not include k01 

and k21. Hence, it is impossible to identify these rate constants. Once more, the 

identification via similarity transformation leads to incorrect conclusions for the non-

controllable photophysical system. 

3.D. Non-observable system with a12 = 0 and c2j = 0 

For the alternative A  of this non-observable photophysical system, see section 3.C. The 

components of the alternative jc  (eq 17c) are  

jj ctc 111 =              (24a) 

jct 120 =              (24b) 

From eq 24b, we have that t2 = 0, so that from eq 24a we have that the alternative jc1  is 

known up to a scaling factor (t1 must be different from zero to have an invertible T 

matrix).  

The mono-exponential f(t) (eq 11) for the non-observable system does not contain k02; 

hence, it is impossible to identify k02. Once again, these results are in disagreement with 

those from the identification via similarity transformation. 
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3.E. Non-controllable and non-observable systems with [M]  given by eqs 13 and 15, 

respectively 

Now we investigate the identification via similarity transformation of the non-

controllable, intermolecular, two-state excited-state system with [M] given by eq 13 and 

of the corresponding non-observable system with [M] expressed by eq 15. In Ref [10], 

we have studied the identifiability of the controllable and observable, intermolecular, 

two-state excited-state system via the similarity transformation approach. The 

identifiability analysis for the non-controllable system is formally equivalent to that 

described in Ref [10], but one has to exploit the required independence of ti of the 

excitation wavelength ex
λ i  (i.e., through b1i and b2i). For the non-observable system, one 

should use the necessary independence of ti of the observation wavelength emλ j  (i.e., 

through c1j and c2j). Since the identifiability analysis for the non-controllable or non-

observable systems of intermolecular two-state excited-state processes is very similar to 

that already published,10 we shall only present the results here. As before, two cases are 

found. 

Case (i): When t1 = t4, t2 = t3 = 0, we have T = t1 I 2. The matrix multiplication in eq 17a 

with T = t1 I2 gives 0101 kk = , 2121 kk = , 1212 kk = , and 0202 kk = . The corresponding 

matrix multiplication in eq 17b with T = t1 I 2 for the non-controllable system gives 

111 / tbb ii =  and 122 / tbb ii = . The analogous multiplication in eq 17c with T = t1 I 2 for the 

non-observable system gives 111 tcc jj =  and 122 tcc jj = . Hence, the alternative { ii bb 21 , } 

and { jj cc 21 , } are only known up to the scaling factor t1. However, the pre-exponential 

factor in eqs 14 and 16 is uniquely defined: jijijiji cbcbcbcb 22112211 +=+ . 
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Case (ii): Alternatively, we have 120201 kkk += , 2121 kk = , 020112 kkk −= , and 0202 kk = . 

The matrix T takes the form 










+
=

313

1 0

ttt

t
T               (25) 

Yet again, the identification via similarity transformation indicates that for the non-

controllable and non-observable, intermolecular, two-state excited-state systems more 

distinct parameters could be identified than is possible from the mono-exponential f(t) = 

α exp(γ t) (eqs 14 and 16). Indeed, for the non-controllable system, it is impossible to 

determine the separate model parameters from γ = –(b1ik01 + b2ik02)/(b1i + b2i) (see eq 14). 

Similarly, for the non-observable system, the individual model parameters cannot be 

determined from γ = –[c2j(k02 + k12) – c1jk12] /c2j (see eq 16). 

4. Discussion and conclusions 

In the deterministic identifiability analysis, the central question is whether it is possible to 

find a unique solution for each of the unknown parameters of the proposed model, 

assuming perfect (i.e., without noise) data. Identifiability is also of importance in the 

design of time-resolved fluorescence experiments (choice of excitation, ex
λ i , and 

emission,  emλ j , wavelengths; the number and the nature of the used co-reactant 

concentrations; the need to add quencher to the photophysical system; etc.) that lead to 

unique solutions. A number of alternative approaches to identifiability analysis are 

available and have been employed for the analysis of the identification of common 

photophysical models. We have extensively used Markov parameters and elementary 

functions of the rate constants for this purpose (see literature references in [9] and [10]). 
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This identifiability method is closely related to the Laplace transform approach (or 

transfer function approach).4 The Taylor series expansion of the fluorescence δ-response 

function f(t) is an alternative method, which was used in the identifiability of 

fluorescence quenching of stationary probes by mobile quencher molecules in micelles.17 

The advantage of the Taylor series expansion of f(t) is its applicability to nonlinear 

models. 

Similarity transformation is a powerful identifiability technique because it offers an 

excellent method of finding an alternative realization ),, ji cbA(  of f(t) and of 

determining whether the model is uniquely or locally identifiable or not identifiable at all. 

In time-resolved fluorescence, a model is uniquely identifiable if all parameters can be 

uniquely determined from f(t). If there are several parameter values that correspond to 

exactly the same f(t), the model is locally identifiable. An unidentifiable model is found 

when there is an unlimited number of alternative model parameter values corresponding 

to the same f(t). In the latter case it is problematic to attempt to estimate the parameter 

values, because the solution found is only one of many and has no reason to be favored. 

An extra bonus of the similarity transformation approach is that the relationships between 

the true and alternative model parameters are explicitly provided by eqs 17a–c. However, 

the disadvantage of this identifiability technique is that one should not apply it when the 

conditions for its validity do not hold (i.e., both controllability and observability).7 One 

can convincingly argue that – since there are several other identification methods – one 

can always use a quite straightforward technique (e.g., transfer function approach) for 

which controllability and observability are not an issue. 
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There is, however, another important feature to controllability and observability in 

photophysics without direct relation to identifiability methods. Indeed, non-controllable 

or non-observable systems are found whenever the rank of the matrices R and O, 

respectively, is reduced. For the intermolecular, two-state excited-state system studied, 

rank R = 1 for the non-controllable system and rank O = 1 for the non-observable system. 

For the controllable and observable photophysical system, one always observes two 

exponential terms in f(t) representing the two eigenvalues of matrix A (eq 3), whereas the 

non-controllable or non-observable system always leads to single-exponential f(t) at all 

observation wavelengths emλ j  or at all excitation wavelengths ex
λ i , respectively. If one 

observes a mono-exponential f(t), while expecting a bi-exponential f(t), controllability 

and observability are useful, systematic tools to explore the reason for this: either a 

ground-state species is not excited or an excited species is not observed in addition to 

some zero-value exchange rate constants. The two next paragraphs summarize the 

possible causes for the “pathological”, mono-exponential responses f(t) for an 

intermolecular two-state excited-state system. 

For intermolecular two-state excited-state processes, we have a non-controllable system 

under three conditions (see sections 3.A, 3.C, and 3.E). In these three cases, f(t) remains 

mono-exponential, whatever the emission wavelength emλ j . For intermolecular two-state 

excited-state processes, one usually measures fluorescence traces d(t) as a function of co-

reactant concentration [M], excitation wavelength ex
λ i , and emission wavelength emλ j , 

and one extracts the relevant decay parameters of f(t) from the resulting fluorescence 

decay surface via a global nonlinear fitting. (a) If a single-exponential f(t) is found for 

[M] = 0 for all observation wavelengths emλ j , this implies that only ground-state species 1 
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is being excited (b2i = 0). (b) A single-exponential f(t) found for all [M] and at all emλ j  

indicates that either k12 = 0 and only ground-state species 2 is being excited (b1i = 0, 

Figure 2b, eq 9) or k21 = 0 and only ground-state species 1 is being excited (b2i = 0, 

Figure 2a, eq 8). In both cases, the single-exponential f(t) is independent of [M]. 

Absorption spectra of 1 and/or 2 can possibly be used to make a distinction between the 

two cases. (c) When a mono-exponential f(t) is observed at a single, non-zero [M] and at 

all emλ j , then that particular [M] is given by eq 13 and f(t) by eq 14. At [M] values 

different from that given by eq 13, f(t) is bi-exponential. 

For intermolecular two-state excited-state processes, a non-observable system is found 

under three conditions (see sections 3.B, 3.D, and 3.E). These three cases result in mono-

exponential f(t), independent of the excitation wavelength ex
λ i . (a) A single-exponential 

f(t) at [M] = 0 and at all ex
λ i  means that the fluorescence of only excited species 2* is 

being observed (c1j = 0). (b) A single-exponential f(t) found for all [M] and at all ex
λ i  

indicates either that k12 = 0 and the fluorescence of exclusively excited species 1* is being 

monitored (c2j = 0, Figure 3a, eq 11) or k21 = 0 and only the fluorescence of 2* is being 

observed (c1j = 0, Figure 3b, eq 12). In the former case, the fluorescence δ-response 

function f(t) depends on [M] (eq 11), while in the latter case f(t) is independent of [M] (eq 

12). (c) When a mono-exponential f(t) is observed at a single, “critical”, non-zero [M] 

and at all ex
λ i , this [M] is given by eq 15 and f(t) by eq 16. At [M] values different from 

that given by eq 15, f(t) is bi-exponential. 

To summarize, single-exponential fluorescence decays observed for intermolecular two-

state excited-state processes are always the consequence of non-controllability or non-
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observability of the photophysical system. For controllable and observable systems, 

fitting of the experimental fluorescence decay data requires the same number of distinct 

exponential terms as the number of excited species. Conversely, if the number of 

exponential terms in f(t) is less than the number of excited species, the photophysical 

system is not controllable or not observable. The importance of controllability and 

observability to the field of photophysics lies in the fact that these concepts allow one to 

systematically investigate the origins of the reduced number of exponential terms in f(t), 

and to extend the study to more complicated photophysical systems than that considered 

here.  

Figure captions 

Figure 1. Kinetic model of an intermolecular, two-state excited-state process. The 

excited-state processes are described by the deactivation rate constants k01 and k02, and 

the excited-state exchange rate constants k21 and k12. The transformation of species 1 and 

1∗ into, respectively, 2 and 2∗ is mediated by co-reactant M. Photoexcitation at ex
λ i  is 

symbolized by u(t). 

Figure 2. Non-controllable photophysical systems. (a) b2i = 0 and a21 = 0. (b) b1i = 0 and 

a12 = 0. Photoexcitation at ex
λ i  is symbolized by u(t). 

Figure 3. Non-observable photophysical systems. (a) c2j = 0 and a12 = 0. (b) c1j = 0 and 

a21 = 0. Observation at emλ j  of the fluorescence from a specific, excited species is 

depicted by an eye on top of that excited species. 
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Fig. 1 ↑ 

 

Fig. 2 ↑ 
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Fig. 3 ↑ 
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