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ABSTRACT 
 
In this paper, sequential information in data is represented and captured through the use of Markov 
Chains. The core knowledge information in a Markov Chain is typically represented by means of 
transition matrices, revealing information about the underlying structure of the data sequence. A 
drawback of the current application of Markov Chains is that there is only one transition probability 
matrix which is both representative for every person (respondent) and for every time frame during the 
day. To this end, a novel segmentation procedure has been introduced and tested in this paper that 
enables one to cluster transition matrices in terms of time and socio-demographic information. The 
temporal segmentation used the technique of the identification of bifurcation points; the socio-
demographic segmentation used a modified version of a decision tree, in the sense that sequential 
probability information was used during induction and in the leaves of the tree as opposed to the 
traditional way of only using one single classification attribute. The segmentation procedures were 
both adopted for descriptive and predictive purposes in the empirical section. Results show that the 
technique reveals promising information both at the descriptive and predictive level. At the descriptive 
level, evidence was found that one should rely upon different transition probability matrices for 
different time windows during the day and that socio-demographic information should be taken into 
account as well. For prediction purposes, the segmentation approaches simulated more accurate 
activity-travel sequences at pattern level; while the opposite was found true at trip level.   
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1. INTRODUCTION AND PROBLEM FORMULATION 
 
Within the field of activity-based transport modelling, the activity agenda and the corresponding travel 
participation is typically represented by means of sequences or patterns of behaviour. Sequential data 
representation is also frequently adopted in research on trip chains, activity sequencing, and sequential 
choice of activities and locations, acknowledging that consecutive activities likely affect one another 
(1-6). Accordingly, it is clear that a sequential data representation seems to be the relevant unit of 
analysis in the activity-based transportation research domain (see also (7)).  

A sequence can be defined as a succession of events, while an event is a transition from one 
discrete state to another, situated along a time continuum (8). In this paper, events represent activities 
that occur in a persons’ diary. Traveling is considered as an activity as well, while transport mode is 
added as an additional attribute in this case. In order to analyze sequential data, the techniques and 
methodologies need to be chosen most carefully.  

In this paper, we will represent and capture sequential information in data through the use of 
Markov Chains. Markov Chains are typically represented by means of transition matrices, which 
reveal information about the underlying structure of the data sequence and provide information about 
the probability of going from the previous activity (state) to the current activity (state) (see also 
section 2).  

While Markov chains have been frequently adopted in several domains for analysis and 
prediction, the technique is certainly not applied on a broad scale in the area of transportation. 
However, also in other research domains it is –unfortunately- often assumed in the application of 
Markov Chains that there is only one transition probability matrix which is both representative for 
every person (respondent) and for every time frame during the day (which is called the stationarity 
assumption). However, especially in the field of transportation, there is accumulated empirical 
evidence which suggests that activity-travel patterns are (highly) correlated with the socio-
demographic information (9-10) of the respondent and that different transport behaviour (and thus 
different activity-travel patterns) exist for different time windows during the day (11-12).  
The aim of this paper is therefore to propose advancements to the current methodological state-of-the-
art for application within the field of transportation research and activity-based modelling. The first 
advancement is the introduction of a segmentation procedure which enables one to cluster transition 
matrices in terms of time information (relaxation of the stationarity condition) by means of a 
technique which is able to identify statistically significant bifurcation points. As a second 
advancement, a new segmentation scheme has been developed which is able to cluster sequential 
information in terms of socio-demographic information. This procedure uses a modified version of a 
decision tree, in the sense that sequential probability information can be used during induction and in 
the final nodes in the tree (leaf nodes) as opposed to the traditional way of only using one single 
classification attribute (represented by one dependent variable).  
The remainder of this paper has been organised as follows. Section 2 briefly gives an introduction into 
Markov Chains and transition matrices and explains how a test for stationarity can be adopted in this 
context. Next, a new segmentation approach has been introduced which is both able to take into 
account time and socio-demographic segmentation. The fourth section explains both descriptive and 
predictive empirical results using the information incorporated in the segmentation approaches. The 
final section gives a conclusion and discusses some topics for future research.  
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2. MARKOV CHAINS 
 
2.1 Transition Matrices 
 
Markov Chains are probabilistic models which were introduced by Andrej Andreevic Markov at the 
beginning of the 20th century. Their application domains have been numerous; for a more 
comprehensive treatments of Markov Chains and their applications see e.g. (13). In addition to these 
applications, there is also a large family of latent variable models that can be jointly used along with 
Markov Chains. They can for instance be used as Mixed Markov Latent Class models (MMLC) (see 
examples in (14-15)) that have been used to describe stochastic processes in discrete space and 
discrete time. Finally, Markov Chains are also particularly well suited in the analysis of longitudinal 
(panel) data. 

A transition matrix reveals information about the underlying structure of the data sequence 
and is in fact the core knowledge representation of a Markov Chain. In order to capture sequential 
dependencies in activity-travel data and represent it in terms of a transition matrix, it is assumed that 
each sequence in the diary consists of a set of correlated successive observations of a random variable. 
To this end, a discrete random variable Xt  is considered, taking values in the finite set {1,..m}, where 
each value in this set represents an activity that occurs in a persons diary. As mentioned above, 
travelling is considered as an activity as well, however the transport mode is added as an additional 
attribute in this case. The goal in this application is to generate (predict) the value taken of Xt as a 
function of the values taken by previous observations of this variable. On the one hand, one can 
assume that the current value taken by Xt can be entirely explained by the previous observation 
(Activity t-1). On the other hand, one can assume that it is only possible to accurately explain the 
current value of Xt by the last k-1 observations (Activity t-1, Activity t-2, … Activity k-1) (i.e. k-1th 
lag) in which k represents the length of the diary.  

While we have explained in previous studies (16) the importance for choosing the number of 
previous observations that can best explain the current observation in the diary, the trade-off is not 
dealt with in this paper. The reason is that we wanted to investigate the methodological advancements 
that have been proposed in this paper in a simple setting where we assume that the current value of Xt 
can be entirely explained by the previous observation. In this case, it is in fact implicitly assumed that:  
 
P(Xt=i0 | X0=it, …, Xt-1=i1) = P(Xt=i0 | Xt-1=i1) = )(

01
tiiq , where it, …, i0 ∈{1,…, m}.   

 
Each value in the set {1,…,m} represents an activity that occurs in a persons diary. 

Considering all combinations of i1 and i0, we can now construct a transition probability matrix Q, each 
of whose rows sums to 1.  
 

 
Each of these transition probabilities q.. represents the probability of going from state Xt-1 to 

state Xt, or in other words, from the activityt-1 to activityt. Alternatively, probabilities within the matrix 
can also be represented in terms of frequencies, which is often referred to as a transition frequency 
matrix Qfreq.  
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2.2 Testing for Stationarity  
 
A Markov Chain satisfies the stationarity condition if transition probabilities do not depend on the 
time t. It means that at whatever time point t the chain is looked at, transition probabilities are the 
same. 

Stationarity can be tested by means of an “omnibus” method (17) that divides a sequence (in 
this case activity-travel patterns) into D time periods, thereby yielding D subsequences. Then, 
transitional frequency matrices are computed for each time period (d) and a statistical chi-square test 
will compare the individual transition frequency matrices with the overall one. The expected 
transitional frequencies and the χ²-statistic can be respectively computed as:  

( ) ( ) ,ij
ij itot

itot

n
E d n d i j

n
= ∀  

 
The tested null-hypothesis is that the transitional probabilities are constant across time periods. It is 
expressed as:  

H0: qij(d)=qij, ∀ d=1,2,…, D 

H1: qij(d)≠qij, ∀ d=1,2,…, D. 

3. THE NEED FOR A NEW SEGMENTATION APPROACH 
 
As mentioned before in the introduction, empirical evidence seems to suggest that activity-travel 
patterns are (highly) correlated with the socio-demographic information (9-10) of the respondent and 
that the stationarity condition described above is often violated (11-12). When dealing with time 
segmentation, only one explanatory variable (i.e. time of day) needs to be taken into account. 
Therefore, the statistical test of stationarity of a system that has been introduced in the previous 
section, which mainly examines the change of dynamics before and after a certain moment in time, 
can be extended by considering different splitting points that lead to a significant statistical difference. 
Things get more complicated when segmentation needs to be done in terms of socio-demographic 
information, because of different explanatory variables which might have an influence on the final 
segmentation. In this case, a modified version of a decision tree has been developed, such that the 
dependent variable in the tree explicitly takes sequential information per socio-demographic variable 
into account. Both approaches have been described in the next two sections. 

3.1 Segmentation by Means of Bifurcation Points (Temporal Segmentation) 
 
The stationarity test in section 2.2. has introduced a statistical test for examining whether there is a 
change of dynamics before and after a particular cutpoint. For instance, the test can be used to 
examine whether transition matrices are significantly different in the time periods ranging from 
24PM-8AM; from 8AM-16PM and from 16PM-24PM. Obviously, the test can equally be used for a 
segmentation in more segments. The choice of these cutpoints can be done arbitrarily, relying for 
instance on domain knowledge. While this is a good procedure to get an initial idea about whether our 
transition matrices satisfy the stationarity assumption or not, splitting a sequence at different single 
points in time is unlikely to result in the most optimal segmentation because it is not at all driven by 

2
2

1 1, 1

( ( ) ( ))
( )

D m
ij ij

ijd i j

n d E d
E d

χ
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the information which is incorporated in the data. Therefore, by the iterative application of the 
procedure described in section 2.2 (omnibus test), for all possible splitting points of a sequence, we 
are able to point out moments in time where the system bifurcated into significantly different type of 
dynamics. Such a procedure is also valid to evaluate whether the identified pivotal moments in the 
data match with the moments defined by a priori domain knowledge. The points that radically 
transform the dynamics of a system are called bifurcation points. The methodology is frequently used 
in complex dynamical system theory (see for instance (18)). The procedure to identify these 
bifurcation points is as follows:  

1. Determine the level of significance (α). 
2. Set a time window by which transition matrices need to be compared. In the limit, this time 

 window can be set equal to 1 minute but this will lead to a computational explosion of the 
 calculations. In the artificial example given above (24PM-8AM; 8AM-16PM and 16PM-
 24PM), the three  time windows are set equal to 8 hours, and the potential bifurcation points 
 are set at 8AM, 16PM and 24PM. Accordingly, every time window defines potential 
 bifurcation points (n1,n2,n3). The first potential bifurcation point is defined as nmin, the last as 
 nmax.  

3. Construct a transition matrix for every time window, meaning three transition matrices in this 
 example. 

4. Calculate the χ² value to evaluate whether the dynamics of the system is subject to a 
 segmentation into d (i.e. 3 by example) time periods (see definition 5.5) by application of the 
 omnibus test.  

5. Store the p-value for this omnibus test.  
6. Redefine the time window ranging from nmin to nmax by adding one time window to nmin, 

 thereby setting nmin:=nmin+1. Recalculate the transition matrices for the new time 
 windows. In our example, a new transition matrix needs to be computed ranging from 
 24PM-16PM. The transition matrix that was computed before, for 16PM-24PM, 
 remains the same. 

7. Re-calculate the omnibus test for nmin to nmax. Equally, substract one time period from d; i.e. 
 d:=d-1. In our example, it is thus evaluated whether the dynamics of the system  is subject to a 
 segmentation in two time periods.  

8. Store the p-value for this omnibus test.  
9. Repeat steps 6 till 8 until nmin:=nmax or until d:=1. 
10. Plot the p-values for every omnibus test  
 
The procedure will later be empirically illustrated in section 4.3. 
 

3.2 Segmentation by means of Full Decision Trees (Socio-Demographic Segmentation) 
 
3.2.1. Conceptualisation 
 
A different and more complicated procedure arises when transition probability matrices need to be 
segmented in terms of socio-demographic information. Indeed, unlike in the previous case, there is 
now a combination of different explanatory variables that have a potential influence on the transition 
probability matrix. To this end, a novel segmentation scheme has been developed that is a modified 
version of a decision tree approach. Especially CART decision trees were used in a number of 
previous studies (9; 19) in the context of transportation modelling for segmentation. The best known 
application of this technique is probably the TRANSIMS project, where the CART algorithm is used 
in the “Activity Generator Module” to produce an accurate classification of household characteristics 
based on household travel behaviours.  
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However, in traditional (classification) decision trees, the dependent variable at the leaf (a leaf 
node is a node that have no offspring nodes) simply contains a finite number of possible values and is 
often discrete in nature. The novel algorithm that is proposed in this paper differs in two ways from 
this common way of thinking. First, the dependent variable can no longer be immediately observed 
from the data but is the result of a learning methodology (i.e. transition matrices are extracted from the 
data, see section 2.1) and second, the dependent variable explicitly takes sequential information into 
account. As such, transition probability matrices instead of simple discrete values are used as 
dependent variables in the construction of the trees. 

Obviously, the most important decision that needs to be made when developing a decision tree 
is the splitting criterion (this is the criterion which is used to divide the tree into several branches). 
Fortunately, one of the most widely measures that is adopted in decision trees, i.e. gain ratio, can be 
applied in a quite straightforward manner in our approach as well. The use of  gain ratio as a split 
criterion favours splits into increasingly homogeneous partitions in terms of the dependent variable 
(class attribute), because the best split is the one with the most homogeneous daughters. In the limit, 
leaf nodes will therefore only contain cases from a single response class. Gain ratio is a measure 
which is derived from information theory. Information theory defines the quantity of information 
conveyed by a particular message as being inversely proportional to the predictability of that message.  
When a message is entirely certain (that is, its probability is 1), then the quantity of information 
conveyed is zero. When a message is nearly improbable (that is, its probability is almost 0), a 
maximum quantity of information is needed to receive such a message. The degree of uncertainty of a 
message can be represented by the probability of that message, or in terms of traditional decision 
trees, by the probability of that class. Information theory works with measures like entropy as an 
intermediary step in its computation to finally arrive at the gain ratio. Entropy can be defined as a 
measure for impurity, disorder and randomness of a particular system and the goal is typically to 
reduce the entropy in the system. Entropy is measured in bits. To summarize, in the case of decision 
tree induction, the aim is to reduce the entropy in the tree by recursively splitting the tree in the most 
homogeneous way. For a better understanding of the concepts of information theory, the reader may 
consider the work by Quinlan (20) in the context of traditional decision tree induction.  

3.2.2. Re-introducing Information Theory in the Context of Transition Matrices 
 
In order to calculate the gain ratio described above, traditional information theory needs to be tuned 
and re-introduced for application in the (new) context of transition matrices. Five steps can be 
distinguished in this process.  
 
Step 1: Calculate the Entropy of One Row in the Matrix  
 
The entropy of one row i in a frequency matrix Qfreq can be defined as: 

m
freq freq

freq 2
j=1

( ( , ) ( ( , )
Info Q ( )=- log bits,  row 

itot itot

Q i j Q i j
i i

n n
⎛ ⎞ ⎛ ⎞

× ∀⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ , with Qfreq(i) the ith row of the frequency 

matrix Qfreq; Qfreq(i, j) the matrix entries defined by the ith row and the jth column, that is the frequency 
that the element(s) in row i is (are) followed by the element in column j; nitot the row total in Qfreq and 
m the number of columns.   
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Example: Assume that we have the following transition frequency matrix: 
 Xt  
 Xt-1 Tc E F R nitot 

Tc 5 18 2 5 30 
E 1.7 3.68 4.09 0.53 10 
F 6.25 10 8.75 5 30 

Qfreq= 

R 0 1.7 5.8 2.5 10 
,with Tc= Transportation, with car as transport mode, F=visit Family, E=Eat, R=Read 
 
The entropy of row two is then:   

InfoQfreq(2)= 2 2 2 2
1,7 1,7 3,68 3,68 4,09 4,09 0,53 0,53log ( ) log ( ) log ( ) log ( )
10 10 10 10 10 10 10 10

− − − − =1,72 bits 

The calculation of the entropy of other rows in the matrix is similar.  
 
Step 2: Calculate the Entropy of the Total Matrix  

Second, the entropy of a full transition matrix is equal to
m

itot
freq

i=1

nInfo(Q)= Info(Q ( ))
N

i×∑ . It can be 

seen from this formula that every row in the transition matrix is weighted in proportion to the number 
of times a particular sequence starts with the element(s) which is represented in that particular row of 
the matrix.  
 
Example: The entropy of the full transition probability matrix, shown in the example above is equal 
to: (30/80)x1,56+(10/80)x1,72+(30/80)x1,95+(10/80)x1,38 =1,70 bits.  
 
Step 3: Calculate the Entropy of a Transition Matrix After a Partition on Test X 
 
Third, the entropy of a full transition probability matrix after a (sub)set has been partitioned on a test X 
using a decision tree for instance, can be calculated as:  

InfoX(Q)=
1

info( )
n

i
i

i

T
Q

T=

×∑ , where |Ti| represents the number of cases that belongs to the partition i  

and |T| represents the number of cases in T.  
 
Example: Assume that the first branch is specified by the transition probability matrix introduced 
previously (see step 1), and that a second branch contains a transition probability matrix that has a 
total entropy equal to 1,50 bits. Assume now that both branches respectively represent 4 and 3 cases 
for this particular split (X). The calculation is as follows: (4/7)x1,70+(3/7)x1,50=1,61 bits.  
 
Step 4: Calculate the Gain Criterion  
 
Fourth, one needs to calculate the gain criterion, which measures the information that is gained by 
partitioning a set using a particular test X in a decision tree. The gain criterion can be defined as: Gain 
(X)= info (T)-infoX(T).  
 
When compared to traditional decision tree induction, its application does not change when transition 
matrices are used in the leaves of the tree. The calculation is straightforward by using the formulas 
explained in steps 1 till 3.  
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Step 5: Calculate the Gain Ratio 
 
It was already mentioned before that the previous steps were mainly intermediary in order to arrive at 
a measure called the gain ratio. The gain ratio can be calculated as  

Gain ratio (X)= gain( )
split info (X)

X , where split info (X) indicates the information that is generated by 

partitioning T into n subsets. It is calculated by:  

2
1

log
n

i i

i

T T
T T=

⎛ ⎞
− × ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ .  

The gain ratio is preferred over the gain criterion for splitting a decision tree, since attributes that have 
a large number of possible values, give rise to a multiway branch with many child nodes, when 
information gain criterion is used for the calculation. More information about this property can be 
found in Quinlan (20). Also in this case, the calculation of gain ratio does not change in this renewed 
context.  
 
3.3 The Segmentation Procedure 
 
3.3.1. A New Decision Tree Segmentation Scheme  

In order to use these modified principles of information theory in a new decision tree segmentation 
scheme, the following mathematical conceptualisation has been introduced.  

 
S  the total sample of activity diaries, consisting of n sequences, indexed  

i =1,…,n 

Xk explanatory socio-demographic attributes, with k =1,...,K. 

Y  dependent variable, represents the transition probability matrix Q (Y=Q); for all sequences  
(∀ i) 

T Final decision tree based on sequential information, comprised of nodes (Ns and L) and 
branches. Leaf nodes are specified by Q. 

N the current node in T, splitting the current subset of S into subsets Nkt  

Nkt  represents the subsets of a split by N; splits at a value t based on an independent variable Xk, 
such that Xk=t; ∀tk 

tk set of possible values of t such that there exist observations in N having Xk=t; ∀k=1,…,K; and 
with N=Xk. 

Ns set of active decision nodes in T that split S into different subsets.   

L   set of inactive decision nodes that cannot split S into additional subsets because nmin or Gmin 
are not satisfied (see infra). In this case they become leaf nodes L. 

nmin  Parameter that determines whether a particular branch in the tree is split into additional nodes 
 or not. Splitting is stopped when the number of  individuals that belong to either of the child 
 nodes Nkt is less than the number defined by nmin  
 
G(Nkt) Gain ratio (as defined in section 3.2.2) of a transition matrix that is built on the subset of Nkt.  
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Max represents the global maximum of all the gain ratios per level in the tree, G(Nkt) ∀Nkt.  
(GNkt) Max G(Nkt) is used to select the optimal decision node N.  
 
Gmin Minimum Gain ratio that determines whether a particular branch in the tree is split into 

additional decision nodes or not. Splitting is stopped when Max G(Nkt) is  smaller than Gmin.  
 

Having defined this mathematical conceptualisation, a decision tree procedure has been introduced in 
Figure 1. A computer code has been established to automate the full process. The next paragraph 
elaborates on an example to illustrate this procedure.  

3.3.2. Example  
 
Consider the following 3 activity diaries (activity-travel pattern) for illustration purposes: 
Diary 1: TcEEFREREERFTcFTcFFTcFETcF  
 with gender=male; age=older than 45 years and education=high 
Diary 2: RREFEFEETcTcR 
 with gender=female, age=between 18 and 24  and education=low 
Diary 3: EEFFTcFTcFRRTcTcRTcRR 
 with gender=male, age=between 25 and 44 and education=low 
 and with Tc= Transportation, with car as transport mode, F=visit Family, E=Eat, R=Read  

 
The initialisation procedure in Figure 1 is quite simple for this example. The value nmin and Gmin are 
respectively set equal to 1 and 0, Xk is defined as gender, age and education, respectively for k=1,…,3; 
with K=3. The set of active decision nodes Ns is also fixed as {gender, age, education}. Note that this 
set is not always equal to the variables Xk for k=1,…,K, since one might decide not to use certain 
variables as decision nodes, for example in case of ID-number, which might be perfectly relevant as 
an attribute but not as a decision node. Finally, the set of leaf nodes is initialised as empty.  

Since the set of decision nodes Ns is not empty and the set of leaf nodes is empty, the two first 
checks in Figure 1 can be omitted. After this, the procedure will select the most optimal decision node 
for the root node of the tree.  

First, each decision node N that belongs to Ns, is divided into temporary splits Nkt such that 
Xk=t ∀Nkt for k=1,…,3. Then, QNkt is constructed for each tk. Next, the gain ratio is calculated as 
explained in section 3.2.2, and the attribute that achieves the highest gain ratio in the tree is selected to 
carry out the split at the current level (=root level) of the tree. The attribute “Gender”, with a gain ratio 
of 0.469, achieves the highest value (MaxG(Nkt)) and is thus chosen as the best split for this tree at 
root level. After actually creating this split, the next step first verifies whether the number of 
observations in the child nodes, is greater than the minimal value nmin and greater than Gmin. While this 
is the case for the first branch (gender=male), it is not for the second branch (gender=female). For this 
reason the decision node “Gender” is removed from the set of active decision nodes Ns and added to 
the set of leaf nodes. The branch for which the decision node did not satisfy the nmin-check (i.e. N2) is 
marked to indicate that it has been fully exploited. The procedure now restarts from the beginning. 
While the first check still is not yet satisfied, the set of leaf nodes is no longer empty. First, the set of 
active decision nodes is temporarily set equal to the set decision nodes Xk. This is necessary to let a 
particular variable occur multiple times in different branches in the tree. Second, the most left 
unmarked branch in this tree is now identified. In this example this unmarked branch is specified by 
Gender=male. Again, the most optimal N needs to be determined for this branch. This means that 
temporary splits need to be created for the branch gender=male and the maximum gain ratio need to 
be computed. In this case, the variable education achieves the largest gain ratio. Now, both remaining 
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branches (i.e. education=low; education=high) do not satisfy the nmin-check. Indeed, for the branch 
gender=male; there is only one case that belongs to education=low and one case that belongs to 
education=high. This means that both branches need to be marked. While Ns is still not empty, all 
branches are now marked and the final decision tree along with its final Q are stored and shown in 
Figure 2.  

 

 
Initialisation:  1) Set a value for nmin and for Gmin 
  2) Determine Xk for k=1,…,K 
  3) Set Ns={Xk}  
  4) Set L={∅} 
 

Is Ns=∅? 
Store T as L and compute the 
final Q for each marked branch 
 

Yes

No 

Determine most optimal N  

 

1.Create temporary splits  Nkt, for 
 each tk.  
2. Construct QNkt 

for each tk 

3. Calculate G(Nkt) for each tk 
4. Calculate MaxG(Nkt) and 
determine most optimal N  
 

No

1.Set Ns={Xk} 
2.Determine most left branch that 
is not marked 
3.Proceed up the marked branch, 
and remove every N that exists in 
that branch from Ns

IS L=∅? 

Yes 

No 1. Remove N 
from Ns  
2. Add N to L  
3. Mark branch  

Yes

If split has not been created for tk, 
create split Nkt  

1. Remove N from Ns  
2. Proceed down the tree for the 
 most left unmarked branch  

If all 
branches 
are marked 

FIGURE 1  Description of the procedure for building a decision tree  
based on sequential information. 

• Is |Nkt| > nmin 

∀tk? OR 
• Is Max  
 G(Nkt) > Gmin 
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Once the segmentation for all the transition probability matrices has been done, every 
sequence can use the most appropriate transition matrix by proceeding its socio-demographic 
information down the tree. 
 
4. EMPIRICAL RESULTS 
 
4.1. Preface 
 
The previous sections have described segmentation procedures which enable one to cluster transition 
matrices in terms of time and socio-demographic information. Obviously, the aim of these procedures 
is twofold. First, there is an analytical purpose, where one is able to determine whether different 
segments exist in terms of socio-demographic and temporal information in the activity-travel pattern 
data. Second, if these segmentations can be found, they can be adopted in a simulation scheme to 
evaluate their impact when used for prediction purposes. We will illustrate both purposes in this 
empirical section. With respect to the simulation scheme that has been used, the procedure that has 
been introduced in (16) will be used in our experiments. The core of this simulation procedure is that 
it predicts the value Xt based on the previous lag, being Xt-1 and then the next value to be predicted 
becomes Xt+1, which is based on Xt (predicted in previous step). This repetition continues until the 
simulated activity diary equals the length of the diary, simulated in the beginning of the procedure. 
For more details, we refer to Janssens et al. (16).  
 
4.2 Data 
 
The activity diary data used in this study were collected in the municipalities of Hendrik-Ido-Ambacht 
and Zwijndrecht in the Netherlands (South Rotterdam region) to develop the Albatross model system 
(21). The data involve a full activity diary, implying that both in-home and out-of-home activities 
were reported. The sample covered all seven days of the week, but individual respondents were 
requested to complete the diaries for two designated consecutive days. Respondents were asked, for 
each successive activity, to provide information about the nature of the activity, the day, start and end 
time, the location where the activity took place, the transport mode, the travel time, accompanying 

FIGURE 2  The final sequential information decision tree (example). 

Gender 

 Tc F E R 

Tc 0 1 0 0 
F 0 0,94 0,06 0 
E 0 0 0 0 
R 0 0 0 0 

Male Female 

Low High 

 Tc F E R 

Tc 0,5 0 0 0,5 
F 0 0 1 0 
E 0,25 0,5 0,25 0 
R 0 0 0,5 0,5 

 Tc F E R 

Tc 0,00 0,80 0,20 0,00 
F 0,50 0,17 0,17 0,17 
E 0,17 0,17 0,33 0,33 
R 0,00 0,33 0,67 0,00 

Education 
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individuals and whether the activity was planned or not. A pre-coded scheme was used for activity 
reporting. After cleaning, a data set of a random sample of 1649 respondents was used in the 
experiments.  Household and person characteristics have been used which might be relevant for the 
segmentation of the sample. 
 
4.3. Temporal Segmentation (Bifurcation Points) 
 
The iterative application of the omnibus test is a computationally demanding procedure. In order to 
reduce the computational burden, we have defined time periods of 60 minutes. Consequently, there are 
24 potential bifurcation points in the beginning of the procedure. As explained before in section 3.1, 
time windows will gradually be combined together, ending up with two time windows in the end, and 
every time defining new potential bifurcation points. The level of significance in our experiments was 
set at 5%. An evolution of the p-values is shown in Figure 3. The first p-value in the figure is the 
result of a comparison between 24 time windows (i.e. one transition matrix for every hour in the day). 
While there are obviously large (significant) differences between transition matrices that are built 
during morning periods (e.g. 3AM-4AM) and noon periods (e.g. 12AM-13PM), the differences are 
non-significant when the full day is considered. The reason for this is that during the majority of the 
day (except for some specific time periods), activity-travel combinations are more or less randomly 
distributed and majority patterns flatten out the significant differences. In other words, the dynamics 
of the system do not change (alter) significantly every hour. In order to determine a more significant 
change in dynamics, more aggregated time periods need to be considered. For this reason, it may be 
somewhat surprising that time periods dividing the diary in for instance 8 time periods (i.e. every three 
hours) were found not significantly different during one day. Also in this case, while there are 
significant differences between the time periods 3AM-6AM and 12AM-3PM; the majority of the 
three-hour during time periods appeared to be non-significant. The significant effect starts to appear 
from 5 time periods (i.e. every 4 hours and 48 minutes) and ranges till 3 time periods (every 6 hours). 
Surprisingly, two time periods (lasting 12 hours each) were found not significantly different. One 
possible explanation is that the (frequently occurring) work-, sleep- and travel-combinations appear 
fairly equal in both time windows. 

Since the stationarity condition has been violated for at least some time windows, it has now 
been experimentally determined that we should rely upon different transition probability matrices 
when predicting activity-travel combinations for these different time windows during the day.  
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 FIGURE 3  Evolution of p-values for the procedure described in section 3.1. 
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When we want to take this information into account in the simulation procedure to predict the 
activity-travel combinations, we will rely upon the first finding that was found significant, being 5 
time periods, defined as 3AM – 7:48AM; 7:48AM-12:36PM; 12:36PM-17:24PM; 17:24PM-22:12PM 
and 22:12PM-3AM.  

 
4.4. Socio-Demographic Segmentation  
 
Segmenting transition matrices in terms of socio-demographic variables, assumes the execution of the 
procedure that was explained in section 3.3.1. The nmin parameter and the minimum gain ratio (Gmin) 
were respectively arbitrarily set at 75 cases and at 0.05 to prevent overfitting of the tree on the training 
data. The final decision tree that was built for our data is shown in Figure 4. In addition to the 
structure of the decision tree, every decision node shows the number of cases that go down that 
branch, the maximum gain ratio and the information value that was achieved. Every leaf node,  
 
 
 
 
 
 
 
 
 

(continued) 
|   |   |   CARAV=1  (154, INFO = 2.550203,  
 G = 0.105228) 
|   |   |   |   NBIKES=4  (L) 
|   |   |   |   NBIKES=1  (76, INFO = 2.505884, 
  G = 0.125667) 
|   |   |   |   |   AGE=2  (L) 
|   |   |   |   |   AGE=3  (L) 
|   |   |   |   |   AGE=4  (L) 
|   |   |   |   |   AGE=1  (L) 
|   |   |   |   NBIKES=unknown  (L) 
|   |   |   |   NBIKES=2  (L) 
|   |   |   |   NBIKES=3  (L) 
|   |   |   |   NBIKES=0  (L) 
|   |   |   CARAV=unknown  (L) 
|   |   HHTYPE=unknown  (L) 
|   NCAR=unknown  (164, INFO = 2.627780,  
 G = 0.087061) 
|   |   SEC=3  (L) 
|   |   SEC=1  (L) 
|   |   SEC=unknown  (L) 
|   |   SEC=2  (L) 
|   |   SEC=4  (L) 
|   NCAR=2  (290, INFO = 2.656737,  
   G = 0.062742) 
|   |   GENDER=1  (267, INFO = 2.649541,  
 G = 0.061261) 
|   |   |   SEC=3  (91, INFO = 2.520677,  
 G = 0.109946) 
|   |   |   |   CHILDREN=2  (L) 
|   |   |   |   CHILDREN=1  (L) 
|   |   |   |   CHILDREN=3  (L) 
|   |   |   |   CHILDREN=4  (L) 
|   |   |   SEC=1  (L) 
|   |   |   SEC=unknown  (L) 
|   |   |   SEC=2  (L) 
|   |   |   SEC=4  (131, INFO = 2.639051,  
 G = 0.094076) 
|   |   |   |   CHILDREN=2  (L) 
|   |   |   |   CHILDREN=1  (L) 
|   |   |   |   CHILDREN=3  (L) 
|   |   |   |   CHILDREN=4  (L) 
|   |   GENDER=2  (L) 
|   NCAR=5  (L) 
|   NCAR=0  (L) 
|   NCAR=3  (L) 
|   NCAR=4  (L) (end) 
 

(start) 
|   NCAR=1  (900, INFO = 2.727906, G = 0.058563) 
|   |   HHTYPE=3  (311, INFO = 2.724312, G = 0.123689) 
|   |   |   GENDER=1  (309, INFO = 2.725375, G = 0.057060) 
|   |   |   |   SEC=3  (134, INFO = 2.625469, G = 0.101251) 
|   |   |   |   |   BIKEAV=1  (124, INFO = 2.604755, G = 0.125868) 
|   |   |   |   |   |  CARAV=1  (117, INFO = 2.602145, G = 0.098740) 
|   |   |   |   |   |   |   CHILDREN=2  (L) 
|   |   |   |   |   |   |   CHILDREN=1  (L) 
|   |   |   |   |   |   |   CHILDREN=3  (L) 
|   |   |   |   |   |   |   CHILDREN=4  (L) 
|   |   |   |   |   |   CARAV=unknown  (L) 
|   |   |   |   |   BIKEAV=unknown  (L) 
|   |   |   |   SEC=1  (L) 
|   |   |   |   SEC=unknown  (L) 
|   |   |   |   SEC=2  (96, INFO = 2.684212, G = 0.128843) 
|   |   |   |   |   BIKEAV=1  (83, INFO = 2.650120, G = 0.130249) 
|   |   |   |   |   |   CHILDREN=2  (L) 
|   |   |   |   |   |   CHILDREN=1  (L) 
|   |   |   |   |   |   CHILDREN=3  (L) 
|   |   |   |   |   |   CHILDREN=4  (L) 
|   |   |   |   |   BIKEAV=unknown (L) 
|   |   |   |   SEC=4  (L) 
|   |   |   GENDER=2  (L) 
|   |   HHTYPE=1  (L) 
|   |   HHTYPE=4  (239, INFO = 2.697180, G = 0.074627) 
|   |   |   GENDER=1  (212, INFO = 2.680736, G = 0.080723) 
|   |   |   |   AGE=2  (153, INFO = 2.663894, G = 0.089576) 
|   |   |   |   |   SEC=3  (L) 
|   |   |   |   |   SEC=1  (L) 
|   |   |   |   |   SEC=unknown  (L) 
|   |   |   |   |   SEC=2  (L) 
|   |   |   |   |   SEC=4  (L) 
|   |   |   |   AGE=3  (L) 
|   |   |   |   AGE=4  (L) 
|   |   |   |   AGE=1  (L) 
|   |   |   GENDER=2  (L) 
|   |   HHTYPE=5  (140, INFO = 2.651551, G = 0.114153) 
|   |   |   GENDER=1  (132, INFO = 2.650076, G = 0.095268) 
|   |   |   |   SEC=3  (L) 
|   |   |   |   SEC=1  (L) 
|   |   |   |   SEC=unknown  (L) 
|   |   |   |   SEC=2  (L) 
|   |   |   |   SEC=4  (L) 
|   |   |   GENDER=2  (L) 
|   |   HHTYPE=2  (160, INFO = 2.560276,  G = 0.139788) 
 
 

FIGURE 4  A final sequential information decision tree (empirical data). 
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containing different transition probability matrices was indicated by (L). It can be seen from this tree 
that the variable “number of cars” (“Ncar”) was the most important variable in the tree, followed by 
Household type (“Hhtype”), gender (“Gender”) and socio-economic class (“Sec”). Having applied 
temporal and socio-demographic segmentation, the full “knowledge model” is finalized and we are 
now ready to move on to the simulation of new activity-travel patterns. 
 
4.5. Simulation Results 
 
In order to prepare the simulation, data were divided into a training and a test set, thereby using the 
training set for building the model (transition matrices and segmentation tree), while the unseen test 
data were used for validation. Activity-travel patterns were simulated both for the training and the test 
data. The goodness-of-fit for the simulated diaries was measured by comparing the generated activity 
patterns with the observed patterns in the training and the test dataset. The comparison was measured 
using the following two indicators:  
• Pattern level attributes (number of tours) 
• Trip level attributes  (trip rates) 
 

Pattern level attributes give an indication about the performance of the simulation procedure 
at the highest level. While other indicators at pattern level might be chosen, the evaluation was made 
at this level by comparing the mean number of tours in the observed and the generated patterns and 
this for the training and the test set. The results of the simulated training set give an indication about 
how well the framework is capable of capturing and simulating the information which is incorporated 
in the training data. The decline in goodness-of-fit between this training set and the test set is taken as 
an indicator of the degree of overfitting. In case no segmentation has been used, this means that only 
one general transition matrix has been used for the prediction of the training and test data. In case 
segmentation is used, the combination of both socio-demographic and temporal information has been 
considered.  

It can be clearly seen from Table 1 that when segmentation (temporal and socio-demographic 
segmentation) is taken into account, much better results could be achieved at pattern level and this 
both for the training and the test set. These results imply that the information incorporated in the 
transition matrices in the different branches of the tree, is a better representation than the use of one 
single transition matrix at pattern level.  

Trip level attributes are lower in hierarchy, which means that not the whole pattern but the 
individual trip is taken as the relevant unit of analysis in the evaluation. Typically, trips are 
differentiated here by means of the main purpose for which the trip is undertaken. The mean trip rate 
is used as an evaluation measure. The mean trip rate is defined as the mean number of trips that a 
person has done during one particular day. It can be seen from Table 1 that the result which was found 
at pattern level –resulting in more accurate prediction for the segmentation solution– could not be 
maintained at trip level, for the test set. However, for the training set, segmentation still receives more 
accurate results. The reason for this seems obvious. Due to the fact that mean trip rates compare 
sequences at a more detailed level (individual trips are compared instead of large patterns); the 
segmentation solution (containing a large number of transition matrices) apparently had a negative 
impact on the overall simulation outcome due to an amount of overfitting which occurred at this level. 
The presence of overfitting in the case of segmentation can be seen in Table 1, where a high goodness-
of-fit on the training data, is followed by a rather low goodness-of-fit on the test data. The same could 
not be observed in the case of no segmentation, resulting in lower degrees of overfitting on the 
training data and in a higher goodness-of-fit measure on the test set.  
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TABLE 1   Performance Evaluation between Observed and Predicted Sequences at Pattern 
 and Trip Level  

 
Predicted  Observed Without segmentation With segmentation 

 Training set Test set Training set Test set Training set Test set 
Pattern level  2.801 2.435 1.722 1.621 2.732 2.232 
       
Trip level       

• Work 0.738 0.735 0.702 0.744 0.731 0.823 
• SL 0.572 0.569 0.536 0.597 0.560 0.471 
• Service 0.491 0.496 0.471 0.502 0.482 0.431 
• B/G 0.276 0.274 0.269 0.284 0.281 0.236 
• Other 0.132 0.134 0.121 0.147 0.124 0.153 

 
 
5. CONCLUSION 
 
In this paper, sequential data which is highly present in activity-travel diaries  have been represented 
by means transition probabilities which are stored in transition matrices. Those matrices can be 
considered as the core knowledge representation of a Markov Chain. While the technique is certainly 
not applied yet on a broad scale in the area of transportation, it is shown in the paper that it deserves 
further investigation and that the results are promising both for analytical and for prediction purposes.  

A drawback of the current application of the technique is that there is only one transition 
probability matrix which is both representative for every person (respondent) and for every time frame 
during the day. To this end, a novel segmentation procedure has been introduced that enables one to 
cluster transition matrices in terms of time and socio-demographic information. The first segmentation 
used the technique of the identification of bifurcation points; the latter used a modified version of a 
decision tree, in the sense that sequential probability information was used during induction and in the 
leaves of the tree as opposed to the traditional way of only using one single classification attribute.  

In the experiments, the segmentation was both realised for descriptive and predictive 
purposes. In the descriptive evaluation, it was found that for the temporal segmentation, the 
stationarity condition has been violated for at least some time windows, which means that one should 
rely upon different transition probability matrices for different time windows during the day. For the 
socio-demographic segmentation, a full decision tree has been constructed, resulting in the variables 
“number of cars” (“Ncar”), Household type (“Hhtype”), gender (“Gender”) and socio-economic class 
(“Sec”) being the most important variables. Both segmentations were used simultaneously in the 
analyses in a predictive simulation. At pattern level, the results are that the segmentation information 
incorporated in the transition matrices of the different branches in the tree, is a better representation 
than the use of one single transition matrix for prediction purposes. The same conclusion could not be 
found at trip level for the test set, which may be explained by the fact that segmentation, resulting in 
several transition matrices, seem to have a negative impact on the overall simulation outcome at trip 
level due to an amount of overfitting which seems to happen for this large number of transition 
matrices.  

Further research should be conducted in order to get a better idea about the relative 
performance of the techniques that have been advanced in this paper against other clustering 
techniques that can be used to complement Markov Chains such as for instance the MMLC 
application in Goulias (15) and the Latent Class clustering application in Kim and Goulias (22).  
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