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Abstract: In this paper we aim at examining the effect of weather conditions
in daily accident counts. In order to account for the serial correlation and the
overdispersion present to the data, we make use of two models for discrete valued
time series using covariate information. The models considered are the model
of Zeger and the Integer Autoregressive model including covariates. Estimation
procedures and possible extensions of the models are discussed. Data from 27
major cities roads in the Netherlands are examined. We make use of a meta-
analysis approach in order to combine the effects retrieved for each site with
site-specific covariate informtaion.
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1 Introduction

The last few years, road accidents statistics are the subject of increased
interest both on the part of policy makers and academia. The objective
is to better understand the complexity of factors that are related to road
accidents in order to take corrective actions to remedy this situation. In
this context, the modelling of accidents over time has obtained considerable
attention by researchers in the past. In this paper, we study the effects of
weather conditions on daily accidents for 27 major cities in the Nether-
lands. The use of weather conditions is motivated by earlier research where
significant influences of weather conditions on accidents have been found.
To do so we propose and apply two models adequate for modelling discrete
valued time series models, namely the Integer Autoregressive model pro-
posed by McKenzie (1985) and Al-Osh and Al-Zaid (1987) and the model
proposed by Zeger (1988). The first belongs to the category of observation
driven models, since we relate directly the observations themselves, while
the second one to the category of the parameter driven models as the de-



Karlis, et al. 369

pendence structure comes from a time dependent process in the parameters
of the model.
In order to capture the effect of weather covariates in the accident counts
we use covariate information related to weather conditions. This includes
covariate information about the rainfall, the wind, the temperature and
other weather characteristics in the area of examination.
Furthermore in order to account for the different characteristics of the 27
roads we proceed with meta-analysis of the derived results. This approach
allows to combine the results from the different sites and to examine site-
specific effects.

2 The models

2.1 INAR model

McKenzie (1985) and Al-Osh and Al-Zaid (1987) defined a process for dis-
crete data which mimics the standard autoregressive model for continuous
data, called the Integer-valued autoregressive (INAR) process as follows:
A sequence of random variables {Yt} is an INAR(1) process if it satisfies a
difference equation of the form

Yt = α ◦ Yt−1 + Rt, t = 1, 2, . . . , (1)

where Rt is the innovation term, which is a discrete random variable. Ac-
cording to the choice of the distribution of the innovations certain marginal
properties can be deduced for the process. The operator ” ◦ ” denotes the

binomial thinning operator defined by α ◦ Y =
Y∑

t=1
Zt, where Zt are inde-

pendent Bernoulli random variables with P (Zt = 1) = α = 1− P (Zt = 0),
α ∈ [0, 1]. Thus, conditional on Yt, α ◦ Yt is a binomial random variable
where Yt denotes the number of trials and α the probability of success in
each trial.
The basic ingredient of the INAR model is that it assumes that the realiza-
tion of the process at time t is composed by two parts, the first one clearly
relates to the previous observation, while the second one is independent
from it and depends only on the current time point. Thus, the first part
represents the influence of previous time periods while the innovation term
captures the effects of the present time point. Although it is possible to
incorporate higher-order lags into the model, we do not pursue them since
their interpretation is not straightforward. More detail on such models can
be found in Jung and Tremayne (2006).
Assuming that Rt follows a Poisson distribution the Poisson INAR model
arises, which assumes that the marginal distribution of Yt is a Poisson
distribution. The simple Poisson INAR model can be extended to a Poisson
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INAR regression model by adding covariates to both the innovation term
and/or the autocorrelation parameter. The model then takes the form

Yt = αt ◦ Yt−1 + Rt

Rt ∼ Poisson(λt)

log λt = z
′
tβ

log
(

αt

1− αt

)
= w

′
tγ

where zt and wt are vectors of covariates at time t for the innovation
term and the autocorrelation parameter respectively while β and γ are
the vector of the associated regression coefficients. Note that the covariate
information for the two parts of the model are not necessarily the same. We
have developed an EM type algorithm for fitting this model to real data
making use of the convolution representation of the process. Details of the
algorithm are omitted.
Extensions of the model to allow for overdispersion can be made by assum-
ing an overdispersed innovation distribution.

2.2 Zeger’s Model

We describe the model proposed by Zeger (1988). Let’s suppose we have
observed a time series of counts yt, t = 1, 2, ...T , as well as a vector of
covariates xt. Our goal is to describe µt = E(Yt) as a function of the p×1
vector of covariates. Furthermore, assuming that the distribution of yt is
Poisson, that is yt ∼ Poisson(µt), where µt = exp (x

′
tb), maximum likeli-

hood method can be used to estimate the unknown vector of coefficients b.
In practice, quite often the sample variance exceeds the sample mean, pro-
viding evidence that an overdispersed relative to the Poisson distribution
must be used. In this case quasi-likelihood methods which allow a variety
of variance-mean relation is more appropriate.
Extensions of log-linear models which account for dependence are necessary
to obtain valid inference about the relationship of yt and xt. Zeger suggested
that if εt is an unobservable noise process then the conditional distribution
of yt on εt is Poisson with mean equal to the product of the latent process
value and the predictor as in a simple log-linear model. Therefore

Yt | εt ∼ Poisson(εtexp (x
′
tb)) (2)

Assume that εt is a non-negative time series with mean 1, autocovariance
function γε(h) and variance σ2

ε . Letting δt = log εt, then the conditional
mean of Yt on εt can be written as

ut = exp (x
′
tb + δt) (3)
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We assume E(exp(δt)) = 1. Unless the δt is a stationary Gaussian process,
there is not an explicit relationship between the autocovariance functions
of εt and δt.
For this model, the marginal variance of Yt is greater than its marginal
mean providing this way a degree of overdispersion which depends on the
variance of the latent process σ2

ε . Another interesting property of this model
is that the form of the autocorrelation of the observed counts inherits its
structure from that of the latent process. It is also true that even if there
is no significant autocorrelation in yt, it does not necessarily mean that
autocorrelation is not present in εt either. This implies that the autocor-
relation function of the observed count process will tend to underestimate
that of the latent process, even in the simplest case where no regressors
are present. Therefore, the latent process introduces both autocorrelation
and overdispersion in Yt. The interpretation of any element of the vector
of coefficients b in the above model is the same as in a simple Poisson
regression model.
Estimation of this model is not easy. The full likelihood of the model cannot
be written easily as it is defined recursively. A GEE approach has been
proposed by Zeger (1988) in order to estimate the parameters of the model.
We have followed this approach.
Concluding this section, the two model, despite their different generation
mechanism implied, have some more differences in the sense that the model
of Zeger allows for overdispersion. In the sequel we applied both model to
our data.

3 Meta-Analysis

Meta-analysis can be defined as the quantitative review and synthesis of
the results of related but independent studies. By combing information over
different studies, an integrated analysis will have more statistical power to
detect a specific effect than an analysis based on only one study. When
several studies have conflicting conclusions, a meta-analysis can be used
to estimate an average effect. For an excellent review on meta-analysis the
reader can refer to Normand (1999). In this paper we aim at combining
results from different sites in order to synthesize a general effect.
A fixed-effects model assumes that each study summary statistic Yi (in our
case a regression coefficient summarizing the effect of a weather variable)
is a realization from a population of study estimates with common mean
θ. Let α be the central parameter of interest and assume there are i =
1, 2, ..., k independent studies. Assume that Yi is such that E(Yi) = θ and
let V ar(Yi) = s2

i be the variance of the summary statistic in the ith study.
For moderately large study sizes, each Yi should be normally distributed
(by the central limit theorem) and approximately unbiased. Thus

Yi ∼ N(α, s2
i ) for i = 1, 2, ..., k (4)
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and s2
i assumed known. The central parameter of interest is α which quan-

tifies the average effect.
The random-effects model assumes that each study summary statistic Yi is
drawn from a distribution with a study-specific mean, αi, and variance s2

i .

Yi | αi, s
2
i ∼ N(αi, s

2
i ) for i = 1, 2, ..., k (5)

Furthermore, each study-specific mean αi is assumed to have been drawn
from some superpopulation of effects with mean α and variance τ2 with

αi | α, τ2 ∼ N(α, τ2) (6)

The parameters α and τ2 are to referred as hyperparameters and represent,
respectively, the average effect and inter-study variation. Thus we introduce
one more level of variability.

4 Application

This study is based on the daily accident counts that were obtained from
the major roads covered by the surface of 27 big cities in the Netherlands
in the year 2001. The cities were selected based on two criteria: a) their
proximity to some national weather stations in order to obtain accurate
daily weather conditions and b)they were far enough apart in order to
prevent that weather conditions would be identical for the different sites
for too many of the observations.
For each site, the number of daily counts on accidents together with detailed
weather information was collected. The day was used as a proxy of the
different traffic volumes, i.e. as a proxy to the exposure. The data have
several distinct features since for some roads the autocorrelation and the
overdispersion varied considerably.
We make use of both the fixed and the random effects meta-analysis models.
A typical forest plot can be seen in Figure 1 for the precipitation duration.
One can see the different effects for each site and the combined estima-
tor. This combined estimator shows that there is a positive effect of the
precipitation duration.
The meta-regression models identified variables which influence the effect of
the covariates. A summary of the main finding is that an increase of one unit
of the maximum temperature decreases the effect of the mean temperature
on the accidents and a decrease of a unit of the minimum temperature
increases the temperature below zero effect. The effect of humidity covariate
becomes stronger when combined with lower minimum temperatures. The
rainfall intensity effect was related to the increase of the rainfall duration.
However, one must interpret the findings with care since weather variables
can also have some influence on the exposure. Hence, the effects found are
not necessarily explicit on the accidents but they can be implicit through
the increase/decrase of the exposure.
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FIGURE 1. Weighted forest plot for the precipitation duration
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