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ABSTRACT 
This paper introduces a road safety analysis for different age and gender categories of road 
users.  In contrast with many previous studies, time series of road crashes per age and gender 
category will be considered.  The objective of the paper is to analyze Belgian data on the 
yearly number of fatalities per age and gender group, using a decomposition of the number of 
fatalities in terms of exposure and risk, in a time series perspective.  For each category, a state 
space time series model is developed for the risk, which is defined as the number of fatalities 
divided by the magnitude of the population.  It was found that road risk is changing over the 
age groups according to a U-shaped curve, and that men generally have a higher risk than 
women.  Further, the risk is decreasing over time, but not at the same rate for all age-gender 
groups.  The highest yearly reduction in risk is found for the oldest and youngest road users.  
The models are also useful to assess the attainability of formulated road safety targets, which 
makes them useful policy instruments.  Especially for young males, the reduction in risk is 
not in line with Belgian and Flemish policy expectations.   
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INTRODUCTION 
This paper introduces a road safety analysis for different age and gender categories of road 
users.  In contrast with many previous studies, time series of road crashes per age and gender 
category will be analyzed.  The objective is to enhance the insights in the different 
characteristics of age and gender groups in terms of their crash involvement, thereby 
exploring the possibilities of time series analysis by means of state space models.   

The approach followed in the present study can be summarized as follows.  First, the 
analysis focuses on road safety for road users of a specific age and gender category.  It is 
often found in literature that road risk varies with age and gender.  According to Evans [1], 
the number of fatalities among drivers in the US shows a peak at the age of 19 years old.  The 
number of fatalities then steadily decreases with age.  The completely different behavior in 
traffic of the age groups will probably be reflected in their crash records.  The models 
developed here are therefore “disaggregated” from a road safety point of view.  They describe 
the road safety situation for various subgroups of road users (per age and gender) and are 
therefore called “descriptive subset models”.  

Second, the number of fatalities will be described in two dimensions, namely the level 
of exposure and the level of risk.  The first dimension, the level of exposure, describes the 
magnitude of the activity that results in fatalities, and is usually measured in terms of the 
number of trips, the number of vehicle kilometers, the trip duration or, in the absence of these 
data, a proxy like the level of the population, as is the case in the study at hand.  It accounts 
for the number of potentially dangerous situations, or the exposure to risk.  The second 
dimension is the probability of a fatality or the risk, given a certain level of exposure.  
Changes in one of these dimensions will change the safety situation.  The two dimensions are 
naturally related to one another in a multiplicative way: 

( ) ( ) ( )RiskExposure
Exposure

Fatalities
ExposureFatalities ×=










×= . 

In many studies [2, 3], risk is defined as the number of fatalities divided by the level of 
exposure.  When the number of fatalities is studied directly, it is clear that the underlying 
information on exposure and risk is lost.  However, these dimensions can provide useful 
information on the trends in the number of fatalities.  For example, an increase in the number 
of fatalities can be caused by a rise in the level of exposure, an increase in the risk level or a 
combination of both.  These possibly opposite forces remain hidden if risk is not studied 
explicitly.  Also, if a safety measure leads to a re-distribution of traffic over the different road 
networks, the safety level may be directly influenced by the changes in exposure.  The 
quantification of these impacts provides useful information for road safety policy makers.   

Third, this study takes a time series approach towards exposure and risk, and offers an 
analysis of road safety for age/gender groups of road users from an evolutionary (or time 
series) point of view.  That is, all data are gathered sequentially and with a regular frequency 
over time.  For example, yearly data on the number of victims for 15-24 years old females can 
be related to the yearly population level for this group of road users.  This also means that the 
models are aggregated in time.  Every observation represents a total number of fatalities for a 
specific road user group, measured for each year in the time window of the analysis.  When 
analyzing time series data, some interesting questions can be asked that can never be 
answered with a cross-sectional model.  For example, it is possible to calculate a yearly 
reduction in risk for each group of road users, and to assess the differences between age and 
gender groups.  Also, the risk level and changes in risk over time can be computed.   

Fourth, the models are developed for the Belgian road safety situation.  For every 
group of road users with a certain age and gender, both the number of fatalities and the level 
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of the population will be used.  All data are official statistics, gathered by the government and 
regularly published in official documents.  Population data are used instead of vehicle 
kilometers, because the latter variable is not available for age and gender combinations.  
However, it is not uncommon to use the population as a base for calculating risk ratios.  For 
example, road safety targets are often formulated in terms of the number of fatalities per 
1000000 inhabitants.  This study therefore enhances the insights in the Belgian road safety 
situation, pinpoints the most vulnerable road user groups according to age and gender, and 
allows comparing the findings with other results.   

Based on this view towards the problem, the objective of the paper is to analyze 
Belgian data on the yearly number of fatalities per age and gender group, using a 
decomposition of the number of fatalities in terms of exposure and risk in a time series 
perspective.  For each category, a state space time series model is developed for the risk for 
the road users, which is defined as the number of fatalities divided by the magnitude of the 
population.   

The paper at hand is organized as follows.  First, some background on aggregated and 
disaggregated time series road safety models is given.  Then, the data sources and the 
methodology of state space models are introduced.  Next, the main results are presented.  The 
paper ends with some general conclusions on the use of these models, and some topics for 
further research.   
 
BACKGROUND 
In this paper, road fatalities and population per age and gender group are analyzed in this 
paper by means of time series analysis.  Investigating time series of road safety data is, for 
various reasons, a rewarding effort.  Governments are more than ever concerned with the 
negative consequences of road traffic.  The loss of human lives and economic capital due to 
road accidents forced governments to plan and execute road safety actions [4].  Until the early 
seventies, the planned actions were of a reactive nature.  The main objective was to stop or 
slow down the negative developments in road safety.  Afterwards, the focus changed to more 
strategic actions.  It was commonly accepted that strategic plans for future safety 
improvements had to be developed, based on the knowledge of the past.   

This change in policy is mainly characterized by the introduction of strategic plans, 
together with explicit road safety targets.  It is clear that, by putting quantitative targets, the 
noncommittal attitude towards the road safety problem is no longer accepted and underlines 
the need for ambitious, yet realistic targets.  In order to set these targets and to specify or 
adapt safety plans accordingly, it is necessary to measure the developments in road safety and 
to understand the underlying processes of exposure and risk.  This is the main motivation for 
the use of time series analysis techniques in road safety research.  A sound analysis of the 
evolution in time is needed to set future road safety targets and to assess the efforts made to 
achieve them. 

A strategic road safety device allows describing and monitoring the number of 
fatalities in road crashes, by looking for example at trends over the years.  Many models have 
been developed to explain the long-term evolution in the number of fatalities [4].  Aggregated 
models, usually developed on a countrywide level for the total number of crashes or fatalities, 
allow gaining a better insight in the evolution of fatalities over time.  The annual number of 
fatalities is an important indicator of the level of road safety in a country.  Policy makers use 
these statistics to indicate past trends and to create rough indicators of the future evolution.  In 
many countries, the government formulated clear long-term quantitative objectives in terms of 
the number of fatalities.  In Belgium and in Flanders, as well as on the European level, the 
goal is to half the total number of fatalities by 2010.  The Belgian States General for Road 
Safety [5] recommended the objective of halving the number of fatalities by 2010, compared 
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to the average number of fatalities for the years 1998-2000.  This boils down to a maximum 
of 750 fatalities in 2010.  Also, the maximum value of the number of fatalities per 100000 
inhabitants in 2010 is set at 7.  In Flanders, the government expects making up arrears 
compared to the best performing countries in Europe by 50%, taking into account the own 
ambitions of these leading countries in terms of road safety.  Broadly speaking, this implies a 
reduction in the number of fatalities by 50% compared to 1999, or a maximum of 375 
fatalities in 2010 [6].  Another Flemish objective for the year 2010 is a 60% reduction in the 
number of young persons (age below 26) killed per 1000000 youngsters.  In [7], an overview 
is given of the quantitative targets formulated in some OECD countries.  These targets are in 
terms of annual fatalities (either in absolute values or related to the level of the population or 
the number of vehicle kilometres), and should therefore be supported by models at this level 
of aggregation.   

When road safety has to be analyzed for specific parts of the traffic system in a time 
series context, disaggregated models can be used.  In the COST-329 project of the European 
Commission [4], disaggregated models are defined as “models in which the response 
(dependent) variable comprises a sub-group of the total, aggregated number of accidents or 
their consequences”.  Sometimes, the term “disaggregated” is used for models in which data 
pertaining to individual units or decision makers (cars, travelers, households, firms, etc.) are 
analyzed.  The models presented here could therefore rather be named “accident or casualty 
subset models”.  From a time perspective, however, the models are still aggregated, in the 
sense that they consider total numbers of accidents or victims, aggregated per year, but now 
for a subset of the whole road safety system.  Typical subset examples are types of roads 
(highways, rural roads and urban roads), types of road users (according to their age and/or 
gender) or vehicle types involved in a crash.  Depending on the data available, these 
subgroups can be crossed-over, by looking for example at the fatalities of female road users 
on highways or children injured in the urban area.  It is clear that with more restricted groups 
of road users, one runs faster into data problems.   

Subset models are useful in addition to the aggregated models that consider the road 
safety situation as a whole.  Road safety models are meant to support decision- and policy 
makers in their analysis of road safety developments, especially when setting road safety 
targets and developing road safety plans.  While an aggregate model will typically be used for 
the description and forecasting of general trends in road safety on a high level, they are less 
suited for analyzing parts of the transport system or subgroups of road users.  For example, 
changes in the proportion of young and old road users may affect the evolution in road safety.  
It is not possible to derive the effects of these changes from an aggregated model.  Therefore, 
it is necessary to analyze the trends in road safety at a lower level of aggregation.   

In the COST 329 report [4], an overview of several examples of disaggregated road 
safety modeling are given.  Broughton [8] computed trends for casualty rates per type of road 
user.  On the basis of population forecasts, these trends are further disaggregated according to 
age and gender.  In Bijleveld & Oppe [9], the number of fatalities and rates for combinations 
of transport mode and age, and separately for types of road, are analyzed.  Later, multivariate 
nonlinear time series model for the analysis of traffic volumes and road casualties inside and 
outside urban areas were developed by Bijleveld et al. [10].  Greibe [11] gives a description of 
the number of killed and seriously injured cyclists on urban roads using a log-linear model 
including variables on bicycle and motor vehicle traffic and on general safety improvements.  
Pedersen [12] uses log-linear splines to detect abrupt changes in the development of 
casualties.  According to the author, this approach can be applied at every level of 
aggregation.  Also some of the DRAG models [13] can be seen as disaggregated models, in 
the sense that they consider aspects of specific groups of road users, like for example in [14].  
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For Belgium, disaggregated models were developed by age and gender, type of road, type of 
road user and crash type [15]. 

Although it is clear that studies at a lower aggregation level should enhance the 
insights in the road safety trends for parts of the road system, the number of subset time series 
models in road safety analysis is quite small.  This may be explained by the high data needs 
that are typical for these models.  The lower the level of aggregation, the more difficult it 
becomes to obtain the data needed for the analysis.  While aggregated statistics on road safety 
and exposure are generally available, they are mostly not easily found for subgroups of road 
users.  Also, due to the smaller counts on a lower aggregation level, the data might be less 
accurate and more advanced statistical techniques are needed to adequately model the 
problem.  The higher data requirements, especially in a time series context, can probably 
explain the relatively low number of disaggregated time series studies.  On the other hand, it 
is not illogical to consider the risk according to the age and gender of the road users.  It is 
known that young persons are often involved in road crashes.  Looking at the official statistics 
[16], road crashes are clearly one of the most important death causes for young persons.  In 
2001, approximately 36% of the Belgian fatal road victims was between 10 and 29 years old.  
 
DATA SOURCES 
For Belgium, data are available on the number of fatalities per age and gender category, as 
well as on the magnitude of the population for these groups.  The population is a key indicator 
of the Belgian economy and is maintained and published by the Belgian National Bank.  As 
mentioned before, the population data will be used to calculate risk measures for each age and 
gender group.  Although it is not a perfect measure of exposure (nothing is said about 
distances traveled, for example), the population data provide an upper bound of the number of 
road users.  Given the assumption that not the whole population travels (especially for older 
people), the risk of being killed will be underestimated.  However, current changes in the 
structure of the population might be reflected in the data.   
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Figure 1: Population data for various age/gender groups 
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The population levels per gender for five age categories (0-14, 15-24, 25-44, 45-64 
and 65 and older) are given in Figure 1 for the years 1973-2004.  It can be seen that the 
youngest group of road users has been declining for about 25 years, and seems to be 
stabilizing in the late nineties.  The group of older people is growing.  It is also interesting to 
note that females are the smallest group among the younger people, and the largest group 
among the older.  It is clear that these changes in the population might also be reflected in the 
level of exposure to road crashes.   
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Figure 2: Annual number of fatalities by age and gender 

 
The road safety data are obtained from the National Institute of Statistics.  In Figure 2, 

the number of fatalities is shown for each age-gender category. Data are available for the 
period 1973-2004 for the same five age groups.  The choice for the categories is dictated by 
the availability of the data.   

The evolution in time of the fatalities per age and gender category shows some very 
specific properties.  First, the number of fatalities is higher for males in every age category.  
This is true for the complete time window of the study.  However, the differences get smaller 
for all categories, except for the 25-44 years old victims.  Second, the number of fatalities is 
decreasing over time, except for the 25-44 years old victims.  For the latter group, the level of 
fatalities hardly changed.   
 
METHODOLOGY 
The data on population and fatalities will be analyzed by means of state space models.  Like 
the classical ARIMA models, developed by Box and Jenkins [17], state space models can be 
considered as dedicated time series models.  That is, they are specifically developed to take 
time dependencies into account.  State space models are typically handled with the Kalman 
filter, a method of signal processing which provides optimal estimates of the current state of a 
dynamic system.  An observation yt of a series at time t is written in state space notation as 
[18]: 
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tt
T
tt nhy += θ . 

The state vector θt is usually unobservable and contains the state variables as 
components.  The state variables are typically model parameters, like regression coefficients, 
or parameters describing the state of a system (such as the level).  The column vector ht is 
known, and nt is the observation error.  It is further assumed that the state θt depends on the 
previous state θt-1, and that the changes of θt through time follow the equation: 

tttt wG += −1θθ . 

Here, Gt is assumed to be known, and wt denotes a vector of white noise deviations.  
Both equations together form the state space model.  The first equation is called the 
observation equation, while the second is the state equation.  The errors are generally assumed 
to be serially uncorrelated and normally distributed.   

After formulating the model in terms of its components, the main objective usually 
consists of estimating the signal, represented by θt.  The Kalman filter can be used to estimate 
this unobserved vector.  The “Kalman recursion equations” enable the calculation of the one-
step forecast errors and the likelihood [19].  This is usually done in two stages, as described 
for example in [18].  In the prediction stage, θt is forecasted from the data up to time period (t-
1).  When subsequently the new observation at time t has been observed, the estimator for θt 
can be modified to take account of this extra information.  The prediction error of the forecast 
of yt is used to update the estimate of θt.  This is the updating stage of the Kalman filter.  The 
advantage of the recursive character of the Kalman filter is that every new estimate is based 
on the previous estimate and the latest observation, while at the same time the whole past of 
the series is taken into account.   

The theory of state space models and their applications are extensively described in 
basic references such as [20] and [21].  The models that will be considered in this text for 
each age and gender combination can, in their most general form, be written as follows: 
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In this expression, the first equation is the observation equations, while the second and the 
third are state equations.  Further, µt denotes the level and νt is the slope.  Just like in classical 
regression, the slope determines the rate of change in the state, but here it is allowed to 
change over time.  The combination of the level and the slope component determines the 
trend in the model.  The effects of the intervention variables xj,t are measured by the 
parameters βj,t.  Possible interventions considered here are pulse interventions (to take outliers 
into account) and level shifts.  In the equation above, it is assumed that the regression 
parameters for the interventions do not change over time, although the framework is easily 
extended to do so.  The error terms in the model are all assumed to be normally and 
independently distributed with zero mean and a specific standard deviation, denoted σε for the 
observation equation and σξ, and σζ respectively for the level and the slope.  These standard 
deviations can be used to assess the assumption that a component is indeed stochastic.  If the 
estimation procedure shows that the standard deviation of a specific component is not 
significantly different from zero, it can be decided to model it as a fixed component.  In such 
a way, it is clear that deterministic models, like the classical regression models, are special 
cases of the stochastic state space model.   
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RESULTS 
The model presented in the methodology section of the paper is used to analyze the log of the 
risk (yt) for each age and gender combination (5 age categories and 2 gender categories), 
defined as the number of fatalities divided by the magnitude of the population.  The index t 
specifies the year of the observation (t = 1973,…, 2004).  The observation equation and the 
equations for the level and the slope each have their own irregular term, εt, ξt and ζt.  These 
terms are assumed to be uncorrelated and normally distributed.  To test for uncorrelated 
residuals, the Box-Ljung Q-statistic is used at different lags.  This statistic is given by [19]: 
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Here, rk is the lag-k autocorrelation coefficient, n is the number of observations and K is the 
maximum lag being considered.  Under the null hypothesis of no serial correlation, this test 
statistic is asymptotically distributed as χ²(K-M), where M equals the number of parameters 
estimated in the model.  Large autocorrelation coefficients lead to a high Q-statistic.  A high 
value therefore indicates significant autocorrelation and thus rejection of the null hypothesis.  
To test for normality, the Bowman-Shenton test is used.  This test takes into account the 
skewness and the kurtosis of the distribution of the residuals and is tested against a χ2(2) 
distribution [22].   

Table 1: Results for the age-gender models 

Age Gender Param. Coeff. R.m.s.e. t-value Prob. 
0 – 14 Male µ -4.0601 0.1082 -37.523 0.0000 
  ν -0.0685 0.0168 -4.064 0.0003 
  β1990 0.3033 0.1272 2.3842 0.0236 
  β1998 0.2991 0.1310 2.2822 0.0297 
  β2002 -0.5372 0.0893 -6.0141 0.0000 
 Female µ -3.9935 0.0683 -58.444 0.0000 
  ν -0.0534 0.0037 -14.295 0.0000 
  β1998 0.5795 0.1982 2.9247 0.0065 
15 – 24 Male µ -1.0137 0.0438 -23.157 0.0000 
  ν -0.0239 0.0112 -2.1329 0.0412 
 Female µ -2.7015 0.0673 -40.16 0.0000 
  ν -0.3363 0.0267 -1.2613 0.2169 
25 – 44 Male µ -1.4803 0.0368 -40.273 0.0000 
  ν -0.0210 0.0125 -1.6714 0.1050 
 Female µ -2.7639 0.0437 -63.237 0.0000 
  ν -0.0141 0.0038 -3.6941 0.0009 
45 – 64 Male µ -1.9662 0.0404 -48.678 0.0000 
  ν -0.0303 0.0050 -6.0751 0.0000 
 Female µ -3.1761 0.0714 -44.47 0.0000 
  ν -0.0397 0.0123 -3.2337 0.0030 
65+ Male µ -1.6629 0.0492 -33.773 0.0000 
  ν -0.0363 0.0082 -4.4282 0.0001 
 Female µ -2.6230 0.0418 -62.703 0.0000 
  ν -0.0429 0.0035 -12.319 0.0000 

 
Whenever necessary, intervention variables were introduced into the models to render 

the residuals uncorrelated and normally distributed.  This was the case in the risk models for 
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the first age category (pulse intervention in 1998 for females; pulse interventions in 1990 and 
1998, level shift in 2002 for males).  For the final models, the Q-statistics did not indicate any 
problem of autocorrelation and the null hypothesis of normally distributed residuals in the 
observation equation could not be rejected.   

The variances of the residuals for the level and the slope equations were used to assess 
whether these components should be stochastic or deterministic.  If the variance of one of 
these residuals is estimated to be equal to zero, the component is assumed to be deterministic.  
For the first age category, the models have a deterministic level and slope, which corresponds 
to the classical regression model.  For the other models, a stochastic level with a deterministic 
slope was retained.  Estimation is done in STAMP 6.21 [22].  The model is estimated for each 
age-gender combination, leading to 10 separate equations.  The results are shown in Table 1. 

The parameter estimates for µ and ν are for the level and the slope respectively, 
measured at the end of the sample period (2004).  As the slope is fixed in all models (that is 
σζ = 0), it is also the slope for the entire analysis period.  This is not the case for the trend.  
The β values are the parameter estimates for the included intervention variables.  These 
interventions were only needed for the first age category.  There is no specific reason for these 
interventions, apart from a drastic restructuring of the data gathering process in 2002.   

It is further seen from the table that most of the parameter estimates are significantly 
different from zero, except for the slope in two models (15-24 Female and 25-44 Male).  As 
the slope is fixed and not statistically different from zero, the risk for these groups is almost 
constant over time.  The slopes in Table 1 can be used to calculate a yearly reduction in risk 
over time for each age and gender category.  This is illustrated in Figure 3.  This information 
learns that, for example in the group of male road users between 15 and 24 years old, the 
average decrease in risk equals 1-exp(-0.0239) or 2.39%.  A high value indicates a higher 
reduction in risk over time.  A U-shaped relation is found for males and females, indicating a 
higher risk reduction per year for younger and older people.  Clearly, the most “active” age 
groups have the lowest yearly reduction in risk compared to the other groups.   
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Figure 3: Yearly reduction in risk for males and females 

 
Another interesting output from these models is the risk pattern over the different age 

groups.  This is illustrated in Figure 4.  The graphs show the estimated risk for male and 
female road users for each age category for the years 1980, 1990 and 2000, calculated from 
the 10 models.  The risk curves show a U-shaped pattern, starting from the second age 
category.  The same shape is found by Evans [1] for population fatality rates of drivers 
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between 20 and 80 years old, although his analysis was not over time.  As in our analysis the 
age of 20 belongs to the second category, the U-shaped relation found here is comparable to 
that found by Evans.  It is also seen that the risk is generally lower for females than for males, 
although the difference is quite small in the first age category.  Further, the three curves in 
each graph indicate the reduction in risk over time.  Clearly, the decrease in risk is not equally 
large for every age-gender combination, which underlines the importance of targeted road 
safety programs and campaigns.   

.0

.1

.2

.3

.4

.5

.6

.7

1 2 3 4 5

1980 1990 2000

Risk for males

.0

.1

.2

.3

.4

.5

.6

.7

1 2 3 4 5

1980 1990 2000

Risk for females

 
Figure 4: Risk comparison over time for males and females 

 
As mentioned before, road safety objectives are often expressed in terms of a 

reduction in the number of fatalities per inhabitant.  The models presented here can be used to 
assess the reduction that is expected to be achieved by 2010 for the various age and gender 
groups.  To do so, the risk level is predicted 6 years ahead, from 2005 up to 2010, such that 
the predicted value for 2010 can be compared with, for example, the observed risk level in 
2000.   

Table 2: Road safety objectives assessment 

Age Gender Observed 
risk 2000 

Estimated  
risk 2010 

Estimated 
reduction 

0 – 14 Male 0.0303 0.0115 -62.036% 
 Female 0.0272 0.0134 -50.845% 
15 – 24 Male 0.4432 0.3144 -29.074% 
 Female 0.1666 0.0548 -67.079% 
25 – 44 Male 0.2819 0.2007 -28.815% 
 Female 0.0671 0.0579 -13.684% 
45 – 64 Male 0.1597 0.1167 -26.921% 
 Female 0.0451 0.0329 -27.107% 
65+ Male 0.2217 0.1525 -31.209% 
 Female 0.0807 0.0561 -30.468% 

 
This exercise is done in Table 2.  For every age and gender group, the table shows the 

expected reduction in 2010 that will be obtained when the current road safety policies are 
continued.  First, the table shows large differences between males and females, especially for 
the second and third age category.  Although the difference is clearly present, objectives are 
rarely formulated towards a specific gender.  Second, huge differences are to be noted 
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between the age categories.  Youngsters groups show the highest reductions in risk.  In the 
first two age categories (0-24), the risk is reduced by more than 50% for all groups, except for 
the males in the second group.  This result indicates that young males form a high risk group, 
especially at the age where they start driving cars, have a more independent social live and 
start working.  In the targeted group of youngsters, males of 15-24 years old deserve special 
attention.   
 
CONCLUSIONS AND FURTHER RESEARCH 
In this paper, the risk for different age and gender categories of road users is studied.  Road 
risk, expressed as the number of fatalities per population level, is analyzed by means of state 
space models.  It was found that road risk is changing over the age groups according to a U-
shaped curve, and that men generally have higher risk than women.  Further, the risk is 
decreasing over time, but not at the same rate for all age-gender groups.  The highest yearly 
reduction in risk is found for the oldest and youngest road users.  The models are also useful 
to assess the attainability of formulated road safety targets.  Especially for young males, the 
reduction in risk is not in line with policy expectations.  Although the models presented here 
are quite simple, they offer the possibility of describing the differences in risk between 
various age-gender categories, together with their trend over time.  The results show that road 
user groups have very specific characteristics, which are worth investigating separately.  
Some road safety measures are only oriented towards one or more subsections of the transport 
system, and testing these measures on a highly aggregated level might obscure the nature of 
the effects.   

The field of subset time series modeling in road safety research seems to be scarcely 
out of the egg.  However, the merits of this approach are clear.  A disaggregated analysis is 
complementary to the aggregated models in the sense that the trends for specific parts of the 
transport system can be analyzed separately, and the specific countermeasures, introduced to 
enhance road safety for a specific group of road users, can be benchmarked.   

The subset time series modeling approach is mainly restricted in its applicability by 
the lack of appropriate data, at least for the Belgian situation.  First, the time series models 
can only be developed for the yearly total number of fatalities per age and gender category.  
That is, no further details concerning the type of road user (car, bicycle, motorcycle, etc.) can 
be analyzed.  Given the importance of vulnerable road users in traffic, it is desirable to 
investigate the differences in road safety between these categories.  Second, for age and 
gender categories, no time series of exposure, in terms of vehicle kilometers, are available.  In 
the time series models, population data are used instead.  Using population data as a measure 
of exposure will perhaps not give the same results as when the number of kilometers driven is 
used.  Changes in population will, for some age and gender categories (especially for older 
and younger persons), diverge from the number of kilometres driven by these groups of road 
users.  Typically, one can expect that older people drive less than younger ones, although their 
share in the total population is rising.  However, Evans [1] found comparable U-shaped 
curves for driver fatalities per billion kilometer.  This confirms the fact that it is useful to 
include population data to correct for the differences between the age groups over time.  The 
fact that the models can be used to assess road safety policy targets makes them very 
attractive policy instruments.   
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