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Abstract

In previous research, significant effects of weather conditions on car crashes have been

found. However, most studies use monthly or yearly data and only few studies are

available analyzing the impact of weather conditions on daily car crash counts. Fur-

thermore, the studies that are available on a daily level do not explicitly model the

data in a time-series context, hereby ignoring the temporal serial correlation that may

be present in the data. In this paper, we introduce an Integer Autoregressive model for

modelling count data with time interdependencies. The model is applied to daily car

crash data, metereological data and traffic exposure data from the Netherlands aiming

at examining the risk impact of weather conditions on the observed counts. The re-

sults show that several assumptions related to the effect of weather conditions on crash

counts are found to be significant in the data and that if serial temporal correlation is

not accounted for in the model, this may produce biased results.

Keywords: Crashes; Accident analysis; Weather conditions; INAR

1corresponding author



2

1 Introduction

The last few years, road accidents statistics are the subject of increased interest both on the part of

policy makers and academia. The objective is to better understand the complexity of factors that

are related to road accidents in order to take corrective actions to remedy this situation. In this

context, the modelling of crashes over time has obtained considerable attention by researchers in

the past. For instance, several researchers have analyzed the effect of policies, economic climate and

social conditions on the year-to-year changes in crash risk (Chang and Graham, 1993; Oppe, 1991).

Other researchers have looked at month-to-month changes in accident levels (Van den Bossche et

al., 2005, 2004; Keeler, 1994; Fridstrøm and Ingebrigtsen, 1991). However, there are only few

studies that have looked at changes in crash counts at a more disaggregate level. For instance,

Levine et al. (1995a, 1995b) and Jones et al. (1991) studied daily changes, whilst Ceder and

Livneh (1982) examined hourly fluctuations in crashes. Both approaches, high-level or low-level

data aggregation, have advantages and disadvantages. While changes in crash counts on a highly

aggregated level can be explained by structural changes, they cannot easily pick-up patterns of

seasonality or weather effects. In contrast, the lower the level of aggregation, the more it is possible

to study the effects of weather conditions, traffic volume, holidays etc. on changes in crash counts.

Several authors have therefore warned for biases being introduced by modelling crash counts at

high levels of aggregation (Golob et al., 1990; Jovanis and Chang, 1989). In this paper, we study

the effects of weather conditions on daily crashes for 3 large cities in the Netherlands (Dordrecht,

Haarlemmermeer and Utrecht) in the year 2001. The use of weather conditions is motivated by

earlier research where significant influences of weather conditions on road crashes were found (e.g.

Andrey and Knapper, 2003).

From a methodological perspective, a number of approaches have been suggested by researchers

to model time-series crash count data. More specifically, serial correlation between successive daily

crash counts, i.e. autocorrelation, is reported as an important challenge for all accident models

(Levine et al., 1995; Fridstrøm et al., 1995, 1991). For instance, Miaou and Lord (2003), Shankar

et al. (1998) and Fridstrøm et al. (1995) use a Negative Binomial (NB) model to account implicitly

for temporal serial correlation. Ulfarsson and Shankar (2003) use the Negative Multinomial (NM)

model to predict the number of median crossover crashes using a multi-year panel of cross-sectional

roadway data with roadway section-specific serial correlation across time.

However, the above models do not explicitly take into account the large and significant auto-

correlation that is present in the data. Although, according to Fridstrøm et al. (1995), this has

probably little effect on the statistical consistency of the coefficient estimates, they mention that it

produces standard estimates that are too optimistic and thus not taking account of autocorrelation

presents a potentially serious source of inefficiency in the modelling of cross-section/time-series
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data. In response to these problems, we therefore present in this paper, a first-order autoregressive

(AR1) time-series model for Poisson distributed data (see section 2) and compare it to some of the

classical models found in the literature. The Poisson AR(1) model was first developed by Al-Osh

and Alzaid (1987) and McKenzie (1985). Joe (1996) later generalized the approach. Weather effects

in our model are easily incorporated as covariates via a link function as in standard GLM models.

The remaining of the paper proceeds as follows: in section 2, a detailed description of the

INAR model is given. The EM algorithm to estimate the parameters of the model is described

in section 3. Section 4 provides a description of the data. Section 5 contains information on the

model formulation and estimation on our data. In section 6, detailed results are given. Finally,

concluding remarks and some limitations of the research can be found in section 7 and 8.

2 Integer Autoregressive Models

Starting from the well-known simple AR(1) model for continuous data, we assume that Xt =

φXt−1 + εt, where |φ| < 1 and εt ∼ N(0, σ2) independently. In other words, the current observation

at time t depends for some part on the previous observation at time t−1. This model, while suitable

for continuous random variables, cannot be used directly for discrete data. However, models that

capture the same idea, but suitable for count data, can be also constructed. McKenzie (1985) and

Al-Osh and Alzaid (1987) defined an analogous process for discrete data, called the Integer-valued

autoregressive (INAR) process as follows:

Definition: A sequence of random variables {Xt} is an INAR(1) process if it satisfies a differential

equation of the form

Xt = α ◦Xt−1 + Rt, t = 1, 2, . . . (1)

where Rt is a sequence of uncorrelated non-negative integer-valued random variables having mean

µ and finite variance σ2 and X0 represents an initial value of the process while the operator ” ◦ ”

denotes the binomial thinning operator defined by

α ◦X =
X∑

t=1

Yt,

where Yt are Bernoulli random variables with P (Yt = 1) = α = 1− P (Yt = 0), α ∈ [0, 1]. One can

easily see that the binomial operator replaces the multiplication used for the normal time series

autoregressive model so as to ensure that only integer values will occur. This implies that the

Poisson AR model can be interpreted as a birth and death process, see Ross (1983, Section 5.3).

Each individual at time t − 1, has probability α of continuing to be alive at time t, and at each

time t, the number of births Rt follows a Poisson distribution with mean µ.
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Thus, conditional on X, α ◦ X is a binomial random variable, where X denotes the number

of trials and α denotes the probability of success in every trial. The term Rt is referred to as the

innovation term and must be independent of α ◦ Xt−1 and follows any discrete distribution (in

order for Xt to be counts).

This model belongs to a more general family of autoregressive models discussed in Grunwald et

al. (2000). The basic ingredient of the INAR model is that it assumes that the realization of the

process at time t is composed by two parts, the first one clearly relates to the previous observation,

while the second one is independent and depends only on the current time point. Although it

is possible to incorporate higher-order lags into the model, we do not pursue them here since it

has been shown that their interpretation is not straightforward (see Jin-Guan and Yuan, 1991).

Therefore, in this paper we will confine ourselves to the first-order case.

The mean and variance of a stationary INAR(1) process are constants given by the formulae

µX = E (Xt) =
µR

1− α
and σ2

X = V ar (Xt) =
αµR + σ2

R

1− α2
, (2)

where µR and σ2
R are respectively the (assumed finite) mean and variance of the i.i.d. innovations.

The auto-covariance function of a stationary INAR(1) process {Xt}t∈Z is given by the formula

γX(k) = Cov (Xt, Xt−k) = α|k|σ2
X , k ∈ Z. (3)

From the covariance function, it is easy to obtain the autocorrelation function ρ(k) as follows:

ρ(k) =
γ(k)
γ(0)

= α|k|.

Thus, the autocorrelation function ρ(k) decays exponentially with lag k and for k = 1 we obtain

that the parameter α represents the correlation between successive time points. By specifying the

distributional form of the innovation term (Rt), a large number of different models can arise. The

simplest and most common choice is to assume a Poisson distribution for the innovation term Rt.

However, generalizations of the basic INAR model can be based on either other distributional forms

for Rt, e.g. McKenzie (1986) or by replacing the binomial thinning operator with other kind of

operators based on similar arguments (e.g. Al-Zaid and Al-Osh, 1993).

The simple Poisson INAR model can be extended to a INAR Poisson regression model by

adding covariates to both the innovation term Rt and/or the autocorrelation parameter α. The

model then takes the form
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Xt = αt ◦Xt−1 + Rt

Rt ∼ Poisson(λt)

log λt = z′tβ (4)

log
(

αt

1− αt

)
= w′

tγ,

for t = 1, . . . , T where zt and wt are vectors of covariates at time t while β and γ are the associated

regression coefficients. Note that the covariates for the two parts of the model must not necessarily

be the same.

The well-known Poisson regression model corresponds to the case when αt = 0 for all t and

thus the INAR(1) model is a natural extension of the standard Poisson regression model when

autocorrelation in time series counts is present. The model also assumes that the correlation

between successive points (αt) may depend on some variables, i.e. it is not constant across time.

Clearly, the above model offers great flexibility for modelling count data with serial correlation.

Other models to cover the time series nature of discrete valued data can be found in MacDonald

and Zucchini (1997). The models discussed include Markov chains, higher-order Markov chains,

models based on mixtures and models based on the idea of thinning. Also the model of Zeger

(1988) offers a framework for discrete time series models.

However, those models usually model the time dependency through the relationships of their

parameters (so-called parameter-driven models). As a result, the interpretation of the autocorre-

lation structure is not so easy since they induce it in the mean process and not directly in the

observations, like in the INAR model. On the other hand, the advantage of the parameter-driven

approach is that it accounts for overdispersion in the model, which is not straightforward in the

INAR model. In fact, the INAR model assumes Poisson marginal distributions and hence it does

not allow for overdispersion. Some extensions to allow for overdispersion can be found in Franke

and Sellingman (1993), Karlis and Xekalaki (2001) and Gourieroux and Jasiak (2004). However,

when the overdispersion in the data is small, like in our case, the INAR(1) model suffices to de-

scribe the data and offers easy interpretation of the results. Furthermore, according to Böckenholt

(1999), the INAR Poisson regression model uses a dependence structure that is more parsimonious

requiring only a small number of parameters.

Finally, the interpretation of the model is also suitable for accident data. The current count

is split in two parts, the one part (αt ◦ Xt−1) reflecting common elements with previous counts,

like infrastructure, and the second part (Rt) reflecting a random process that generates accidents.

Indeed, for our accident data, where we deal with the daily number of crashes for 3 city regions,

it is reasonable to assume correlation between successive crash counts as a result of a structural



6

underlying level of risk that is region-specific and which depends, for instance, also on the char-

acteristics of the road infrastructure. Indeed, given all other influential factors (like differences in

weather or exposure) unchanged, we may expect the number of crashes of the current day to be

similar to the number of crashes of yesterday due to a certain underlying level of unsafety that

is determined by the intrinsic safety level of the infrastructure (type of roads, length of the road

network, existence of black spots, etc). However, additionally, the current observation also depends

on day-to-day differences in e.g. weather, exposure, etc. that may influence the unsafety level on

the current day (Rt).

3 Estimation

From the preceding formulation of the INAR model one can easily see that the conditional distri-

bution of Xt | Xt−1 = xt−1 takes the form

P (xt | xt−1, αt, λt) =
s∑

k=0

exp(−λt)λt
xt−k

(xt − k)!


 xt−1

k


 αt

k(1− αt)xt−1−k,

where αt and λt are defined previously and s = min(xt, xt−1). This probability function is the

convolution of a Poisson with a binomial random variable (see, Shumway and Gurland, 1960).

The likelihood for model defined in (4), conditional on some initial value X0, takes the form

L(θ) =
T∏

t=1

P (xt | xt−1, αt, λt)

where θ = (β, γ) denotes the vector of parameters. The likelihood is rather complicated as it

involves multiple summations and, hence, direct maximization of the likelihood is not easy. ML

estimation for the model including covariates has been discussed in Böckenholt (1999). He proposed

a Newton-Raphson approach for maximizing the likelihood. For the model without covariates, see

the contributions by Al-Osh and Al-Zaid (1987), Ronning and Jung (1992) and Freeland and

McCabe (2002). Karlis and Xekalaki (1999) provided an EM algorithm for the simple Poisson

INAR model. We now extend this algorithm to the INAR Poisson regression model by including

covariates.

The EM algorithm has had a tremendous influence on recent statistical practice as it can provide

ML estimates to a broad range of problems that either containing missing values or that can be

considered as containing missing values. For our formulation of the model, we can rewrite the

observation at point t as Xt = Yt + Rt where Yt = αt ◦ Xt−1. In fact, we have observed data Xt

while we cannot observe the latent variables Yt and Rt. Note that if we could observe those values,

then the estimation of the complete data (Yt, Rt) would be straightforward as it comprises simple

MLE in GLM models. Recall that Yt ∼ Binomial(Xt−1, at) while Rt ∼ Poisson(λt).
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The EM algorithm proceeds by estimating the unobserved data by their conditional expectations

given the data and the current values of the parameters and then it maximizes the complete data

likelihood using the expectations of the unobserved data taken at the previous step. The algorithm

has some interesting properties like monotonic, but slow, convergence, parameters always in the

admissible range etc. Multiple runs are suggested in order to ensure that the global maximum has

been located. More details on the EM algorithm can be found in McLachlan and Krishnan (1997).

In our case, the algorithm has to be constructed so as to estimate, at the E-step, the conditional

expectations of Yt and Rt given the data and the current values of the estimates and to maximize,

at the M-step, the complete likelihood. The latter is equivalent to maximizing the likelihood of

a standard GLM model for the binomial distribution and the likelihood of a GLM model for the

Poisson distribution. Statistical packages now offer procedures to fit those models. Hence the

algorithm can be described as follows.

• E-step: Using the current values of the estimates, say θold = (βold, γold), calculate

st = E(Rt | xt, xt−1, θ
old)

=
∞∑

z=0
zP (Rt = z | xt, xt−1, θ

old)

=
∞∑

z=0
z P (Rt=z)P (Yt=xt−z)

P (xt|xt−1,αold
t ,λold

t )

where P (Rt = z) and P (Yt = xt−z) are the probability functions of a Poisson and a binomial

distribution respectively using the convolution representation discussed above, defined in the

appropriate range. After some algebraic manipulation we can derive the relatively simpler

formula

st = λold
t

P (xt−1|xt−1,aold
t ,λold

t )

P (xt|xt−1,αold
t ,λold

t )
,

for t = 1, . . . , T , where according to the model λold
t = exp

(
ztβ

old
)

and αold
t = exp(wtγ

old)/(1+

exp(wtγ
old)) .

The conditional expectation of Yt given the data and the current values of the estimates can

be determined by simple subtraction, as

ct = E(Yt|xt, xt−1, θ
old) = xt − st.

• M-Step: Update the parameters in θ by fitting two GLM models. Namely, update β by fitting

a Poisson regression model with response variables ct and design matrix z, while γ can be

updated by fitting a binomial logit model with response st and design matrix w.

• Stop iterating when some convergence criterion is satisfied, otherwise, go back to the E-step.
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The above algorithm has all the pros and cons of the standard EM. Initial values for β can be

retrieved by fitting a simple Poisson GLM model to the data. This algorithm was extensively used

in our data analysis and we did not face any problems.

4 Data Description

This study is based on the daily crash counts that were obtained from the major roads covered

by the surface of 3 big cities (Utrecht, Dordrecht and Haarlemmermeer) in the Netherlands in

the year 2001. The cities were selected based on two criteria. Firstly, their proximity to some

national weather station such that accurate daily weather conditions for each city could be obtained.

Secondly, the cities were selected so that they are far enough apart in order to prevent that weather

conditions would be identical for the different sites for too many of the observations.

Information on daily traffic exposure in 2001 was obtained from the Dutch Ministry of Trans-

port. More specifically, for each city region, daily vehicle counts were obtained for each road

segment of the major road network based on loop detector data. Taking into account the length of

the road segments, this enabled us to calculate the day-to-day total amount of vehicle kilometers

driven on the major road network of each city region. Later on in this paper we will show that if

information on daily traffic exposure is not be available for some reason, day-of-the-week dummies

may also account quite well for the day-of-the-week variability in exposure and still produce con-

sistent results for the weather effects. In fact, the use of dummies has also been proposed in other

studies (see e.g. Martin, 2002; Levine et al., 1995; Jones et al., 1991; Tanner, 1967).

In any case, it is necessary to account for differences in exposure in the model in order to

separate the direct effect from the indirect effect (through exposure) that weather may have on

crashes. Since a measure of exposure is included in our model, the results in this paper will thus

show the direct effect of weather on crashes, conditional on a certain level of exposure.

With respect to weather conditions, the daily weather observations were obtained from the

Dutch National Metereological Institute. More specifically, the following variables were created from

the data and considered for inclusion in the model. The choice of variables was based on previous

research where they have demonstrated to be important/significant or at least hypothesized as

being influential towards predicting the number of crashes. Note that the data are daily averages

and thus they do not reflect instant weather conditions.

• wind. Variables related to wind velocity have been used by Lian et al. (1998), Levine et al.

(1995) and Baker and Reynolds (1992). The literature shows that wind is usually not found

to be significant, except for heavy storms and for large vehicles. Nevertheless, we use the

prevailing wind direction in degrees 360=North, 180=South, 270=West, 0=calm/variable),
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the daily mean wind speed in 0.1 m/s, the maximum hourly mean wind speed in 0.1 ms/s

and the maximum wind gust in 0.1 m/s.

• temperature. Temperature has found to be important, especially in combination with snowfall

or rain (e.g., Branas and Knudson, 2001; Brown and Baass, 1997; Fridstrøm et al., 1995;

Fridstrøm and Ingebrigtsen, 1991). We use the daily mean temperature in 0.1 degrees Celsius,

the minimum temperature in 0.1 degrees Celsius and the maximum temperature in 0.1 degrees

Celsius. However, since the same absolute temperature during summer and winter may have a

different effect on crashes, we also created a relative temperature variable, being the deviation

of the mean daily temperature from the monthly temperature, to cancel out potential seasonal

effects. Finally, since the effect of temperatures may be nonlinear, the daily mean temperature

was discretized into four non-overlapping intervals, i.e. T < 0, 0 ≤ T < 10, 10 ≤ T < 20

and T ≥ 20. The latter also enables to treat temperatures below zero as a separate category.

• sunshine. The amount of sunshine was found to be an important variable in the prediction of

crashes. For instance, in Fridstrøm et al. (1995), it was found that an extra hour of daylight

between 7 A.M and 11 P.M decreased the the number of crashes in Norway by 4%. We

use sunshine duration in 0.1 hour and percentage of maximum possible sunshine duration.

The latter variable accounts for seasonal differences in the amount of daylight due to different

sunrise and sunset hours. Furthermore, an additional dummy variable was created to account

for sun dazzle effects. Typically, in Northern countries and during fall and the winter period,

the sun is very low above the horizon during certain periods of the day causing crashes by

drivers who get dazzled by the sun. This dummy variable takes the value of 1 if the month

is between September and February, maximum possible sunshine duration is above 70% and

cloud cover is less than 4, approximating in this way a bright day with a lot of sunshine

during fall or the winter period and 0 otherwise.

• precipitation. Rainfall has found to be a significant predictor for road crashes in many

studies (see e.g. Fridstrøm et al., 1995; Levine et al., 1995; Satterthwaite, 1976). We use

precipitation duration in 0.1 hour and daily precipitation amount in 0.1 mm. Moreover, an

additional variable was created that expresses the intensity of rain, calculated as the ratio of

the precipitation amount divided by the precipitation duration. High values for this variable

indicate heavy rains during small time periods. Also, a lagged variable was created indicating

the number of days since it has last rained. In fact, it was hypothesized recently (Eisenberg,

2004) that the risk imposed by precipitation increases dramatically as the time since last

precipitation increases. Finally, the amount of rainfall was also discretized into several non-

overlapping intervals in addition to a binary variable indicating whether it has rained or not
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during that day.

• air pressure. In Roer (1974) and Orne & Yang (1972), falling barometric pressure was found

to produce a significant increase in crash rate. We use the daily mean surface air pressure in

0.1 hPa.

• visibility. We use minimum visibility (0=less than 100m, 1=100-200m, 2=200-300m,...,) and

cloud cover in octants (9=sky invisible).

In addition, similar to Fridstrøm et al. (1995), we also introduced city-specific dummy variables

to account for city-specific differences in the number of crashes not accounted for by weather or

traffic exposure (e.g. different physical conditions of the road network).

5 Model Formulation and Estimation

Let us now formulate the model in a mathematical notation. The variable Xit denotes the number

of crashes for site i at time t, with i = 1, 2, 3 and t = 2, . . . , 365. The first observation Xi1 for each

site is considered as the initial value. We use a model of the form

Xit = αit ◦Xi,t−1 + Rit

Rit ∼ Poisson(λit)

λit = exp
(
z′itβ

)

log
(

αit

1− αit

)
= w′

itγ

where zit and wit are vectors of parameters at time t for site i while β and γ are the associated

regression coefficients. Our model assumes different α’s for each site, because preliminary analysis

showed that the sites have different autocorrelations. Thus vector w consists of dummy variables

for the 3 different sites. No weather or exposure covariates were used for the α’s in order to

avoid confusion about the effect of the weather conditions and exposure on the mean crash count.

Recall that for the INAR model the marginal mean equals λ/(1 − α) and hence using the same

covariates for both the nominator and the denominator can lead to results without simple and

useful interpretation. In the next section, we do not report the estimates for the vector γ but the

parameters αj , j = 1, 2, 3 corresponding to the three different sites.

Note that in our model we estimate only one parameter for each weather effect and exposure for

all cities. Clearly, one can assume different regression parameters for each city, i.e. an interaction

of weather conditions and city. For example, we may assume that λit = exp (z′itβi), so changes in βi

show the interaction of the particular city to the weather parameters and exposure. Alternatively,
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such effect can be incorporated into the model by using dummy variables to reflect different cities.

Preliminary examination of the data did, however, not show such effect. Generalization to this case

is straightforward but it will not be treated in this paper. We use dummy variables for the 3 sites

in order to account for the different mean crash counts observed in the data, but the regression

parameters are assumed constant across sites.

Finally, since there is significant multi-collinearity in the data, especially for those variables

referring to the same weather characteristic (e.g. minimum and maximum temperature during

the day) we adopted a stepwise selection procedure during model estimation. Details about this

stepwise selection can be found in section 6.2.

6 Results

6.1 Preliminary Analysis

Figure 1 shows the crash number series and daily traffic exposure for the three sites. It is apparent

that the mean daily crash count and exposure are different between the three sites (see also table

1), which clearly motivates the use of site-specific dummy variables in the model.

Table 1 shows some of the crash data characteristics for the 3 sites. Clearly, there are differences

between the sites. Firstly, for all three sites the ratio of the variance to the mean is larger than 1

implying overdispersion relative to the simple Poisson distribution. An overdispersed INAR model,

like the negative binomial regression INAR model could be used to account for the overdispersion.

However, after fitting the INAR Poisson regression model, it turned out that the remaining overdis-

persion is no longer significant and for this reason there is no need to use the more complicated

negative binomial model. The reason is that the covariates used for modelling the data explain the

overdispersion to a large extent. Secondly, there is a large difference between the autocorrelation of

the three sites. The autocorrelations reported are of the first order. Higher-order autocorrelations

were not large, apart from the autocorrelation for lag=7, which is however not statistically signif-

icant, and which in some sense indicates the effect of the day. For this reason, we fitted different

autocorrelation parameters for the three sites.

Figure 2 shows the time series for some of the weather variables. The columns correspond

to a site and the rows to a weather variable. The four variables presented in the plot are the

mean temperature, the precipitation duration, the daily precipitation amount and the mean wind

speed. We used the same scale to enable a fair comparison between the sites. Although the general

pattern for each variable is similar across the different sites, several differences between sites for the

same day are observable. For this reason, we expect that the weather effect obtained through the
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Figure 1: Crash counts and daily traffic exposure for the three sites (daily data for 2001)

analysis may have a more general interpretation since we have selected sites with varying weather

conditions.

6.2 Model Estimation and Results

Table 2 shows the results after estimation. More precisely, three models were fitted. Weather

variables are always included, but the way how traffic exposure is included in the model is different

for each model. In the first model, day-of-the-week dummies are used to reflect differences in

exposure in case actual traffic exposure data for each day of the year are not available. In the

second model, actual traffic exposure is included as a covariate in the model, but no day-of-the-week

dummies. Finally, in the third model, both the actual traffic exposures and the day-of-the-week

dummies are included. Comparison of the results between the three models will indeed enable us

to evaluate if day-of-the-week dummies are able to act as some kind of proxy variable for real traffic

exposure, or not.
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site mean variance autocorrelation variance/mean

Utrecht 2.747 4.227 0.0276 1.54

Dordrecht 0.950 1.239 0.0956 1.30

Haarlemmermeer 12.819 21.950 0.222 1.71

Table 1: Descriptive measures for the 3 series
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Figure 2: Plot of some of the weather variables for the three sites. There are notably different

weather conditions

Given the large amount of explanatory variables available in this study and the problem of

multi-collinearity associated with it, a stepwise model selection procedure was carried out. More

specifically, the selection of the variables for the model was based on a forward search technique. In

the first step, for each set of related variables (e.g. those related to wind, precipitation, temperature,

etc.) one variable was selected from each set; the one with higher correlation with the response

variable is selected in order to avoid multi-collinearity effects. After estimating this model and
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Model 1 Model 2 Model 3

coefficient (s.e.) p-value coefficient (s.e.) p-value coefficient (s.e.) p-value

Constant 1.7048 (0.1072) 0.000 1.0084 (0.1520) 0.000 0.8375 (0.1942) 0.000

Utrecht -1.3897 (0.0684) 0.000 -0.9964 (0.0900) 0.000 -0.9021 (0.1142) 0.000

Dordrecht -2.5186 (0.0852) 0.000 -1.9518 (0.1140) 0.000 -1.8300 (0.1531) 0.000

Mean temperature < 0.001 < 0.001 < 0.001

< 0 0.5238 (0.1135) < 0.001 0.5742 (0.1120) 0.000 0.5666 (0.1141) 0.000

[0, 10] 0.3214 (0.0826) < 0.001 0.3253 (0.0810) 0.000 0.3191 (0.0827) 0.000

[10, 20] 0.2516 (0.0798) 0.000 0.2353 (0.0780) 0.003 0.2160 (0.0801) 0.007

> 20 0 - 0 - 0 -

Dev of mean temp 0.0010 (0.0006) 0.081 0.0012 (0.0010) 0.042 0.0012 (0.0006) 0.0366

Precipitation duration 0.0027 (0.0005) 0.000 0.0029 (0.0000) 0.000 0.0033 (0.0005) 0.000

Intensity of rain 0.0321 (0.0143) 0.025 0.0304 (0.0140) 0.033 0.0344 (0.0144) 0.0168

Sun dazzle 0.1948 (0.0790) 0.013 0.1921 (0.0780) 0.014 0.1815 (0.0791) 0.0217

% max. possible sunsh. dur. 0.0012 (0.0006) 0.068 0.0011 (0.0010) 0.084 0.0013 (0.0006) 0.0403

Day of the week 0.000 - - - 0.001

Monday 0.3448 (0.0586) 0.000 - - 0.0144 (0.0801) 0.8569

Tuesday 0.4467 (0.0574) 0.000 - - 0.0452 (0.0880) 0.6077

Wednesday 0.2659 (0.0590) 0.000 - - -0.1559 (0.0926) 0.0922

Thursday 0.2886 (0.0587) 0.000 - - -0.1527 (0.0942) 0.1050

Friday 0.4364 (0.0570) 0.000 - - -0.0107 (0.0933) 0.9091

Saturday 0.0812 (0.0623) 0.192 - - 0.0030 (0.0640) 0.9625

Sunday 0 - - - - -

Exposure - - 0.0581 (0.0060) 0.000 0.0687 (0.0117) 0.000

Autocorrelation parameters

Utrecht 0 (0.0375) 1 0.0 (0.037) 1 0 (0.0371) 1

Dordrecht 0.0759 (0.0432) 0.078 0.0689 (0.044) 0.116 0.0720 (0.0438) 0.1001

Haarlemmermeer 0.1403 (0.0391) 0.003 0.1223 (0.039) 0.002 0.1402 (0.0410) 0.001

Table 2: Results based on the fitted model INAR regression model

evaluating the significance of each of the included variables, we added covariates to the model in

additional steps by finding in each step the one that improves most the likelihood when added.

Note that our EM algorithm provides an efficient tool for fitting models with similar structure

since if good initial values are available, the algorithm converges quite fast. This implies that a

large number of models were fitted. In several cases, in order to add flexibility to the model, we

moved from simple linear relationships of the variable to the logarithm of the response variable by

fitting non-linear relationships and/or discretized versions (see also the discussion in section 4).

Table 2 shows the results of the final models. The reported standard errors are asymptotic

standard errors based on differentiating twice the loglikelihood. For the categorical variables, the

reported statistic is the likelihood ratio test statistic measuring the improvement on the loglikeli-

hood while adding this categorical variables. The reported p-values are based on the well known χ2
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distribution of the test statistic. For the other parameters, the reported p-values are based on the

standard normal approximation of the t-values reported. Comments for all the variables included

in the model follow:

• exposure. The first model shows that the proxies for exposure (day-of-the-week effect) are

highly significant. It is apparent from the table that weekdays are more dangerous than

weekend days (Sunday being the reference day). The difference between Saturday and Sunday

is, however, not significant. Tuesday (0.45) and Friday (0.44) are the most dangerous days

of the week in terms of the number of crashes. In fact, from an overall perspective, table 2

shows that the variable ’day of the week’ is a highly significant variable and thus it should

not be removed from the model. These results are consistent with findings in earlier research

(e.g. Levine et al., 1995a, 1995b) where differences between weekdays and weekend days were

also found. However, the second model shows that when daily exposure data are included

in the model as covariate, this variable is highly significant and when exposure increases one

can expect a higher number of crashes. More interestingly, the results of model 3 show that

once real traffic exposure information is included in the model as a covariate, the individual

day-of-the-week dummies are no longer significant, although overall they are still significant

in the model. Moreover, it appears that the results for the weather variables are only very

slightly influenced by the way how exposure is being included in the models. This shows that

day-of-the-week dummies can be seen as some kind of proxy variable for exposure when real

traffic exposure information is missing.

• precipitation. Rainfall is also highly significant with respect to the number of crashes in all of

the three models. The variable ’intensity of rain’, being the ratio between daily precipitation

amount and daily precipitation duration, is highly significant and shows that if the intensity

of the rain increases, then this leads to a higher number of crashes. The same is true for

the variable ’precipitation duration’. In fact, one can see a positive relationship between the

number of hours of rainfall per day and the number of crashes. The interpretation for the

coefficient of precipitation duration is that if the duration increases by one unit (0.1 hour

per day) we expect an increase in the mean number of crashes by between 0.27% and 0.33%.

However, we did not find any support for a lag-effect (Eisenberg, 2004), indicating that the

risk imposed by precipitation increases as the time since last precipitation increases.

• temperature. The relationship between temperature and crashes is not straightforward. In

fact, the relationship between the absolute temperature and the number of crashes is negative,

highly significant and nonlinear. Indeed, relative to the base category (temperatures above

20), lower temperatures result in more crashes, with temperatures below zero being the most
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significant. However, when looking at the deviance from the monthly mean temperature

(significant at the 10% level), a different effect is observed. Indeed, when the daily mean

temperature exceeds the monthly mean temperature, we expect more crashes. In other

words, although on average a daily temperature of say 10 degrees leads to a higher number

of crashes compared to temperatures above 20 degrees, the deviation from the monthly mean

temperature may indicate the reverse. For instance, during a winter month when the monthly

mean temperature is below 10 degrees, a temperature of 10 degrees produces more crashes,

whereas during a hot summer month with monthly mean temperatures above 20 degrees, we

expect less crashes.

• sunshine. In absolute terms, the amount (in hours) of sunshine was not found to be significant

towards predicting the number of crashes. However, the relative amount of sunshine, as

measured by the percentage of maximum possible sunshine duration, was found significant

(at the 10% level) and positive. This means that, after correcting for seasonal differences

in maximum possible sunshine duration, we can say that there is a positive effect between

the number of hours of sunshine and the number of crashes. Finally, also sun dazzle during

winter months was found to be highly significant and positive towards the number of crashes.

• city-specific dummies. The city-specific estimates are highly significant and indicate that

relative to Haarlemmermeer, both Utrecht and Dordrecht show a lower number of crashes

overall.

All other weather variables, discussed in section 4, such as air pressure, wind, sky visibility and

lagged precipitation effects were not found to be significant in the model.

The last part of the Table 2 contains the autocorrelation parameters directly and not on a

regression form. The table shows that the autocorrelation for Haarlemmermeer is the highest

(around 0.14), whereas the correlation for Utrecht is not significant and equals 0. This indicates

that autocorrelation is present in the data and should be taken into account for correct assessment

of the effect of the variables. This can be shown when different competing models are compared

against our fitted models in the next section.

6.3 Comparison with competing models

Table 3 presents a series of competing models. It can be seen that the simple Poisson regression

model (ignoring autocorrelation) is the worst. Next, the negative binomial regression improves

with respect to the Poisson regression model due to the small amount of overdispersion. For

the three cases presented with different variables included in the model the INAR model gives
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Model Statistic Poisson Negative Binomial INAR

Regression Regression

Model 1 LL -2246.496 -2243.034 -2238.961

AIC 4526.992 4522.068 4515.922

Model 2 LL -2239.109 -2234.123 -2232.950

AIC 4502.218 4494.246 4493.900

Model 3 LL -2227.122 -2221.087 -2220.190

AIC 4490.244 4481.614 4480.380

Table 3: Comparison of different competing models

the best log-likelihood. Using likelihood ratio test statistics the INAR model is preferable to the

simple Poisson model for each of the 3 models. This implies that the autocorrelation present in

the data is significant and improves the fit of the models. We have also tested whether a common

autocorrelation parameter could be used but the results support the use of different autocorrelations

for each city.

A formal comparison with the negative binomial is not applicable as the models are not nested

but one can see that the INAR models provide better log-likelihood while they have one more

parameter. Using Akaike information criterion (AIC) to compare the models therefore shows that

the INAR model is preferred over the negative binomial for all the three estimated models.

Table 4 shows the coefficients estimates and the associated standard errors of the regression

parameters for the simple Poisson regression model and the INAR Poisson regression model con-

sidered for the model where both the exposure and the weekday dummies are included in the

model.

Consider INAR1 model. The marginal mean is given as λ/(1− α). The simple Poisson model

assumes α = 0 and thus the coefficients for each variable are not the true ones but they overestimate

or underestimate the true relationship of each variable. The difference between the estimated

parameters under the two models depends on the amount of autocorrelation at each of the variables.

For example, variables that are highly autocorrelated (as it is expected for weather data) in some

sense contribute to the autocorrelation of the observed counts. So, including a covariance parameter

changes more drastically their estimates.

For some variables, like the variable ”sun dazzle” the relative difference is larger than 10%

between the estimated coefficient of the simple Poisson model and an INAR Poisson model. This

clearly demonstrates the importance for taking into account the autocorrelation in order to find

the correct effect for each of the variables as otherwise the presence of autocorrelation can mask
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such effects.

On the other hand, looking at the standard errors, one can see that the standard errors provided

by the INAR model are larger. This is due to the fact that the INAR model takes into account both

the serial correlation and the overdispersion and hence provides standard errors of more reasonable

scale, while the simple Poisson model ignoring those aspects results to smaller but incorrect standard

errors. The latter can be misleading as it leads to more significant results, thus, finding significant

effects when they do not exist.

7 Conclusions

The effect of weather conditions on crashes has been a topic of debate for some years already and

different studies tend to find conflicting results, depending on the granularity of the data, both in

time and space, depending on the operationalization of the variables and finally depending on the

kind of models being used. In this paper, we have argued that when autocorrelation is present

in the data, a suitable statistical method should be used to model the time-dependencies in the

data. To this end, we presented the Poisson Integer Autoregressive Model (INAR) for count data

and used a number of covariates related to exposure and weather aspects (e.g. wind, temperature,

sunshine, precipitation, air pressure, etc.) to estimate their impact on the number of crashes.

From the practical point of view, we showed that apart from exposure, weather effects do have

an influence on the number of crashes but that depending on the operationalization of the variables,

different effects can be found. More research is therefore needed, i.e. on more data sets, different

variable operationalizations, different levels of granularity in time and space, to distinguish between

the different impacts that weather may have on crashes. Furthermore, these results can be used

in dynamic traffic management, information campaigns, In case of inclement weather, measures

can be taken temporarily and locally by means of roadside variable message signs or via onboard

navigation systems, for example indicating a lower maximum speed or by warning for reduced

visibility. It must be said, however, that the effectiveness of such warning systems is, to some

extent, still an open debate (Al-Ghamdi, 2007; Andrey and Knapper, 2003). For certain regions

with a significantly higher impact of a weather element, structural measures can be taken.

From the statistical modelling point of view, we presented the Poisson INAR regression model

and an efficient EM algorithm to estimate the model. Moreover, we showed that significance tests

based on the likelihood ratio test indicate that, for our data set, the INAR Poisson regression model

outperforms the simple Poisson regression model, which shows that autocorrelation indeed matters.

Based on the AIC information criterion, the Poisson INAR model also slightly outperforms the NB

regression model. Moreover, we demonstrated two interesting features of the proposed INAR model.
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INAR Poisson

coeff st. err. coeff st.err

Constant 0.8375 0.1942 1.0834 0.1554

Utrecht -0.9021 0.1142 -1.0921 0.0813

Dordrecht -1.8300 0.1531 -1.9608 0.1171

Mean temperature

< 0 0.5666 0.1141 0.5686 0.1016

[0, 10] 0.3190 0.0827 0.3334 0.0737

[10, 20] 0.2160 0.0801 0.2224 0.0715

> 20 - - - -

Dev of mean temp 0.0012 0.0006 0.0011 0.0005

Precipitation duration 0.0033 0.0005 0.0030 0.0005

Intensity of rain 0.0344 0.0144 0.0306 0.0132

Sun dazzle 0.1815 0.0791 0.1610 0.0716

% max. possible sunsh. dur. 0.0013 0.0006 0.0012 0.0006

Day of the week - - - -

Monday 0.0144 0.0801 -0.0205 0.0734

Tuesday 0.0452 0.0880 0.0349 0.0810

Wednesday -0.1559 0.0926 -0.1376 0.0843

Thursday -0.1527 0.0942 -0.1445 0.0866

Friday -0.0107 0.0933 -0.0176 0.0863

Saturday 0.0030 0.0640 0.0394 0.0550

Sunday - - - -

Exposure 0.0686 0.0117 0.0635 0.0104

Table 4: Comparison of the estimated covariate coefficients for the simple Poisson regression

and the Poisson INAR model
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Firstly, the estimated standard errors of the regression coefficients, when the serial correlation is

ignored, underestimate the true ones, leading more often to incorrect significant results. Using the

INAR models this serial correlation is taken into account and hence the standard errors are larger

reflecting more correctly the uncertainty on the estimated parameters. Secondly, the model with

covariates in the autocorrelation part, as the one fitted in the paper, leads to non-Poisson marginal

distributions and hence it can describe the overdispersion present to the data. Thus, the proposed

INAR model seems to correct together for overdispersion and autocorrelation issues producing more

reliable standard errors for the parameters.

8 Limitations

Firstly, the use of climatological weather data instead of using crash records to describe weather

conditions may introduce a measurement problem since weather conditions (like rainfall) may be

very local. However, since we model the number of crashes on the level of a larger geographical

area (i.e. a major city), we think that it is more efficient to use data from a nearby weather station.

Furthermore, at the time these data were collected, information from RWIS sites were not available

unfortunately. Probably, this would have added even more detail to this study.

Secondly, our model does not distinguish between different types of crashes (fatal, severe, slight)

and precipitation (snow, rain, hail). In fact, earlier research showed that some of the weather effects

may have a different impact with respect to the type of injury. However, since the number of injuries

of different types are not independent from each other, they should be studied preferably within a

multivariate model, which is not straightforward. Furthermore, it introduces much smaller count

numbers and thus may introduce additional complexity during model estimation. This will be the

subject for future research.

Thirdly, in the present paper we used discretized versions of the covariates (e.g. for temperature)

while non-parametric function could have been used, like splines. However, we think that such

functions could create problems in the interpretability of the model and its computational stability.

Finally, our model directly fits serial autocorrelation by considering a time series model. In the

literature there are several other models that could be used to fit correlated data, in an implicit

way like random effects models. We do not use such model and consider only a simple time series

model to explicitly fit the serial correlation.
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