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Abstract 

It is shown how Bradford curves, i.e. cumulative rank-frequency functions, as used in 

informetrics, can describe the fragment size distribution of percolation models. This 

interesting fact is explained by arguing that some aspects of percolation can be 

interpreted as a model for the success-breeds-success or cumulative advantage 

phenomenon. We claim, moreover, that the percolation model can be used as a 

model to study (generalised) bibliographies. This article shows how ideas and 

techniques studied and developed in informetrics and scientometrics can 

successfully be applied in other fields of science, and vice versa. 

 

†  Corresponding author. 
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1. Introduction 

 

The notions 'informetric' or 'bibliometric' distributions refer to a set of mathematical 

representations and formulations of regularities observed in bibliographies, lists of 

authors, citation lists, and similar data 1.  R. and S. Rousseau 1 have shown that 

these regularities occur not only in library and information, or scientometric settings, 

but almost everywhere in the sciences, social sciences and humanities, including the 

word usage of  popular song texts.   

 

In this article, we focus on the so-called Leimkuhler representation, using Bradford 

curves 2. Bradford curves represent cumulative rank-frequency distributions, usually 

(following Bradford 3) represented on a semi-log scale. We have shown that the 

equation 

 

where K, M and α are parameters, describes these Bradford curves quite well 2,4,5. 

The symbol R(r) denotes the cumulative number of items produced by the r most 

productive sources. The parameter α is the most important one, being the same as 

the exponent in the Lotka distribution: 

 

where f(y) denotes the number of sources with production y. In the case that α = 2, 

the denominator in (1) becomes zero and, hence this expression is not valid 
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anymore. Then a Bradford curve is described through Leimkuhler's function, i.e. a 

function of the form: 

 

with parameters a and b. 

 

2. Percolation maps in physics and in ecological studies  

 

The percolation map is a two-dimensional square lattice with m x m cells. For every 

lattice cell, the probability to be occupied is denoted as p  ( 0 < p < 1). Pixels that are 

vertical or horizontal neighbours form clusters of connected cells. It has been shown 

that, for an infinite lattice, cells will form a continuous infinite cluster spanning two 

sides of the map from p > 0.5928 on 6. This value p = pc = 0.5928 is known as the 

critical probability. In physical applications it corresponds to a phase transition 6,7,8. 

For p < pc, a lot of small clusters exist, spatially spread over the square lattice. 

Examples of percolation maps are presented in Fig.1.  This figure clearly illustrates 

the effect of an increase in p. Higher p-values result in larger clusters with a higher 

degree of connectivity and in a smaller number of clusters. If p > pc a cluster 

connecting opposite sites of the map is observed.  

 

Insert Fig.1 about here 

Percolation theory finds its origins in physics. One of its aims is to study the 

flow of particles or energy through a porous lattice of grid cells. In general one may 

say that percolation is one of the best (and simplest) models for disordered media. To 

support this claim Grimmett 8 begins his book with four types of disordered physical  
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Fig.1 The effect of the percolation probability p on cluster formation in percolation 

maps (25 x 25). (a) p = 0.25; (b) p = 0.50; (c) p = 0.75. 
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systems, emphasising in each the role of the percolation model. These examples are: 

disordered electrical networks, ferromagnetism, epidemics and the manufacture of 

silicon wafers for microchips. The occurrence of critical phenomena such as phase 

transitions are central to the appeal of percolation. 

Percolation maps have found their way in the ecological literature too. There 

they are often used to simulate habitat fragmentation 9, where they are considered as 

neutral models in landscape ecological research 10-13.  Indeed, in little more than a 

decade fragmentation, the breaking up of large habitat or land areas into smaller 

parcels, has become an environmental issue of world-wide proportion 14. It can be 

considered as one of the most severe processes to depress biodiversity. The number 

and size of the remaining fragments will determine the number of species that can 

support sufficiently large populations to persist within each fragment and the number 

of subpopulations among fragments 15-18. The smaller the fragmented blocks, the 

more the density of populations decreases and the risk of extinction grows. It, 

moreover, leads to geographical isolation, and therefore diminishes the 

recolonisation probability 19.  In these ecological applications, a percolation map with 

probability p is considered as a landscape with a particular degree of fragmentation. 

Hence, highly fragmented landscapes are characterised by the smallest p-values. 

 

In this article we will show how informetric models can help understanding this kind of 

ecological and physical modelling. In particular we will relate our function R(r) to the 

cluster size distribution. It is yet another attempt to bridge the gap between the 

information sciences, in particular informetrics, and other fields of science 20. 
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3. Simulation procedure, results and curve fitting 

 

Ninety nine percolation maps (m = 500, probability increment of 0.01) were 

generated using a FORTRAN-77 program. For random numbers, the Manly algorithm 

was used 21. One seed number was replaced by the last four numbers of the clock 

time (system time in seconds). Patch recognition and area calculation (expressed as 

number of pixels) were executed using the geographical information system GRASS 

4.1 (Geographical Resource Analysis Support System)22. Patch area data were 

converted to frequency and cumulative rank-frequency distributions. 

 

A non-linear least squares algorithm was used to find the parameters of best fitting 

Bradford curves. These parameter values are shown in the appendix. Results of this 

fitting exercise were excellent until p = 0.57. For p = 0.58 and p = 0.59 visual 

inspection showed that the results were poor. The whole procedure broke down from 

p = 0.60 on. This shows that for these p-values the resulting patch distribution can 

not be described by a Bradford curve. This is also clear from the following example (p 

= 0.75). For p = 0.75 there is one enormous patch of 187883 pixels, while the second 

largest one contains only 12 pixels. It is clear that such inequalities in production do 

not fit into the classical informetric framework. Figs 2, 3 and 4 illustrate three 

interesting cases: for p = 0.10 we have a Bradford curve with a rising tail (α  = 2.93), 

for p = 0.40 we have a classical Leimkuhler curve (α is almost 2; hence we have 

fitted the following Leimkuhler function: R(r) = 24907.46 ln( 1 + 0.0025 r) ), finally for 

p = 0.53 we have a Bradford curve with a so-called Groos droop. 
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Fig.4  Data and best fitting Bradford curve for p = 0.53 

 

Clearly something is happening around the critical value pc = 0.5928. Next, we will 

use another technique in an attempt to make this visible. For small p values we have 

a lot of small clusters, while for p values larger than the critical value there is one big 

cluster and some smaller ones. It seemed to us that a concentration or a diversity 

measure, as used in informetric and ecological studies 23, should be able to measure 

this difference, and perhaps even show the 'phase transition'.  We choose the 

Shannon-Wiener or entropy measure because of its links with physics.  Recall that 

the entropy diversity measure H' is defined as: 
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In this formula N denotes the number of clusters and ai denotes the relative 

contribution of the i-th cluster. Concretely, if the i-th cluster consists of qi lattice cells 

and there are S cells occupied, then ai = qi/S.  Fig.5 shows the amazing result: 

around p = 59% the value of the entropy index suddenly changes. Note that in 

physical texts this effect is usually demonstrated by plotting only the size of the 

largest cluster.  

 

Fig.5  Entropy values showing a sudden decrease 

around the critical value pc = 0.5928 
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4. Discussion 

The outstanding results of our fitting exercise are not a coincidence. On the contrary, 

we will show that percolation is a concrete way to simulate the success-breeds-

success (SBS) principle 24-29. Hence, it is no surprise to obtain the results of the SBS-

principle or the cumulative advantage effect (we use both terms as synonyms). Using 

Bradford's terminology 3, every lattice cell can be thought of as an article about a 

specific topic written (or not written) by a scientist (or group of scientists). In this way, 

every potential source (article) has a chance, given by p, to become active. Note that 

this aspect is usually not modelled in the SBS-model. If a source becomes active it 

can be isolated, corresponding to publishing in a new journal, or it can form a cluster 

with other, already existing, articles. This corresponds to an article being published in 

a journal that has already published articles on this particular topic. The larger the 

patch (journal) the larger the probability that the new article can join it and make it 

even larger (important). This is the success-breeds-success or cumulative advantage 

aspect of the procedure.  Basically, a larger percolation cluster has a larger perimeter 

and therefore grows faster. 

 

If p is small only relative few lattice cells are occupied. These cells moreover, have 

only a small chance to merge into larger patches. This situation corresponds to the 

emergence of a new field of science.  The larger p the more cells are occupied, 

having also a larger probability to cluster. This corresponds to a more active and 

older field of science.  

 

In this way percolation yields an interesting simulation of the activity of a science 

field. The larger p, the more mature the simulated subdomain of science (or studied 



 11 

topic). The results of our fitting exercise clearly show that larger p values correspond 

to smaller alpha values (cf. Fig.6). Alpha-values smaller than 2 give cumulative rank-

frequency distributions with a so-called 'Groos droop' 4.  Simulations using increasing 

p-values hence correspond to studying the evolution of a field 30,31.   

 

 

Fig.6  The relation between the parameter α and a lattice cell's 

 probability to be occupied 

 

We further note that the power law 

 

yields an excellent fit to the data of Fig. 6. From an ecological perspective we may 

say that this monotone decreasing (p,α)-trend curve (Fig.6) enables the 
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characterisation of the fragmentation phenomenon by one single characteristic value, 

namely α.  

 

Maps with p > 0.60 can not be described by the classical informetric distributions. 

This should not be interpreted as a disadvantage: landscapes represented by these 

maps can be considered as the result of a (very) low degree of fragmentation. 

Usually, studies are directed towards landscapes with an intermediate or high degree 

of fragmentation for which an adequate conservation policy can compensate for 

these negative consequences of the fragmentation process. 

 

Finally, we have shown how an inequality measure (in this case the entropy diversity 

measure) is able to demonstrate the phase transition in percolation maps.  

 

5. Conclusion 

Percolation seems to be an interesting technique to simulate generalised 

bibliographies (IPPs), such as publication lists of scientific institutes, and their time 

evolution. This can best be appreciated by comparing our Figs 2,3,4 with semi-log 

plots of existing bibliographies as in ‘Bradford curves’2. Besides this promising 

application in informetrics, we note a new interpretation in ecology. Indeed, the α-

value can be used as a quantitative indicator of habitat fragmentation in the sense 

that high values of this indicator are related to high p-values, i.e. highly fragmented 

landscapes. This article shows that it is possible to give knowledge and techniques 

used in scientometrics and informetrics a new interpretation in other fields of science.  
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Appendix: Results of fitting equation (1) to percolation data: parameter values and R² 
 
 

p% α K M R² 
2 4.67 10045 3.67 1 
3 4.15 13833 3.56 1 
4 4.04 17522 3.72 0.99999 
5 3.59 15813 4.17 0.99999 
6 3.79 19629 4.86 0.99999 
7 3.26 20275 4.02 0.99999 
8 3.67 26071 5.90 0.99994 
9 3.33 24645 4.71 0.99998 
10 2.93 23893 4.56 0.99998 
11 3.03 25523 5.06 0.99998 
12 2.88 26773 4.92 0.99995 
13 2.80 26544 5.44 0.99997 
14 2.92 29324 8.17 0.99990 
15 2.63 26437 7.03 0.99997 
16 2.64 28669 7.29 0.9999 
17 2.58 28690 8.24 0.9999 
18 2.65 31622 8.71 0.9998 
19 2.52 30352 8.65 0.9998 
20 2.32 27244 8.97 0.9999 
21 2.27 26428 9.85 0.9998 
22 2.30 28419 10.94 0.9996 
23 2.22 27315 10.83 0.9997 
24 2.25 29047 11.37 0.9996 
25 2.24 29971 11.62 0.9997 
26 2.33 34196 15.14 0.9992 
27 2.27 32657 15.57 0.9992 
28 2.24 32368 16.03 0.9991 
29 2.08 28076 15.98 0.9994 
30 2.14 30232 19.12 0.9991 
31 2.12 30155 22.34 0.9990 
32 2.12 29871 27.22 0.9990 
33 2.01 26026 22.83 0.9991 
34 2.01 26265 26.77 0.9986 
35 2.01 27309 26.22 0.9988 
36 2.05 26910 36.41 0.9992 
37 2.08 29186 39.78 0.9983 
38 2.05 27955 44.59 0.9988 
39 2.02 26663 48.94 0.9992 
40 2.00 25119 62.18 0.9993 
41 1.94 22226 58.84 0.9992 
42 1.95 22372 65.48 0.9994 
43 1.91 21993 63.26 0.9986 
44 1.89 21158 71.98 0.9982 
45 1.95 23427 91.51 0.9979 
46 1.82 17537 87.85 0.9981 
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47 1.90 20595 123.5 0.9972 
48 1.85 17043 139.2 0.9987 
49 1.86 17041 207.1 0.9982 
50 1.82 12654 354.5 0.9992 
51 1.81 11321 481.3 0.9994 
52 1.80 10845 530.2 0.9994 
53 1.80 10164 734.5 0.9995 
54 1.76 7965 758.7 0.9992 
55 1.68 4278 2113 0.9987 
56 1.78 5425 5669 0.9997 
57 1.74 3744 8888 0.9989 
58 1.77 3092 41540 0.9944 
59 1.76 1944 213129 0.9837 

 
 

 


