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ABSTRACT
In previous research, significant effects of weather conditions on car crashes have been found.
However, most studies use monthly or yearly data and only few studies are available analyzing the
impact of weather conditions on daily car crash counts. Furthermore, the studies that are available
on a daily level do not model the data in a time-series context, hereby ignoring the temporal serial
correlation that may be present in the data. In this paper, we introduce an Integer Autoregressive
model for modelling count data with time interdependencies. The model is applied to daily car
crash data and metereological data from the Netherlands aiming at examining the risk impact of
weather conditions on the observed counts. The results show that several assumptions related to
the effect of weather conditions on crash counts are found to be significant in the data and that an
appropriate statistical model should be used to account for the existing autocorrelation in the data.

1 INTRODUCTION

The last few years, road accidents statistics are the subject of increased interest both on the part of
policy makers and academia. The objective is to better understand the complexity of factors that are
related to road accidents in order to take corrective actions to remedy this situation. In this context,
the modelling of crashes over time has obtained considerable attention by researchers in the past.
For instance, several researchers have analyzed the effect of policies, economic climate and social
conditions on the year-to-year changes in crash risk (Chang and Graham, 1993; Oppe, 1991).
Other researchers have looked at month-to-month changes in accident levels (Van den Bosscheet
al., 2005; Fridstrøm and Ingebrigtsen, 1991). However, there are only few studies that have looked
at changes in crash counts at a more disaggregate level. For instance, Levineet al. (1995a, 1995b)
and Joneset al. (1991) studied daily changes, whilst Ceder and Livneh (1982) examined hourly
fluctuations in crashes. Both approaches, high-level or low-level data aggregation, have advantages
and disadvantages. While changes in crash counts on a highly aggregated level can be explained
by structural changes, they cannot easily pick-up patterns of seasonality or weather effects. In
contrast, the lower the level of aggregation, the more it is possible to study the effects of weather
conditions, traffic volume, holidays etc. on changes in crash counts. Several authors have therefore
warned for biases being introduced by modelling crash counts at high levels of aggregation (Golob



et al., 1990; Jovanis and Chang, 1989). Therefore, in this paper, we study the effects of weather
conditions on daily crashes for3 large cities in the Netherlands (Dordrecht, Haarlemmermeer and
Utrecht) in the year 2001. The use of weather conditions is motivated by earlier research where
significant influences of weather conditions on road crashes were found (see section 3).

From a methodological perspective, a number of approaches have been suggested by researchers
to model time-series crash count data. More specifically, serial correlation between successive
daily crash counts, i.e. autocorrelation, is reported as an important challenge for all accident mod-
els (Levineet al., 1995; Fridstrøm et al., 1995, 1991). For instance, Miaou and Lord (2003),
Shankaret al. (1998) and Fridstrøm et al. (1995) use a Negative Binomial (NB) model to account
implicitly for temporal serial correlation. Ulfarsson and Shankar (2003) use the Negative Multino-
mial (NM) model to predict the number of median crossover crashes using a multi-year panel of
cross-sectional roadway data with roadway section-specific serial correlation across time.

However, the above models do not explicitly take into account the large and significant auto-
correlation that is present in the data. Although, according to Fridstrøm et al. (1995), this has
probably little effect on the statistical consistency of the coefficient estimates, they mention that it
produces standard estimates that are too optimistic and thus not taking account of autocorrelation
presents a potentially serious source of inefficiency in the modelling of cross-section/time-series
data. In response to these problems, we therefore present in this paper, a first-order autoregressive
(AR1) time-series model for Poisson distributed data (see section 2) and compare it to some of the
classical models found in the literature. The Poisson AR(1) model was first developed by Al-Osh
and Alzaid (1987) and McKenzie (1985). Joe (1996) later generalized the approach. Weather ef-
fects in our model are easily incorporated as covariates via a link function as in standard GLM
models.

The remaining of the paper proceeds as follows: in section 2, a detailed description of the
INAR model is given. Section 3 provides a description of the data. Section 4 contains information
on the model formulation. In section 5, detailed results are given. Finally, concluding remarks and
some limitations of the research can be found in section 6 and 7.

2 INTEGER AUTOREGRESSIVE MODELS

Starting from the well-known simple AR(1) model for continuous data, we assume thatXt =
φXt−1 + εt , where|φ| < 1 and εt ∼ N(0,σ2) independently. In other words, the current obser-
vation at timet depends for some part on the previous observation at timet−1. This model, while
suitable for continuous random variables, cannot be used directly for discrete data. However, mod-
els that capture the same idea, but suitable for count data, can be also constructed. McKenzie
(1985) and Al-Osh and Alzaid (1987) defined an analogous process for discrete data, called the
Integer-valued autoregressive (INAR) process as follows:

Definition: A sequence of random variables{Xt} is anINAR(1) process if it satisfies a differential
equation of the form

Xt = α◦Xt−1 +Rt , t = 1,2, . . . (1)

whereRt is a sequence of uncorrelated non-negative integer-valued random variables having mean
µ and finite varianceσ2 andX0 represents an initial value of the process while the operator” ◦ ”



denotes the binomial thinning operator defined by

α◦X =
X

∑
t=1

Yt ,

whereYt are Bernoulli random variables withP(Yt = 1) = α = 1−P(Yt = 0), α ∈ [0,1]. One can
easily see that the binomial operator mimics the multiplication used for the normal time series
autoregressive model so as to ensure that only integer values will occur. This implies that the
Poisson AR model can be interpreted as a birth and death process, see Ross (1983, Section 5.3).
Each individual at timet−1, has probabilityα of continuing to be alive at timet, and at each time
t, the number of birthsRt follows a Poisson distribution with meanµ.

Thus, conditional onX, α ◦X is a binomial random variable, whereX denotes the number
of trials andα denotes the probability of success in every trial. The termRt is referred to as the
innovation termand must be independent ofα◦Xt−1 and follows any discrete distribution (in order
for Xt to be counts).

The basic ingredient of the INAR model is that it assumes that the realization of the process
at timet is composed by two parts, the first one clearly relates to the previous observation, while
the second one is independent and depends only on the current time point. Although it is possible
to incorporate higher-order lags into the model, we do not pursue them since their interpretation
is not straightforward (see Jin-Guan and Yuan, 1991). Therefore, in this paper we will confine
ourselves to the first-order case.

The simple Poisson INAR model can be extended to a INAR Poisson regression model by
adding covariates to both the innovation term and/or the autocorrelation parameter. The model
then takes the form

Xt = αt ◦Xt−1 +Rt

Rt ∼ Poisson(λt)
logλt = z′tβ (2)

log

(
αt

1−αt

)
= w′tγ,

for t = 1, . . . ,T wherezt andwt are vectors of covariates at timet while β andγ are the associated
regression coefficients. Note that the covariates for the two parts of the model must not necessarily
be the same.

The well-known Poisson regression model corresponds to the case whenαt = 0 for all t and
thus the INAR(1) model is a natural extension of the standard Poisson regression model when au-
tocorrelation in time series counts is present. The model also assumes that the correlation between
successive points (αt) may depend on some variables, i.e. it is not constant across time.

Finally, the interpretation of the model is also suitable for accident data. The current count
is split in two parts, the one part (αt ◦Xt−1) reflecting common elements with previous counts,
like infrastructure, and the second part (Rt) reflecting a random process that generates accidents.
Indeed, for our accident data, where we deal with the daily number of crashes for 3 city regions, it
is reasonable to assume correlation between successive crash counts as a result of a structural un-
derlying level of risk that is region-specific and which depends, for instance, on the characteristics
of the road infrastructure. Indeed, given all other influential factors (like differences in weather or
exposure) unchanged, we may expect the number of crashes of the current day to depend on the



number of crashes of yesterday due to a certain level of unsafety that is determined by the intrin-
sic safety level of the infrastructure (type of roads, length of the road network, existence of black
spots, etc). However, additionally, the current observation also depends on day-to-day differences
in e.g. weather, exposure, etc. that may influence the unsafety level on the current day (Rt).

3 DATA DESCRIPTION

This study is based on the daily crash counts that were obtained from the major roads covered
by the surface of 3 big cities (Utrecht, Dordrecht and Haarlemmermeer) in the Netherlands in the
year 2001. The cities were selected based on two criteria. Firstly, their proximity to some national
weather station in order to obtain accurate daily weather conditions for each city. Secondly, the
cities were selected so that they are far enough apart in order to prevent that weather conditions
would be identical for the different sites for too many of the observations.

With respect to weather conditions, daily weather observations were obtained from the Dutch
National Metereological Institute. More specifically, the following list variables were created from
the data and considered for inclusion in the model. This was based on previous research where
they have shown to be important/significant or at least hypothesized as being influential towards
predicting the number of crashes. Note that the data are daily averages and thus they do not reflect
instant weather conditions.

• wind. Variables related to wind velocity have been used by Lianet al. (1998), Levineet al.
(1995) and Baker and Reynolds (1992). The literature shows that wind is usually not found
to be significant, except for heavy storms and for large vehicles. Nevertheless, we use the
prevailing wind direction in degrees 360=North, 180=South, 270=West, 0=calm/variable),
the daily mean windspeed in 0.1 m/s, the maximum hourly mean windspeed in 0.1 ms/s and
the maximum wind gust in 0.1 m/s.

• temperature. Temperature has found to be important, especially in combination with snow-
fall or rain (e.g., Brown and Baass, 1997; Fridstrøm et al., 1995; Fridstrøm and Ingebrigtsen,
1991). We use the daily mean temperature in 0.1 degrees Celsius, the minimum tempera-
ture in 0.1 degrees Celsius and the maximum temperature in 0.1 degrees Celsius. However,
since the same absolute temperature during summer and winter may have a different effect
on crashes, we also created a relative temperature variable, being the deviation of the mean
daily temperature from the monthly temperature, to cancel out potential seasonal effects.
Finally, since the effect of temperatures may be nonlinear, the daily mean temperature was
discretized into four non-overlapping intervals, i.e.T < 0, 0≤ T < 10, 10≤ T < 20 and
T ≥ 20. The latter also enables to treat temperatures below zero as a separate category.

• sunshine. The amount of sunshine was found to be an important variable in the prediction of
crashes. For instance, in Fridstrøm et al. (1995), it was found that an extra hour of daylight
between 7 A.M and 11 P.M decreased the the number of crashes in Norway by 4%. We use
sunshine duration in 0.1 hour and percentage of maximum possible sunshine duration. The
latter variable accounts for seasonal differences in the amount of daylight due to different
sunrise and sunset hours. Furthermore, an additional dummy variable was created to account
for sun dazzle effects. Typically, in Northern countries and during fall and the winter period,
the sun is very low above the horizon during certain periods of the day causing crashes by
drivers who get dazzled by the sun. This dummy variable takes the value of 1 if the month is
between September and February, maximum possible sunshine duration is above 70% and



cloud cover is less than 4, approximating in this way a bright day with a lot of sunshine
during fall or the winter period and 0 otherwise.

• precipitation. Rainfall has found to be a significant predictor for road crashes in many studies
(see e.g. Fridstrøm et al., 1995; Levineet al., 1995; Satterthwaite, 1976). We use precipita-
tion duration in 0.1 hour and daily precipitation amount in 0.1 mm. Moreover, an additional
variable was created that expresses the intensity of rain, calculated as the ratio of the precip-
itation amount divided by the precipitation duration. High values for this variable indicate
heavy rains during small time periods. Also, a lagged variable was created indicating the
number of days since it has last rained. In fact, it was hypothesized recently (Eisenberg,
2004) that the risk imposed by precipitation increases dramatically as the time since last
precipitation increases. Finally, the amount of rainfall was also discretized into several non-
overlapping intervals in addition to a binary variable indicating whether it has rained or not
during that day.

• air pressure. In Roer (1974) and Orne & Yang (1972), falling barometric pressure was found
to produce a significant increase in crash rate. We use the daily mean surface air pressure in
0.1 hPa.

• visibility. We use minimum visibility (0=less than 100m, 1=100-200m, 2=200-300m,...,)
and cloud cover in octants (9=sky invisible).

Information on daily traffic exposure in 2001 was obtained from the Dutch Ministry of Trans-
port. More specifically, for each city region, daily vehicle kilometers driven were calculated for
each road segment of the major road network based on loop detector data. This enabled us to
calculate the day-to-day total amount of vehicle kilometers driven for each city region. However,
if information on daily traffic exposure is not be available, we show later in this paper that one can
also include dummy variables in the model for the different days of the week in order to account
for day-of-the-week variability in exposure (see e.g. Martin, 2002; Levineet al., 1995; Joneset
al., 1991; Tanner, 1967). In any case, it is necessary to account for differences in exposure in the
model in order to separate the direct effect from the indirect effect (through exposure) that weather
may have on crashes. Since a measure of exposure is included in the model, the results in this
paper will thus show the direct effect of weather on crashes. In addition, similar to Fridstrøm et al.
(1995), we also introduced city-specific dummy variables to account for city-specific differences
in the number of crashes not accounted for by weather or traffic exposure (e.g. different physical
conditions of the road network).

4 MODEL FORMULATION

Let us now formulate the model in a mathematical notation. The variableXit denotes the number
of crashes for sitei at timet, with i = 1,2,3 andt = 2, . . . ,365. The first observationXi1 for each
site is considered as the initial value. We use a model of the form

Xit = αit ◦Xi,t−1 +Rit

Rit ∼ Poisson(λit )
λit = exp

(
z′it β

)

log

(
αit

1−αit

)
= w′it γ



wherezit andwit are vectors of parameters at timet for site i while β and γ are the associated
regression coefficients. Our model assumes differentα’s for each site, because preliminary analysis
showed that the sites had different autocorrelations. Thus vectorw consists of dummy variables
for the 3 different sites. No weather variables were used for theα’s in order to avoid confusion
about the effect of the weather conditions on the mean crash count. Indeed, one can show that for
the INAR model the marginal mean equalsλ/(1−α) and hence using the same covariates for both
the nominator and the denominator can lead to results without simple and useful interpretation. In
the next section, we do not report the estimates for the vectorγ but the parametersα j , j = 1,2,3
corresponding to the three different sites.

Note that our model assumes the same parameters related to weather conditions for all sites.
Clearly, one can assume different regression parameters for each site, i.e. an interaction of weather
conditions and site. For example, we may assume thatλit = exp(z′it βi), so changes inβi show
the interaction of the particular site to those weather parameters. Alternatively, such effect can
be incorporated into the model by using dummy variables to reflect different sites. Preliminary
examination of the data did, however, not show any such effect. Generalization to this case is
straightforward and it will not treated in this paper. We use dummy variables for the 3 sites in order
to account for the different mean crash counts observed in the data, but the regression parameters
are assumed constant across sites.

Finally, since there is significant multi-collinearity in the data, especially for those variables
referring to the same weather characteristic (e.g. minimum and maximum temperature during the
day) we adopted a stepwise selection procedure during model estimation (see section 5.2).

5 RESULTS

5.1 Preliminary analysis

Table 1 shows some of the data characteristics for the 3 sites. Clearly, there are differences between
the sites. Firstly, for all three sites the ratio of the variance to the mean is larger than 1 implying
overdispersion relative to the simple Poisson distribution. An overdispersed INAR model, like the
negative binomial regression INAR model could be constructed to account for the overdispersion.
However, after fitting the INAR Poisson regression model, it turned out that the remaining overdis-
persion is no longer significant and for this reason there is no need to use the more complicated
negative binomial model. The reason is that the covariates used for modelling the data explain the
overdispersion to a large extent. Secondly, there is a large difference between the autocorrelation
of the three sites. The autocorrelations reported are of the first order. Higher-order autocorrelations
were not large, apart from the autocorrelation for lag=7, which is however not statistically signif-
icant, and which in some sense indicates the effect of the day. For this reason, we fitted different
autocorrelation parameters for the three sites.

Figure 1 shows the time series for some of the weather variables. The columns correspond to
a site and the rows to a weather variable. The four variables presented in the plot are the mean
temperature, the precipitation duration, the daily precipitation amount and the mean windspeed.
We used the same scale to enable a fair comparison between the sites. Although the general
pattern for each variable is similar across the different sites, several differences between sites for
the same day are observable. For this reason, we expect that the weather effect obtained through the
analysis may have a more general interpretation since we have selected sites with varying weather
conditions.
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Figure 1: Plot of some of the weather variables for the three sites. There are notably different
weather conditions

5.2 Estimation and results

Table 2 shows the results after estimation using an EM-type algorithm (Karlis and Xekalaki, 2001).
More precisely, two models were fitted (see table 2): the first model using dummies to reflect day-
of-the-week differences when exposure is not known, and the second model including exposure as
an additional variable in the model (without the day-of-week dummies). Given the large amount
of explanatory variables available in this study and the problem of multi-collinearity associated
with it, a stepwise model selection procedure was carried out. More specifically, the selection of
the variables for the model was based on a forward search technique. In the first step, for each set
of related variables (e.g. those related to wind, precipitation, temperature, etc.) one variable was
selected from each set; the one with higher correlation with the response variable is selected in or-
der to avoid multi-collinearity effects. After estimating this model and evaluating the significance
of each of the included variables, we added covariates to the model in additional steps by finding
in each step the one that improves most the likelihood when added. Note that our EM algorithm
provides an efficient tool for fitting models with similar structure since if good initial values are
available, the algorithm converges quite fast. This implies that a large number of models were
fitted. In several cases, in order to add flexibility to the model, we moved from simple linear rela-
tionships of the variable to the logarithm of the response variable by fitting non-linear relationships



site mean variance autocorrelation variance/mean
Utrecht 2.747 4.227 0.0276 1.54

Dordrecht 0.950 1.239 0.0956 1.30
Haarlemmermeer 12.819 21.950 0.222 1.71

Table 1: Descriptive measures for the 3 series

Without exposure With exposure
coefficient (s.e.) p-value coefficient (s.e.) p-value

Constant 1.7048 (0.1072) 0.000 1.0084 (0.1520) 0.000
Utrecht -1.3897 (0.0684) 0.000 -0.9964 (0.0900) 0.000
Dordrecht -2.5186 (0.0852) 0.000 -1.9518 (0.1140) 0.000
Mean temperature < 0.001 < 0.001

< 0 0.5238 (0.1135) < 0.001 0.5742 (0.1120) 0.000
[0,10] 0.3214 (0.0826) < 0.001 0.3253 (0.0810) 0.000
[10,20] 0.2516 (0.0798) 0.000 0.2353 (0.0780) 0.003
> 20 0 - 0 -

Dev of mean temp 0.0010 (0.0006) 0.081 0.0012 (0.0010) 0.042
Precipitation duration 0.0027 (0.0005) 0.000 0.0029 (0.0000) 0.000
Intensity of rain 0.0032 (0.0143) 0.025 0.0304 (0.0140) 0.033
Sun dazzle 0.1948 (0.0790) 0.013 0.1921 (0.0780) 0.014
% max. possible sunsh. dur. 0.0012 (0.0006) 0.068 0.0011 (0.0010) 0.084
Day of the week 0.000 - -

Monday 0.3448 (0.0586) 0.000 - -
Tuesday 0.4467 (0.0574) 0.000 - -
Wednesday 0.2659 (0.0590) 0.000 - -
Thursday 0.2886 (0.0587) 0.000 - -
Friday 0.4364 (0.0570) 0.000 - -
Saturday 0.0812 (0.0623) 0.192 - -
Sunday 0 - - -

Exposure - - 0.0581 (0.0060) 0.000
Autocorrelation parameters
Utrecht 0 (0.0375) 1 0.0 (0.037) 1
Dordrecht 0.0759 (0.0432) 0.078 0.0689 (0.044) 0.116
Haarlemmermeer 0.1403 (0.0391) 0.003 0.1223 (0.039) 0.002

Table 2: Results based on the fitted model INAR regression model

Model Log-likelihood
Poisson regression -2246.496

Negative Binomial Regression -2243.034
Poisson INAR regression without exposure -2238.961

Poisson INAR regression with exposure -2232.950

Table 3: Comparison of different competing models



and/or discretized versions (see also the discussion in section 3). Adding more explanatory vari-
ables did not show any statistically significant improvement according to the likelihood ratio test.
From table 2, it becomes clear that both models (with and without exposure) show very similar
results for the different weather variables. This is an important observation because it shows that
when traffic exposure information is not available, the use of day-of-the-week dummies as proxy
variables for exposure still provides valid results for the effect of weather conditions on road safety.
Comments for all the variables included in the model follow:

• exposure. The first model shows that the proxies for exposure (day-of-the-week effect) are
highly significant. It is apparent from the table that weekdays are more dangerous than week-
end days (Sunday being the reference day). The difference between Saturday and Sunday
is, however, not significant. Tuesday (0.45) and Friday (0.44) are the most dangerous days
of the week in terms of the number of crashes. In fact, from an overall perspective, table 2
shows that the variable ’day of the week’ is a highly significant variable and thus it should
not be removed from the model. However, when daily exposure information is available,
the second model shows that indeed this variable is highly significant and when exposure in-
creases one can expect a higher number of crashes. These results are consistent with findings
in earlier research (e.g. Levineet al., 1995a, 1995b) where differences between weekdays
and weekend days were also found.

• precipitation. Rainfall is also highly significant with respect to the number of crashes. The
variable ’intensity of rain’, being the ratio between daily precipitation amount and daily pre-
cipitation duration, is highly significant and shows that if the intensity of the rain increases,
then this leads to a higher number of crashes. The same is true for the variable ’precipitation
duration’. In fact, one can see a positive relationship between the number of hours of rainfall
per day and the number of crashes. The interpretation for the coefficient of precipitation
duration is that if the duration increases by one unit (0.1 hour per day) according to the first
model we expect an increase in the mean number of crashes by0.27%. However, we did
not find any support for a lag-effect (Eisenberg, 2004), implying that the risk imposed by
precipitation does not increase as the time since last precipitation increases.

• temperature. The relationship between temperature and crashes is not straightforward. In
fact, the relationship between the absolute temperature and the number of crashes is negative,
highly significant and nonlinear. Indeed, relative to the base category (temperatures above
20), lower temperatures result in more crashes, with temperatures below zero being the most
significant. However, when looking at the deviance from the monthly mean temperature, a
different effect is observed. Indeed, when the daily mean temperature exceeds the monthly
mean temperature, we expect more crashes. In other words, although on average a daily
temperature of say 10 degrees leads to a higher number of crashes compared to tempera-
tures above 20 degrees, the deviation from the monthly mean temperature may indicate the
reverse. For instance, during a winter month when the monthly mean temperature is below
10 degrees, a temperature of 10 degrees produces less crashes, whereas during a hot summer
month with monthly mean temperatures above 20 degrees, we expect more crashes.

• sunshine. In absolute terms, the amount (in hours) of sunshine was not found to be signifi-
cant towards predicting the number of crashes. However, the relative amount of sunshine, as
measured by the percentage of maximum possible sunshine duration, was found significant
(at the 10% level) and positive. This means that, after correcting for seasonal differences
in maximum possible sunshine duration, we can say that there is a positive effect between



the number of hours of sunshine and the number of crashes. Finally, also sun dazzle during
winter months was found to be highly significant and positive towards the number of crashes.

• city-specific dummies. The city-specific estimates are highly significant and indicate that rel-
ative to Haarlemmermeer, both Utrecht (-1.39) and Dordrecht (-2.52) show a lower number
of accidents overall.

All other weather variables, discussed in section 3, such as air pressure, wind, sky visibility
and lagged precipitation effects were not found to be significant in the model.

The last part of the Table 2 contains the autocorrelation parameters. The table shows that the
autocorrelation for Haarlemmermeer is the highest (0.14), whereas the correlation for Utrecht is
not significant and equals 0. This indicates that autocorrelation is present in the data and should be
taken into account for correct assessment of the effect of the variables.

5.3 Comparison with competing models

Table 3 presents a series of competing models fitted to the same data (i.e. using the same weather
covariates for all models) to allow for comparisons and hypothesis testing. It can be seen that the
simple Poisson regression model (ignoring autocorrelation) is the worst. Next, the negative bino-
mial regression improves with respect to the Poisson regression model due to the small amount of
overdispersion. Furthermore, the INAR Poisson regression model without exposure is preferable to
the Poisson regression model (LRT statistic is 15.07 with 3 degrees of freedom, p-value= 0.0015).
It is also slightly better than the negative binomial model (LRT is 8.146 with 2 degrees of freedom,
p-value= 0.017). However, the best model is the INAR Poisson regression model with exposure
included since compared with the INAR Poisson regression model without exposure it has a better
loglikelihood even with 5 parameters less.

6 CONCLUSIONS

The effect of weather conditions on crashes has been a topic of debate for some years already and
different studies tend to find conflicting results, depending on the granularity of the data, both in
time and space, depending on the operationalization of the variables and finally depending on the
methods being used. In this paper, we have shown that when autocorrelation is present in the data,
suitable statistical methods should be used to model the time-dependencies in the data. To this end,
we presented the Integer Autoregressive (INAR) Poisson Model for count data and used a number
of covariates related to traffic exposure and different weather aspects (e.g. wind, temperature,
sunshine, precipitation, air pressure, etc.) to estimate their impact on the number of crashes.

From the technical point of view, we showed that significance tests based on the likelihood
ratio test indicate that, for our data set, the INAR Poisson regression model outperforms the simple
Poisson regression model and thus that autocorrelation matters. Furthermore, we showed that
the model including daily traffic exposures outperforms the INAR Poisson regression model with
day-of-the-week dummies, although the effect of the weather variables on daily crashes remains
essentially unchanged.

From the practical point of view, we showed that weather effects indeed have an influence on
the number of crashes but that depending on the operationalization of the variables, different ef-
fects can be found. More research is therefore needed, i.e. on more datasets, different variable
operationalizations, different levels of granularity in time and space, to distinguish between the



different impacts that weather may have on crashes. Furthermore, these results can be used in dy-
namic traffic management, information campaigns, etc. In case of ’dangerous’ weather, measures
can be taken temporarily - by means of dynamic overhead traffic signs for example indicating a
lower maximum speed - or geographically - for certain regions with a significantly higher impact
of a weather element - structural measures can be taken.

7 LIMITATIONS

Firstly, the use of climatological weather data instead of using crash records to describe weather
conditions may introduce a measurement problem since weather conditions (like rainfall) may be
very local. However, since we model the number of crashes on the level of a larger geographical
area (i.e. a major city), we think that it is more efficient to use data from a nearby weather station.
Furthermore, at the time these data were collected, information from RWIS sites were not available
unfortunately. Probably, this would have added even more detail to this study.

Finally, our model does not distinguish between different types of crashes (fatal, severe, slight)
and precipitation (snow, rain, hail). In fact, earlier research showed that some of the weather
effects may have a different impact with respect to the type of injury. However, since the number
of injuries of different types are not independent from each other, they should be studied preferably
within a multivariate model, which is not straightforward. Furthermore, it introduces much smaller
count numbers and thus may introduce additional complexity during model estimation. This will
be the subject for future research.
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