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Abstract

The quantification of the relationship between the amount of microbial organisms ingested and

a specific outcome such as infection, illness or mortality is a key aspect of quantitative risk assess-

ment. A main problem in determining such dose-response models is the availability of appropriate

data. Human feeding trials have been criticized because only young healthy volunteers are selected

to participate and low doses, as often occurring in real life, are typically not considered. Epidemio-

logical outbreak data are considered to be more valuable, but are more subject to data uncertainty.

In this paper, we model the dose-illness relationship based on data of 20 Salmonella outbreaks,

as discussed by the World Health Organization. In particular, we model the dose-illness relation-

ship using Generalized Linear Mixed Models and fractional polynomials of dose. The fractional

polynomial models are modified to satisfy the properties of different types of dose-illness models

as proposed by Teunis et al [1]. Within these models, differences in host susceptibility (susceptible

versus normal population) are modeled as fixed effects whereas differences in serovar type and food

matrix are modeled as random effects. In addition, two bootstrap procedures are presented. A

first procedure accounts for stochastic variability whereas a second procedure accounts for both

stochastic variability and data uncertainty. The analyses indicate that the susceptible population

has a higher probability of illness at low dose levels when the combination pathogen-food matrix

is extremely virulent and at high dose levels when the combination is less virulent. Furthermore,

the analyses suggest that immunity exists in the normal population but not in the susceptible

population.

Keywords: Human Salmonellosis; Outbreak studies; Dose-illness; Fractional polynomials;

Generalized Linear Mixed Models; Data uncertainty
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1 Introduction

Salmonellosis, the illness from Salmonella infection, is one of the most frequently occurring food-

borne diseases worldwide [2]. Global estimations vary between 14 and 120 per 100000 people

[3]. The majority of the cases is due to Salmonella Enteritidis and Salmonella Typhimurium infec-

tions, which comprised almost 80% of the total number of Salmonella infections in Belgium in 2005

[4]. Salmonellosis is characterized by fever, stomach cramps, and diarrhea. Symptoms develop 8

hours to 3 days post-ingestion and last 4 to 7 days. Most cases are self-limiting. The degree to

which a person becomes sick depends on his or her health status and the number and virulence of

Salmonella spp. ingested. In general, the poorer the individuals health and the more Salmonella

ingested, the greater the probability for serious illness and death. In the United States only, the

yearly number of illnesses and hospitalizations due to foodborne Salmonellosis are estimated to be

1,3 million and 15,5 thousand, respectively. The number of deaths caused by foodborne Salmonel-

losis is estimated to be 553 per year, which is 30,6% of the total number of yearly deaths caused

by known foodborne pathogens [2].

An important aspect of quantifying microbial risk is the assessment of the dose-response re-

lationship, which is the relationship between the amount of microbial organisms ingested and a

specific outcome, like infection, illness or even mortality. Different sources of heterogeneity in

dose-response are known to exist. A first important source of heterogeneity are differences in host

susceptibility [5]. Typically, newborns, young children, pregnant women, elderly and immunocom-

promised persons belong to the susceptible subpopulation being associated with increased risk. A

second source of heterogeneity are differences in pathogen virulence [6]. For Salmonella, about

2, 300 serovars are known to exist, of which S. Enteritidis and S. Typhimurium are of the most

prevalent. Among these serovars, large differences in virulence occur. In addition, differences in

food matrix cause heterogeneity in dose-response relationships as well. D’Aoust [6] found that the

infectivity of a pathogen is higher when a fatty food matrix is involved.

To model dose-response relationships, data from human feeding trials as well as from outbreak

studies can be used. The most extensive human feeding trial of Salmonella was conducted by

McCoullough & Eisele ([7], [8], [9]) and has often been used to develop dose-response models (e.g.,

[10], [11], [12]). However, human feeding trials have been seriously criticized [5]. One of the major

shortcomings is the selection of young healthy volunteers. These volunteers are likely to have
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high resistance to Salmonella, eventually resulting in substantive underestimation of the general

public health risk. Second, low doses, although the most commonly occurring in real life, are

not considered in such human feeding trials. As a consequence, estimation of the probability of

the adverse outcome at low dose levels is problematic since it is bound to rely on extrapolation.

Furthermore, in most human feeding trials, only one specific combination of pathogen, host and

food matrix is considered whereas there is much more variability in these factors in real life. As an

alternative to human feeding trial data, epidemiological data from outbreak studies can be used as

well to model dose-response relationships. Clearly, epidemiological data refer to real-life situations,

involving the whole population, different types of pathogens and food matrices and a wide range of

possible doses, including low doses. However, compared to experimental data, epidemiological data

are more subject to data uncertainty. For instance, estimates of dose are very uncertain because

it is hard to accurately quantify the amount of contaminated food consumed. Similarly, it is very

hard to exactly know the total exposed population. Nevertheless, outbreak data are considered to

be the most valuable in order to model dose-response [10].

An example of modeling dose-response using outbreak data can be found in a report on risk

assessment of Salmonella from the World Health Organisation (WHO) [10]. In this study, dose-

illness is modeled using a beta-poisson model and the effect of data uncertainty is investigated by

sampling from specific uncertainty distributions and refitting the beta-poisson model. Based on

this study, it is concluded that ‘there is insufficient evidence to conclude that some segments of the

population have a higher probability of illness‘ [10]. However, beta-poisson models are developed to

reflect the biological process of infection, not illness. Furthermore, heterogeneity is not accounted

for. In the current study, we extend on the analysis of the WHO [10] and investigate different dose-

illness models as proposed by Teunis et al [1]. We use Generalized Linear Mixed Models (GLMMs)

([13], [14]) and fractional polynomials of dose ([15]) to investigate dose-illness. In particular, we

introduce modifications of fractional polynomials of dose to satisfy the properties of the different

types of dose-illness models proposed by Teunis et al [1]. Within these models with modified

fractional polynomial of dose, heterogeneity due to differences in host susceptibility, serovar type

and food matrix is taken into account. Finally, since outbreak data are strongly subject to data

uncertainty, bootstrap confidence intervals of the estimated dose-illness relationship are estimated

while accounting for data uncertainty on top of the stochastic variability.
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The remainder of this paper is organized as follows; in Section 2, a description of the epidemio-

logical data on Salmonella is given. Section 3 contains a (methodological) discussion on dose-illness

models. In particular, GLMMs and modified fractional polynomials of dose are introduced. Ap-

plication of these models with the epidemiological data on Salmonella is given in Section 4. In

Section 5, bootstrap procedures are applied to account for stochastic variability as well as data

uncertainty. Finally, some concluding remarks are formulated in Section 6.

2 Data

Data from outbreak studies reported in the risk assessment on Salmonella by the WHO [10] are

used to estimate the Salmonella dose-illness relationship. In this report, 33 outbreak studies found

in literature are summarized in as much detail as possible. Of these outbreak studies, 20 are

selected by the WHO (2003) to be used in their quantitative risk assessment because they are

sufficiently well documented. We use the data of the same 20 outbreak studies in our analyses.

For these 20 outbreak studies, the WHO (2003) report contains information with respect to the

ingested dose D (log10 CFU), the number of exposed persons N , the number of ill persons Y , serovar

type t and food matrix m. In addition, distinction is made between persons belonging to the normal

and the susceptible subpopulation (for definitions, see [10]). Finally, uncertainty distributions are

given for D, N and Y . These distributions are derived from additional information available

on the different outbreaks. In case no such information is available to characterize uncertainty,

distributions are defined of which the lower limit (resp. upper limit) is the 25% underestimate (resp.

25% overestimate) of the reported values under consideration. For more detailed information, the

reader is referred to the WHO (2003) report [10]. A summary of the data is given in Table ??.

The outbreak number Nr and the cluster number i (will be discussed later) are displayed as well.

For D, N and Y , the expected values based on the uncertainty distributions as defined by the

WHO (2003) are given. In Figure 1, a visual representation of the data is given by means of a

bubble plot of the proportion of ill subjects p = Y/N as a function of dose, with the area of the

bubbles being proportional to the number of exposed subjects N . In this figure, observations on

normal subjects are indicated using light gray colored bubbles with a dot indicating the middle

point of the bubble whereas observations on susceptible subjects are indicated using bubbles with
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the darkest gray color and a star indicating the middle point.

As can be derived from the table, the Salmonella serovars S. Typhimurium and S. Enteritidis are

the most prevalent in the outbreak studies under consideration. All the other Salmonella serovars

occur only once. Regarding food matrix, many different types of food matrices are involved but no

big differences in occurence are recorded. Furthermore, there are much more normal subjects than

susceptible subjects involved in these outbreak studies. Finally, large differences in the number of

exposed subjects involved in the different outbreaks can be observed, with the number of exposed

subjects ranging from 1 to 7572. As can be clearly seen in Figure 1, the number of exposed subjects

is much smaller at high doses compared to low doses. As such, a proper statistical analysis should

account for the differences in the number of exposed subjects as well as for heterogeneity caused by

differences in host susceptibility, in serovar type and in food matrix. Other sources of heterogeneity

(e.g., microflora of the food, differences in serovar strains) exist as well. Unfortunately, for the

outbreak studies under consideration (WHO, 2003), no information is available regarding these

sources and as such, these sources can not be taken into account in the current analyses.

[Figure 1 about here.]

[Table 1 about here.]

3 Methodology

3.1 Dose-Illness models

Dose-illness models are still not well determined. So far, most attention is given to dose-infection

models with the most popular one being the beta-poisson model [16]. This model is developed to

reflect the biological process of infection, which may result from survival of a single viable pathogen

and yields monotonically increasing functions of dose bounded between zero and one. Teunis et

al [1] advocate that the use of the beta-poisson model to model illness as a function of dose is

questionable and introduce a multiple-stage model instead, which can be graphically represented

as in Figure 2.

[Figure 2 about here.]
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Following this model, exposure to pathogens might lead to infection and infection might lead to

illness. However, note that exposure does not imply infection, nor does infection imply illness. This

model is called a multiple-stage (or multiple-barrier) model since illness does not occur without

infection. Hence, the probability of illness given dose equals

π(ill|dose) = π(ill|infection,dose)π(infection|dose). (1)

Whereas π(infection|dose) is typically assumed to be a monotonically increasing function of

dose bounded between zero and one (e.g. beta-poisson model), some experimental evidence seems

to indicate different relationships for π(ill|dose) [1]. To explain these differences, Teunis et al [1]

explore three different alternatives for π(ill|infection,dose), namely (1) the increasing probabil-

ity model for illness given infection, (2) the decreasing probability model and (3) the constant

probability model. They assume that the probability of becoming ill depends on the duration of

infection. The infection episode starts at time t = 0 when the pathogens start growing and ends

at time t = τ when the pathogens have been succesfully removed by the host defense mechanisms.

As such, the length of the infection period reflects the balance between pathogen growth and host

defenses. Teunis et al [1] argue that the length of the infection period may be dose-dependent.

Starting from the assumption that during infection the host has a certain probability of becoming

ill and using a Gamma distribution for the duration of infection τ , Teunis et al [1] derive that the

probability of illness given infection equals

π(ill|infection, dose) = 1 − (1 + λ)−r (2)

with r > 0 being the shape parameter of the Gamma distribution and with λ being the integral

over duration time t of the probability function for illness in an infected person. Assuming that λ

varies with dose, Teunis et al [1] explore three different alternatives:

1. λ increases linearly with dose D or λ = ηD. This implies that π(ill|infection,dose) is a

monotonically increasing function of dose bounded between zero and one. As such, given

the common assumption that π(infection|dose) is a monotonically increasing function of dose

bounded between zero and one, π(ill|dose) is also monotonically increasing as a function

of dose with the same boundaries. Such a situation may arise when high initial doses of

pathogens slow down the hosts defense mechanisms or, in other words, the higher the initial

dose, the longer the episode of infection τ .
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2. λ decreases with dose D or λ = η/D. This implies that π(ill|infection,dose) is a monotonically

decreasing function of dose bounded between zero and one. Given the common assumptions

for π(infection|dose), it follows that π(ill|dose) is monotonically unconstrained with the prob-

ability of illness being zero for zero dose and infinitely large dose levels. Such a situation

may arise when high initial doses of pathogens elicit strong defensive reactions of the host

or, in other words, the higher the initial dose, the shorter the episode of infection τ .

3. λ is dose-independent or λ = η such that π(ill|infection,dose) = π(ill|infection). Hence,

given the common assumptions for π(infection|dose), it follows that π(ill|dose) is a mono-

tonically increasing function of dose that is bounded by zero and reaches the asymptote of

π(ill|infection) < 1 for infinitely large dose levels. Such a situation suggests no facilitating

nor inhibiting effects of dose on hosts defense mechanisms.

Teunis et al [1] provide real-data examples illustrating the three different probability models of

illness given infection (data from [7], [17], [18], respectively). In this paper, for illustrative purposes,

fictive examples are given (Figure 3). Clearly, different types of dose-illness relationships are

possible with the properties of these relationships depending on the effect of dose on the probability

of illness given infection. To summarize, the increasing probability model of illness given infection

(λ = ηD) gives rise to a monotonically increasing dose-illness model bounded between zero and

one (DI-I), the decreasing probability model (λ = η/D) to a monotonically unconstrained dose-

illness model with the probability of illness being zero for zero dose and infinitely large dose levels

(DI-II) and finally, the constant probability model (λ = η) gives rise to a monotonically increasing

dose-illness model bounded between zero and π(ill|infection) being some constant c < 1 (DI-III).

In the next section Generalized Linear Mixed Models (GLMMs) and fractional polynomials of dose

are introduced. Different constraints on the parameters of the fractional polynomials are imposed

in order to satisfy the different properties of the three types of dose-illness models.

[Figure 3 about here.]

3.2 GLMMs and fractional polynomial of dose

Most dose-response models fit within the framework of Generalized Linear Models (GLMs) [19].

GLMs represent a class of fixed effects regression models suited to model non-normal data (e.g.
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counts, dichotomous data). However, fixed effects models, which assume that all observations

are independent, are not appropriate to model clustered data. Clusters cause heterogeneity with,

typically, observations belonging to the same cluster being more homogeneous compared to ob-

servations belonging to different clusters. For instance, outbreak studies in which the same food

matrix is involved are more likely to be similar compared to outbreak studies in which different food

matrices are involved. In case the observed clusters (e.g. clusters consisting of outbreak studies

sharing the same food-matrix) are thought to represent a population of clusters, GLMs extended

with cluster-specific random effects can be used. These extended models are called Generalized

Linear Mixed Models (GLMMs) (see e.g. [13], [14]). For instance, GLMMs with food matrix-

specific random effects are suited to model the outbreak data since the food matrices involved in

the recorded outbreak studies are only a sample of all possible food matrices. More formally, an

example of a GLMM for the dose-illness data under consideration is

Yij ∼ Binomial(Nij, πij)

g(πij) = β0 + β1Dij + β2Sij + bi = ηij (3)

with Yij being the number of ill subjects from observation j belonging to cluster i. The Yij are

assumed to follow a binomial distribution with parameters Nij , the number of exposed subjects,

and πij , the probability of illness. Then, the latter probality is modelled as a linear function of the

known covariates dose (Dij) and susceptibility of the population (Sij) with corresponding fixed

effects β1 and β2 and as a function of cluster-specific random intercepts bi ∼ N(0, σ2). The linear

function, also called linear predictor ηij , can take any value ranging from −∞ to +∞ whereas the

probability πij is restricted to the interval [0, 1]. Therefore, the probability πij is transformed to

the interval [−∞, +∞] using the link function g. The logit link, the complementary log-log link

and the probit link are the most commonly used link functions g to transform probabilities.

In most GLMMs, the linear predictor η contains only indicator variables for discrete covariates

and conventional polynomials, mostly of linear or quadratic order, for continuous covariates (like in

expression (3)). However, it is recognized that the conventional polynomials do not always provide

a flexible and good fit to the data. To enhance flexibility, Royston and Altman [15] introduced

fractional polynomials, which are a set of parametric models offering a wide range of functional

forms including the conventional polynomials. Fractional polynomial models are already been
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succesfully used in diverse application settings (e.g. [20], [? ], [21], [22]). A fractional polynomial

of degree m for a continuous covariate x subject to the constraint x > 0, is defined as

f(x; β,p, m) =
m∑

r=0

βrHr(x) = η (4)

with β = (β0, β1, β2, . . . , βm) being a vector of coefficients and p = (p0, p1, p2, . . . , pm) a vector of

powers with p0 ≡ 0 and H0(x) ≡ 1 representing the intercept. The powers p1 ≤ p2 ≤ · · · ≤ pm can

be positive or negative integers or fractional powers. Hr(x) is a transformation on a continuous

variable x defined as

Hr(x) =

⎧⎪⎪⎨
⎪⎪⎩

xpr if pr �= pr−1

Hr−1(x) × ln(x) if pr = pr−1

and with x0 ≡ ln(x).

Some examples of fractional polynomials of degree m = 2 given in Table 2 will make this clear.

As can be seen, fractional polynomials can take a wide range of functional forms. Example 1 of

this table illustrates that conventional polynomials (in this case, of quadratic order) are special

instances of fractional polynomials. Examples 3 and 5 illustrate what happens if both powers

are equal whereas example 4 and 5 illustrate what happens if powers are zero. An example

of a fractional polynomial of degree m = 3 is β0 + β1x
−1 + β2x

−1 ln(x) + β3x
2 having powers

p = (−1,−1, 2). However, following Royston and Altman [15], models of degree m = 2 or lower

with powers p selected from a fixed set Rm with R = {−2,−1,−0.5, 0, 0.5, 1, 2, . . . , max(3, m)}
are sufficiently flexible to cover most practical cases adequately. Of course, other candidate powers

can be considered as well. Then, given a degree m and a fixed set Rm, all possible models are

fitted using maximum likelihood estimation and the model with the lowest deviance is selected.

[Table 2 about here.]

However, fractional polynomial models do not inherently satisfy the properties of the dose-

illness models described earlier. In case of a monotonically increasing dose-illness relationship

bounded between zero and one (DI-I), a fractional polynomial of dose D of degree m = 2 can be

easily modified to satisfy these properties as follows

f(D; β,p, 2) = β0 + β1D
p1 + β2D

p2 (5)
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with p1 < 0, p2 ≥ 0, β1 < 0 and β2 > 0. These constraints yield a monotonically increasing linear

function β0 + β1D
p1 + β2D

p2 bounded between −∞ and +∞. As such, g−1(β0 + β1D
p1 + β2D

p2),

with g−1 being the inverse of the link function g, is monotonically increasing and bounded between

zero and one, which are the properties of DI-I. In case of a monotonically unconstrained dose-illness

relationship with the probability of illness being zero for zero dose and infinitely large dose levels

(DI-II), fractional polynomials are defined as in (5) with p1 < 0, p2 ≥ 0, β1 < 0 and β2 < 0.

These constraints imply a monotonically unconstrained function being equal to −∞ for zero dose

and infinitely large dose levels. As such, g−1(β0 + β1D
p1 + β2D

p2) displays the properties of

DI-II. Finally, a fractional polynomial of degree m = 1 can be modified to satisfy the properties

of a monotonically increasing dose-illness model bounded between zero and some constant c < 1

(DI-III) as follows

f(D; β, p, 1) = β0 + β1D
p1 (6)

with p1 < 0 and β1 < 0 and where g−1(β0) is an estimate of c or π(ill|infection). Table 3 displays

a summary of the different constraints on the fractional polynomials of dose in order to satisfy

the properties of the three different dose-illness models that are proposed by Teunis et al [1]. As

can be clearly seen, the three dose-illness models share the same constraints on p1 and β1. This

reflects the obvious biological property that exposure is a prerequisite of illness. No illness without

exposure and hence the probability of becoming ill is zero at zero dose, irrespective of the type

of dose-illness model. However, the dose-illness models differ with respect to their behavior at

infinitely large dose levels; the probability of illness equals 1 for DI-I, 0 for DI-II and c < 1 for

DI-III.

[Table 3 about here.]
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4 Application to Salmonella Outbreak Data

In this section, the introduced dose-illness models are applied to the epidemiological data on

Salmonella while accounting for differences in host susceptibility, in food matrices and in serovar

types. Differences in host susceptibility are modeled using fixed effects since the only information

we have is whether persons belong to the susceptible or the normal subpopulation. Differences

in food matrix are modelled using random effects since the recorded food matrices can be seen

as a sample from the population of all possible food matrices. The same holds for differences in

serovar types. However, there is perfect overlap between some food matrices and serovar types (see

outbreak number 1, 16 and 17 in Table 1) yielding an overparametrized model when both food

matrix-specific and serovar type-specific random effects are incorporated in the model. A sensible

alternative for modeling differences in serovar type is by means of fixed effects using the categories

S. Typhimurium, S. Enteritidis and others. Statistical analysis are conducted with fixed effects

for susceptibility and serovar type and random effects for food matrix. However, these analyses

yield non-significant effects for serovar type due to the strong nesting of food matrix within serovar

types. Another possibility is to define outbreak-specific random effects. However, in that case, the

number of clusters (Nr = 1, ..., 20) is almost the number of observations (n = 23). Because of data

sparseness, we opt to specify random effects for the unique combinations of serovar type and food

matrix. As such, the two sources of heterogeneity are taken into account but, however, they can

not be separated. In total, 15 unique combinations of serovar type and food matrix (i = 1, ..., 15)

are recorded (see also Table 1).

Hence, heterogeneity in dose-illness is accounted for using fixed effects for host susceptibility

and random effects for the unique combinations of serovar type × food matrix. In particular, the

following DI-I model is fitted

Yij ∼ Binomial(Nij, πij)

g(πij) = β0 + β1Sij + bi + β2D
p1
ij + β3D

p2
ij × (1 − Sij) + β4D

p′
2

ij × Sij (7)

where Dij is the ingested dose (log10(CFU+1)) for observation j for which the unique combination

of serovar type × food matrix i has been recorded, Sij is the indicator variable of host susceptibility

(Sij = 1 if population is susceptible, Sij = 0 otherwise) and bi are serovar type × food matrix-

specific random intercepts with bi ∼ N(0, d2). A fractional polynomial of dose of degree m = 2
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is fitted for each population with powers p1 and p2 for the normal and powers p′1 and p′2 for the

susceptible population. However, computation time for fractional polynomial models increases

exponentially with the number of powers. Therefore, the powers p1 and p′1 are chosen to be

common for both groups whereas the powers p2 and p′2 are chosen to be group-specific. This way,

differences in host susceptibility are modeled and computation time is still kept reasonable. Power

p1 is selected from R1 with R1 = {−2,−1.8, . . . ,−0.2,−0.1} and powers p2 and p′2 are selected

from R2
2 with R2 = {0, 0.1, . . . , 1.8, 2}. Constrained maximum likelihood is used to ensure the

constraints on β, i.e. β2 < 0, β3 > 0 and β4 > 0. For DI-II, the same fractional polynomial model

as in (7) is used except that different constraints on β are imposed, i.e. β2 < 0, β3 < 0 and β4 < 0.

Finally, for DI-III, the following model is fitted

Yij ∼ Binomial(Nij, πij)

g(πij) = β0 + β1Sij + bi + β2D
p1
ij × (1 − Sij) + β3D

p′
1

ij × Sij (8)

where Dij , Sij and bi are defined as before and where the powers p1 and p′1 are selected from R2
1.

Again constrained maximum likelihood is used to ensure the constraints on β, i.e. β2 < 0 and

β3 < 0. For the three different types of dose-illness models, different link functions, i.e. the logit

link, the probit link and the complementary log-log link, are considered.

The best fitting models within the three types of dose-illness models are summarized in Table 4.

Goodness-of-fit is measured by means of Aikaike’s Information Criterion with small sample size

correction (AICC) with the smaller its value the better the fit [23]. As can be seen, DI-III with

the complementary log-log link, p1 = −2.25 and p′1 = −0.25 fits the data best. It is investigated

whether this model can be simplified. First, the null hypothesis of zero-variance for the random

intercepts d2 is tested with a mixture of X 2 distributions as reference distribution since the null

hypothesis lies at the boundary of the parameter space [13]. This test yields a significant result

[P (X0:1 > 2.14) = 0.02] meaning that the heterogeneity caused by differences in the combination

food matrix × serovar type are substantial. Finally, since all fixed effects are significant as well,

simplification of the model is not recommended.

[Table 4 about here.]

Table ?? gives parameter estimates and standard errors of the fixed effects β and the variance

component d2 of model (8). Empirical bayes estimates ([14]) of the serovar type × food matrix-
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specific random intercepts bi and the corresponding standard errors are given in Table ??. In

addition, this table contains serovar type × food matrix-specific estimates of π(ill|infection) for

the normal and the susceptible population, calculated using g−1(β0 + bi) and g−1(β0 + β1 + bi),

respectively. Remind that π(ill|infection) is the asymptote for infinitely large dose levels. Corre-

sponding standard errors are calculated using the delta method. As can be seen, π(ill|infection)

for the susceptible population (although mathematically < 1) is estimated to be virtually one

and hence, the standard errors are undefined. For the normal population, π(ill|infection) differs

strongly depending on the combination of serovar type × food matrix with values ranging from

0.303 to 0.997. These findings suggest that immunity exists in the normal population but not in

the susceptible population.

Finally, graphical representations of the marginal simulation-based dose-illness relationship [14]

for the normal and susceptible population are given in Figure 4(a). However, random effects models

have an interpretation conditional on the random effects implying that a marginal representation is

less appropriate. Therefore, the (serovar type × food matrix)-specific dose-response relationships

are calculated as well. The latter are displayed in Figure 4(b). These figures suggest a higher

probability of illness for the susceptible population compared to the normal population. However,

caution is needed since the variability in estimation of the dose-response relationship and the effect

of data uncertainty are not yet investigated. This is addressed in the next section.

[Table 5 about here.]

[Table 6 about here.]

[Figure 4 about here.]

5 Assessing Uncertainty

Uncertainty regarding the estimated dose-illness model is expressed by means of confidence in-

tervals. First, a 1-stage bootstrap procedure is used to estimate confidence intervals taking into

account stochastic variability only. Second, a 2-stage bootstrap procedure is constructed to esti-

mate confidence intervals that reflect both stochastic variability as well as data uncertainty.
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Denote the original sample summarized in Table 1 as {(Dj, Sj , Nj , Yj , tj , mj)}23
j=1. In the 1-stage

bootstrap procedure, a bootstrap sample {(Dj , Sj, Nj , Y
∗
j , tj, mj)}23

j=1 is generated by sampling

binomial observations Y ∗
j ∼ Binomial(Nj , π̂j) with π̂j = Yj/Nj, for j = 1, ..., 23. On this bootstrap

sample, DI-III with cloglog-link, p1 = −2.25 and p′1 = −0.25 is refitted. This process is repeated

B times, yielding B different estimated dose-illness curves f∗(β̂,X). In order to estimate the 90%

pointwise confidence interval for f(β̂,X), percentile intervals are calculated conditional on X.

The 2-stage bootstrap procedure, which incorporates both stochastic variability and data un-

certainty, makes use of the uncertainty distributions regarding dose D, the total number of exposed

subjects N and the number of ill subjects Y as given in the WHO report of 2003 [10]. Accord-

ing to these uncertainty distributions, a new ‘pseudo-original’ sample {(D̃j , Sj , Ñj, Ỹj , tj , mj)}23
j=1

is generated given the original sample {(Dj , Sj , Nj, Yj , tj , mj)}23
j=1 where D̃j , Ñj and Ỹj are the

values randomly sampled from the corresponding uncertainty distributions. This is the first stage

in the 2-stage bootstrap procedure reflecting data uncertainty. Then, given this ‘pseudo-original’

sample, a bootstrap sample {(D̃j , Sj , Ñj, Ỹ
∗
j , tj , mj)}23

j=1 is generated by sampling binomial obser-

vations Ỹ ∗
j ∼ Binomial(Ñj , π̃j) with π̃j = Ỹj/Ñj, for j = 1, ..., 23. This is the second stage in the

2-stage bootstrap procedure reflecting stochastic variability. Note that second stage in the 2-stage

bootstrap procedure is similar to the 1-stage bootstrap procedure. On this bootstrap sample, DI-

III with cloglog-link, p1 = −2.25 and p′1 = −0.25 is refitted. Again, this process is repeated B

times, yielding B different estimated dose-illness curves f∗(β̂,X) based on which the 90% pointwise

confidence intervals are calculated as before.

Figure 5 shows (serovar × food matrix)-specific dose-illness curves together with 90% pointwise

confidence intervals based on the 1-stage bootstrap procedure with B = 500. Similarly, Figure ??

shows the results of the 2-stage bootstrap procedure with B = 500. These figures contain only

a selection of the 15 (serovar × food matrix)-specific estimated dose-illness curves, namely the

curves corresponding to serovar types occuring only once and two selected curves corresponding

to the more prevalent serovar types, e.g. S. Typhimurium and S. Enteritidis. The thick full lines

(thick dashed lines) correspond to the estimated dose-response relationships based on the original

sample for the normal population (susceptible population) and the thin lines to the corresponding

90% bootstrap pointwise confidence intervals. Comparing both figures, it is clear that the 2-stage

bootstrap procedure generates higher variability in estimated dose-response curves compared to
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the 1-stage bootstrap procedure. This is as expected because in the 2-stage bootstrap procedure

stochastic variability and data uncertainty are taken into account whereas in the 1-stage bootstrap

procedure only stochastic variability is accounted for. Since outbreak data are heavily subject to

data uncertainty, the 2-stage bootstrap procedure, of which the results are shown in Figure ??, is

more appropriate. Inspection of Figure ??, reveals large differences in (serovar × food matrix)-

specific estimated curves as well as in width of the confidence intervals. For most combinations

of (serovar × food matrix) and at most dose levels the difference between normal and susceptible

population in estimated dose-response relationship is not significant. However, in general, the steep

dose-response curves indicate a significant difference at low dose levels (e.g. Figure ??c, e and g)

with a higher probability of illness for the susceptible population. In addition, flat dose-response

curves generally indicate a significant difference at high doses (e.g. Figure ??b and h) with, again,

a higher probability of illness for the susceptible population compared to the normal population.

Finally, when comparing the two S. Typhimurium-specific dose-response curves (e.g. Figure ??h

and i), it is confirmed that the infectivity of a pathogen is higher when a fatty food matrix is

involved [6]. The same conclusion can be drawn when comparing the two S. Enteritidis-specific

curves (e.g. Figure ??b and c). However, in this case, it is harder to a priori judge the fattiness of

the food matrices involved.

Finally, the standard errors of the (serovar × food matrix)-specific π̂(ill|infection) are estimated

as well using both bootstrap procedures. The results are summarized in Table ??. This table con-

tains only the estimates for the normal population. For the susceptible population, the bootstrap

estimates π̂(ill|infection) are virtually always equal to < 1.000, yielding uninformative standard

errors. As can be seen in the table, the standard errors obtained by 2-stage bootstrap procedure

are larger compared to the ones obtained by the 1-stage bootstrap procedure, which is as expected

and in line with previous findings.

[Figure 5 about here.]

[Figure 6 about here.]

[Table 7 about here.]
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6 Discussion

Outbreak studies are considered to be the most valuable to model dose-response [10] and are

an important way to validate risk assessments. However, outbreak studies are strongly subject

to data uncertainty. In this study, data on Salmonella outbreak studies is used to assess the

Salmonella dose-illness relation. Sofar, dose-illness models have received little attention. An

important counterexample can be found in Teunis et al [1]. They introduce three different types

of dose-illness models (depending on the underlying probability model of illness given infection),

namely the monotonically increasing dose-illness model bounded between zero and one (DI-I),

the monotonically unconstrained dose-illness model with the probability of illness being zero for

zero dose and infinitely large dose levels (DI-II) and the monotonically increasing dose-illness

model bounded between zero and π(ill|infection) being some constant c < 1 (DI-III). Obviously,

other probability models of illness given infection than the ones introduced by Teunis et al [1]

could be (equally well) considered. These would imply different properties of the dose-illness

relation. However, a large set of competing probability models of illness given infection may give

rise to the problem of identifiability (i.e. the same properties of dose-illness may result from

different underlying probability models of illness given infection). Ideally, the dose-illness relation

is modeled using both dose-infection and dose-illness data. Only then conclusive results regarding

the underlying probability model of illness given infection can be obtained. However, we could not

find any outbreak data containing information on infection as well as illness.

In this paper, dose-illness is modeled using GLMMs and fractional polynomials of dose. The

fractional polynomial models are modified in order to satisfy the properties of three different types

of dose-illness models that are proposed by Teunis et al [1]. Within these models, heterogeneity

due to differences in host susceptibility are modeled using fixed effects whereas heterogeneity

due to differences in serovar type and food matrix are modeled using random effects that are

defined for unique combinations of serovar type × food matrix. As such, the analysis account for

heterogeneity due to differences in serovar type and food matrix but the two sources of heterogeneity

can not be separated. Note that this heterogeneity is modeled using random intercepts only. This

implies that the different serovar type × food matrix-specific curves can not cross ([13], [14]).

Additional flexibility in modeling heterogeneity can be achieved by including random slopes in the

model. Unfortunately, this is not feasible for the current analyses due to data sparseness. Finally,
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differences in, amongst others, serovar strains and micorflora of the food are potential sources of

heterogeneity as well. However, the available data do not contain any information on these sources

and as such, they can not be taken into account in the analyses.

Nonetheless, the current application illustrates that random effects models are appropriate sta-

tistical tools to account for different sources of heterogeneity simultaneously. The analyses indicate

that the Salmonella outbreak data are best described by a monotonically increasing dose-illness

relationship bounded between 0 and some constant c < 1, supporting the constant probability

model of illness given infection [1]. Based on confidence intervals that incorporate both stochas-

tic variability and data uncertainty, it is concluded that the susceptible population has a higher

probability of illness at low dose levels when the combination pathogen-food matrix is extremely

virulent and at high dose levels when the combination is less virulent. Furthermore, the analyses

suggest that immunity exists in the normal population but not in the susceptible population.

In addition, we show how bootstrapping can be used to assess the effect of data uncertainty

on the estimated dose-illness relation. The 1-stage bootstrap procedure merely accounts for the

usual stochastic variability. The 2-stage bootstrap procedure accounts for data uncertainty as well.

Evidently, the latter bootstrap procedure yields wider confidence intervals. However, another type

of uncertainty, namely model uncertainty, is not addressed in this paper. Model uncertainty arises

from the fact that several competing models might provide comparably good fits to the data and/or

are equally biologically plausible. Model averaging is a way to account for model uncertainty and an

example of the latter approach can be found in [24] and [25]. However, model averaging is not the

focus of this manuscript. Furthermore, in case of epidemiological data compared to experimental

data, data uncertainty seems much more prominent compared to model uncertainty.

Finally, the estimated dose-illness models can be used to validate quantitative risk assessments

(QRAs). In case, interest is in one specific (serovar type × food matrix)-combination i of which the

corresponding dose-illness model is estimated then the probability of infection given dose can be

calculated using the model formulation in (7) with the estimates of β and bi given in Table 3 and 4,

respectively. Then, amongst others, the delta method can be used to calculate the corresponding

standard errors. As such, confidence intervals can be easily constructed to account for stochastic

variability. For instance, the probability of infection for a normal person due to consumption of

beef contaminated with S. Enteritidis can be calculated using g−1(0.323 + 0.486 − 8.462d−2.25)
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with d being the ingested dose on scale log10(CFU + 1). In particular, for d = 2, the predicted

probability of infection equals 0.107. Using the delta method, the corresponding standard error

is calculated to be 0.016, yielding a 95% confidence interval of [0.073; 0.140]. These calculations

are then to be repeated for each simulated value of d, yielding eventually a distribution for the

predicted probability, one for the lower limit of the confidence interval and one for the upper limit.

However, it often happens that interest is in a whole range of food-matrices or that it is impossible

to know in advance the serovar-type(s) involved. Furthermore, the cluster-specific dose-illness are

estimated for a limited number of serovar type × food matrix combinations only. In these cases, one

needs to randomly sample from the distribution of serovar type × food matrix-specific intercepts

bi ∼ N(0, 0.780) first (see Table 3).
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Figure 1: Bubble plot of proportion of ill subjects as function of dose, for 20 outbreak studies
as reported in WHO, 2003. The area of the bubbles is proportional to the number of exposed
subjects. Observations on normal subjects are indicated with a dot and light gray colored bubbles
and observations on susceptible subjects are indicated with a star and dark gray colored bubbles.
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Figure 2: Multiple-stage model for illness as proposed by Teunis et al [1].
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Figure 3: (a) Three different probability models of illness given infection (increasing, decreasing
and constant probability) and (b) the corresponding dose-illness models.
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Figure 4: Simulation based marginal dose-illness relationship based on GLMM with fractional
polynomial of dose and corresponding (serovar × food matrix)-specific dose-illness relationships.
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(a) Cubana × dye
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(b) Enteritidis × chicken
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(c) Enteritidis × sauce
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(d) Heidelberg × cheese
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(f) Newport × hamburger
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(g) Oranienburg × soup
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(h) Typhimurium × ice cream
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Figure 5: (Serovar × food matrix)-specific dose-illness curves based on GLMM with fractional poly-
nomial of dose (thick lines) + 90% confidence intervals based on the 1-stage bootstrap procedure
incorporating stochastic variability only (thin lines).
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