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The presence of missing values in gel-based proteomics data represents a real challenge if 

an objective statistical analysis is pursued. Different methods to handle missing values 

were evaluated and their influence is discussed on the selection of important proteins 

through multivariate techniques. The evaluated methods consisted of directly dealing 

with them during the multivariate analysis with the NIPALS algorithm or imputing them  

by using either k-nearest neighbor or Bayesian principal component analysis before 

carrying out the multivariate analysis. These techniques were applied to data obtained 

from gels stained with classical post running dyes and from DIGE gels. Before applying 

the multivariate techniques, the normality and homoscedasticity assumptions on which 

parametric tests are based on were tested in order to perform a sound statistical analysis. 

From the three tested methods to handle missing values in our datasets, BPCA imputation 

of missing values showed to be the most consistent method. 
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 Two dimensional electrophoresis (2-DE) requires proper data analysis techniques 

to avoid misleading conclusions. The use of post run protein stains for quantitative 

analysis is currently being questioned due to its limited power in terms of dynamic range, 

sensitivity and variability [1]. The improved power of the DIGE approach arises from the 

use of an internal standard [2] which is used to calculate a standardized abundance of 

each spot and to match the spots across the gels. The classical post run dyes are however 

still useful as long as the technical variance is kept low and the number of replicates is 

high enough.  

 The use of appropriate statistical tools to interpret the data is a must, either with 

classical dyes or with DIGE. The simplest statistical analysis commonly involves 

pairwise comparison using parametric or non parametric tests while more complicated 

statistical analysis involves the use of multivariate statistics and multiple comparison tests 

[3-5]. Before applying a statistical test, its assumptions need to be fulfilled and some data 

pre-processing might be required depending on the experimental data. If a parametric test 

is used, for every protein, normality and homoscedasticity should be tested. For a small 

number of replicates (3-6 in most proteomics studies), the Shapiro-Wilk test is the most 

reliable test for non-normality [6]. 

It has been shown that low intensity spots exhibit a smaller variance between 

replicate gels as compared to high intensity spots [7]. As the data should be 

homoscedastic (show equal variances), some form of data transformation (log, asinh, 

square root) is required [8]. Another important issue is that samples should be 

independent to prevent false positives [9]. 



Proteomics data always contain missing values; being a spot detected in the 

reference or master gel but not in the sample gel. The main causes for the occurrence of 

missing values are (i) spots below a threshold or detection limit; (ii) mismatches caused 

by distortions in the protein pattern (iii) absent spots due to bad transfer from the first to 

the second dimension or (iv) truly absent spots from the samples. Two-dimensional data 

can have around 50% missing values [10-12]. However, there are no straightforward 

rules how to deal with missing values.  
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It has been demonstrated that the deletion of variables containing missing values 

assumes that the number of missing values is relatively small and completely at random 

[13]. But, in gel-based proteomics, the number of missing data is often considerable and 

not at random but for instance correlated to the staining procedure or the mean volume 

percent of the matched spots [7]. If variables with missing values, are just discarded or 

ignored a substantial bias can be introduced because information is simply lost. One other 

possibility is filling the missing values with zeroes or some lower threshold value. When 

a missing value is the result of a spot being below the detection limit, a threshold or zero 

value can be justifiable. However, whenever a value is missing due to mismatching, this 

would lead to wrong interpretation of the results [10, 13]. Several methods have been 

suggested to impute missing values such as: the row average method, k-nearest neighbor 

(KNN), singular value decomposition (SVD) impute algorithm [14-15], Bayesian 

Principal Component Analysis (BPCA) missing value estimation method [16] and the 

Maximum likelihood algorithm [12].  

Multivariate statistical packages such as Unscrambler (CAMO, Trondheim, 

Norway), Decyder EDA (GE Healthcare, Upsula, Sweden) and SIMCA-P (Unimetrics 



AB, Sweden) can deal with missing values during multivariate analysis (PCA, PLS-DA) 

avoiding the need to impute them. They rely on the NIPALS algorithm to set the 

residuals for the missing values to zero during the calculations of the principal 

components or latent variables. This flexibility for the user to perform the analysis when 

missing data is present can represent a serious problem if the amount of missing data is 

substantial. Morover, the amount of missing data that is considered to be substantial to 

distort the results is debatable. 
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Currently, the all against all matching approach introduced by some image 

analysis packages (e.g Progenesis Same Spots), theoretically generates complete datasets 

suitable for multivariate statistical analysis after proper data standardization. However, 

technical issues intrinsically associated with 2-DE and image analysis such as: gel 

distortions, missing spots due to bad transfer from first to second dimension, incorrect 

spot merging or splitting, are ignored introducing ‘misleading’ values that generate bias 

[17]. Considering all the possibilities available we believe it is crucial to be aware of the 

importance of how missing values are faced. Whatever approach is taken in the end, must 

consider the structure of the data and a compromise should be found between a sound 

statistical and biological interpretation of the data.  

Multivariate statistics have a key role to play in ‘systems biology’ because much 

more information can be extracted than by a simple univariate test.  Therefore there is an 

urgent need to handle missing values in an accurate way to draw realistic conclusions. 

When univariate statistical tests are performed (e.g t-test) it might be argued that missing 

values can be ignored analyzing only the available data. The reduced number of 

replicates due to missing values would result in a reduced power.. In both univariate or 



multivariate statistical analysis, missing values represent a problem. The univariate 

statistical analysis in presence of missing data is out of the scope of this study. This study 

focuses on different techniques to handle missing values for multivariate statistical 

analysis and the subsequent possible impact on the interpretation of the results.  
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2. Materials and Methods 

2.1 Proteomics data 

This manuscript focuses on the statistical data analysis using proteomics datasets 

from pear and banana as case studies. Technical details for pear and banana proteomics 

can be found in respectively [3] and [18]. For this reason the experimental background of 

these datasets is only described in summary. The pear dataset contains data from six 

independent biological replicate samples for each of four treatments (different storage gas 

conditions). Proteins were visualized by silver staining [19]. Image analysis was 

performed with the Image Master 2-D Platinum software 6.0 (GE Healthcare). Spots 

were detected without spot editing and quantified as percentage volume.  

The banana data set contains data from three replicate gels for each of four 

treatments (different sample dates; 2, 4, 8 and 14 days). Samples were labeled using the 

fluorescent Cyanine dyes developed for DIGE (GE Healthcare) according to the 

manufacturer’s recommendations. In order to anticipate any dye specific effect, the 

samples were labeled at random with Cy3 and Cy5 and randomized over the gels. The 

internal standard was a mixture of all analyzed samples and was labeled with Cy2. 

Labeled proteins were visualized using a Typhoon™ imager (GE Healthcare) and the gels 

were analyzed using the Decyder EDA software.  



The data pre-processing with DIGE occurs automatically in the DECYDERTM 

software: the data is normalized using a ratiometric approach and a log
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is used on the standard abundance to stabilize the variance.  

 

2.2 Handling of missing values 

For the datasets presented in this paper, three methods to handle missing values 

were tested which consisted of two imputation techniques preceding the multivariate 

analysis (KNN and BPCA) and simply dealing with the missing values during the 

multivariate analysis (referred to as ‘NIPALS’).  

 

k-Nearest neighbor (KNN) 

The KNN method assumes a relationship between spot volume patterns of groups 

of proteins. The KNN method selects spots showing spot volume patterns similar to the 

spot of interest for which to impute missing values [15]. A weighted average of values 

from the k most similar spots is used as an estimate for the missing value under concern. 

The contribution of each spot is weighted by its similarity determined as the Euclidean 

distance. The optimum number of k-neighbors has to be determined empirically. The 

KNN imputation procedure was implemented in Matlab (The MathWorks, Inc., Natick, 

MA, USA) by Jörsten et al. [20] and applied in this manuscript using k=20. 

 

Bayesian Principal Component Analysis (BPCA) 

In BPCA the missing values are estimated from the known spot volumes using 

principal component regression (PCR). The principal components are estimated 



simultaneously with the regression coefficients of the PCR model using a variational 

Bayes algorithm. After convergence of the algorithm missing values are imputed. The 

BPCA imputation procedure was implemented in Matlab (The MathWorks, Inc., Natick, 

MA, USA) by Oba et al. [16]. BPCA consists of three processes as described above: (i) 

principal component regression, (ii) Bayesian estimation and (iii) Expectation-

maximization (EM) like repetitive algorithm. For a detailed explanation refer to [16]. 
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Nonlinear Estimation by Iterative Partial Least Squares (NIPALS) 

Both Unscrambler and Decyder EDA softwares are able to perform multivariate 

analysis in the presence of missing data using the NIPALS algorithm. In every iteration, 

during calculation of the principal components or latent variables, the residuals for the 

missing elements in the least square function are set to zero or the missing values are 

replaced by their minimum distance projections onto the current estimate of the loading 

and score vector [21]. This method is generally used in chemometrics and proteomics 

[22] and is tolerant to small amounts of missing data (up to 5-20 %). 

 

2.3 Multivariate analysis  

Principal Component Analysis (PCA) (unsupervised) 

PCA forms new variables (principal components) that are linear combinations of 

the original ones thus capturing the essential data patterns of the original data in a 

reduced form. PCA is useful to examine datasets with multicollinearity (e.g. proteins that 

act in concert with other proteins) and to get insight into certain patterns or trends [23-

24]. The score plots obtained show the distribution of the objects (gels) and their 



configuration allowing the identification of outliers through the Hotelling T2 ellipse. The 

Loading plots obtained show the relationship between the different variables and their 

distribution. The further a variable is from the origin, the more influential is the variable 

for explaining relationships in the dataset. The distances along the first components are 

more important because the first principal components explain more of the variation in 

the dataset. 
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Partial least squares (PLS) discriminant analysis (DA) (supervised) 

PLS is a bilinear regression model to create prediction models of one or several 

responses from a set of factors [23]. PLS-DA will construct latent variables in such a way 

that a maximum separation is obtained among them. PLS-DA can be useful in addition to 

PCA to correlate variation in a dataset with class membership [24] and to select important 

variables involved in class distinction. As in PCA, score and loading plots are obtained 

and can be interpreted in the same way as in PCA. In addition, plots for variable 

importance (VIP), model coefficients, residuals, distances to model plots and validation 

plots are obtained [25]. 

 

VIP Procedure 

The Variable Importance Plot (VIP) identifies those variables that are important 

for explaining the variance in the model response [24]. The VIP coefficient of a protein is 

calculated as a weighed sum of the squared correlations between the PLS-DA 

components and the original variable. The weights correspond to the percentage variation 

explained by the PLS-DA component in the model. The number of terms in the sum 



depends on the number of PLS-DA components found to be significant in distinguishing 

the classes. Care must be taken when excluding variables from the model. If many 

important variables are excluded, important explanatory information may be lost as well 

[25]. For more details about PLS and the VIP procedure one is referred to Norden et al 

[26]. 
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2.4 Performance of handling missing values 

The performance of handling missing values was tested on a subset of the DIGE 

dataset referred to as ‘complete DIGE’ dataset containing 542 proteins matched across all 

the gels without missing values. The experimental set-up is described in Figure 1A. From 

this ‘complete DIGE’ dataset thirty percent of the data was randomly removed. Using this 

dataset with artificially induced missing values, the various methods for handling missing 

values described above were tested. Since the underlying normality and equal variance 

assumptions are supposed to be met with DIGE data after Decyder analysis [8], 

transformation of the data was not required. 

The multivariate data analysis involved PLS-DA analysis to discriminate the 

individual gels according to similar protein expression profiles. Cross-validation was 

applied to test the performance of the models since the number of observations is too 

small to validate the models on an independent test set. The VIP procedure was used to 

identify the 50 most important proteins describing the difference in protein expression 

profiles. These selected proteins were compared between the different approaches of 

handling missing values using the ‘complete DIGE’ dataset as a reference. This 

procedure, starting from the induction of random missing values, was repeated 10 times 



to evaluate its consistency. A method is considered to be ‘consistent’ if by repeating 

several times (10 in this particular case), the obtained proteins are the same as the ‘real 

ones’ (obtained when no missing values are present). PLS-DA and VIP analyses were 

performed using The Unscrambler Version 9.1 (CAMO A/S, Trondheim, Norway). 
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2.5 Impact of missing values handling techniques on VIP selection using DIGE data 

To test the impact of different missing values handling techniques on the final 

VIP selection, the original incomplete DIGE data (covering 1462 proteins, containing 

missing values) was used. As the normality and equal variance assumptions were 

assumed to be met, transformation of the data was not required. Missing values were 

handled either during the multivariate analysis (NIPALS) or by imputing them on 

beforehand using either the KNN or BPCA method. PLS-DA and the VIP procedure were 

used to build models able to explain the variance in the dataset. The followed procedure 

is described in Figure 1B. 

 

2.6 Impact of missing values handling techniques on VIP selection using classical 

dyes data 

Normality was checked with the Shapiro and Wilk test. To meet the equal 

variance assumption, different transformations were tested: no transformation, a 

logarithmic (log), inverse hyperbolic sine (asinh) and square root transformation. 

Handling missing values during the multivariate analysis (NIPALS) was compared to 

imputing them on beforehand using either the KNN or BPCA method. If for a particular 

protein in one of the treatments all replicates presented missing values but were clearly 



present in the other treatments, they were treated as threshold values. Before performing 

PLS-DA and the VIP procedure to select the fifty most important proteins involved in 

class distinction, PCA outlier detection through the Hotelling T
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2 ellipse was performed.  

 

3. Results 

3.1. Matching of the data and estimation of missing values 

The percentage of missing values in either the DIGE or classical dyes datasets 

was 24 % and 29 % respectively (Table 1). Despite the use of an internal standard and the 

co-detection algorithm with the DIGE, the individual gels still need to be matched 

resulting in substantial amounts of missing values (Table 1A). The total number of spots 

fully matched across all samples of the DIGE dataset was 542. 

 

3.2. Performance of handling missing values 

 The ‘complete DIGE’ dataset (542 proteins) was used to evaluate the performance 

of different methods to handle missing values after random removal of 30% of the data 

(Figure 2). Based on the score plots, none of the methods clearly outperformed the others 

in terms of quality of the separation (Figure 3). The score plots are a useful visualization 

tool to inspect if the real variance from the ‘complete dataset’ is being masked or not by 

the tested methods to handle missing values in the derived datasets with artificially 

induced missing values. Particularly, since we have the ‘complete dataset’ a direct 

comparison can be made. However, looking at the proteins involved in the classification, 

quantitative differences are observed. Depending on how missing values were handled, in 

average only 34% to 63% of the selected proteins were identical to the fifty selected 



proteins obtained from the 'complete DIGE' dataset (Figure 4a). The number of imputed 

missing values in these fifty selected proteins for all the methods tested did not differ 

extensively. In addition, the BPCA imputed data seems to be closer to the original data 

(Figure 4b) as compared to the KNN imputed data. The calculated correlation coefficients 

for the real data vs BPCA imputed data and real data vs KNN imputed data were 0.85 and 

0.65, respectively. These coefficients clearly show that BPCA provides more accurate 

estimates of the missing values than KNN. The selection of proteins for the KNN also 

varied extensively during the ten simulations (34% ± 17%, Figure 4a). From these results, 

BPCA showed to be the most consistent method in terms of selecting those proteins that 

would have been selected if there were no missing values in the dataset.  
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3.3 Impact of missing values handling techniques on VIP selection using DIGE data 

Depending on how missing values were handled different selections of 50 

proteins were obtained for the original incomplete DIGE data (covering 1462 proteins, 

containing 24 %  missing values). Between KNN and BPCA 30 out of the 50 selected 

proteins were the same. When the missing data was handled during the multivariate 

analysis (NIPALS), only one out of the fifty proteins was the same when compared to the 

BPCA method which in the previous section was shown to perform best (Figure 5a). 

Most of the proteins selected based on the BPCA imputed data contained no 

missing values while the proteins selected when missing values were handled during the 

multivariate analysis (NIPALS) contained large numbers of missing values (Figure 5b). 

The score plots and explained variances do not differ significantly for the BPCA and 

KNN methods (Figure 6b and c). But when missing data was handled during the 



multivariate analysis (NIPALS), the variance within each group seems to be artificially 

reduced (Figure 6a) which was not observed with the ‘complete DIGE’ dataset (Figure 

3). By handling missing data during the multivariate analysis or prior application of 

BPCA and KNN, PLS-DA was able to explain 83%, 86% and 84% of the total variance 

when only the 50 most important proteins were kept although the final selection of these 

proteins clearly differed (Figure 5a).  

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

 

3.4 Impact of missing values handling techniques on VIP selection using classical 

dyes data 

 According to the Shapiro and Wilk test, approximately 5% of the spots failed 

normality. Applying different transformations did not reduce this percentage but mainly 

stabilized the variances (data not shown). The log transformation improved 

homoscedasticity since the standard deviation was no longer correlated with the mean 

percentage spot volume. Thus, the log transformation was applied for further processing. 

In average the fifty selected proteins obtained by handling the missing values during the 

multivariate analysis (NIPALS) contained in average 8 missing values out of 24 values 

while after prior application of BPCA and KNN the fifty selected proteins contained only 

6 missing values (Figure 7b). In addition, the score plots obtained after the treatment of 

missing values and the final selection of the 50 most important proteins according to the 

VIP procedure and amount of explained variance are shown in Figure 8.  

 

 

 



4. Discussion 323 
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 Missing values are often present in classical stained and DIGE gels and must be 

treated appropriately. In general, less intense spots are more susceptible to be missing; 

nonetheless, these proteins might represent an important class responsible for regulation 

and signaling [10, 12]. The introduction of more and more sensitive mass spectrometric 

techniques, allow the identification of this low abundant class of proteins. In addition, 

currently many diagnostic studies rely on data mining techniques to assign samples to a 

certain group, thus the low abundant fraction proteins is essential [17]. Discarding such 

proteins, otherwise, would result in enormous loss of valuable biological information. 

The BPCA method showed to be the most consistent in terms of selecting most of the 

proteins that would have been selected if there were no missing values in the data while 

KNN tended to distort the structure of the original data (Figure 4b). This was confirmed 

with the calculated correlations coefficients.  

When evaluating the three methods to handle missing values on the original DIGE 

dataset (1462 variables, 24% missing values), the fifty most important proteins selected 

with PLS-DA by handling the missing values during multivariate analysis was 

completely different from the results obtained after imputation by BPCA or KNN (Figure 

5a). An explanation for this is that missing values for proteomics data are not just the 

result of completely random events. This can be clearly seen in Figure 2 in which the 

distribution of missing values is plotted for the artificial dataset based on the ‘complete 

DIGE’ dataset and for the original incomplete DIGE dataset. By just discarding the 

missing dimensions, Eisen et al. [27] found cluster of genes with many missing values 

when carrying out a cluster analysis on gene expression profiles. This finding was caused 



by ignoring the missing values which is similar to assume that the expression levels are 

the same within an experimental group. Statistically spoken, it means that the distance 

between vectors with missing values tends to be smaller than the distance without 

missing values. When there are too many missing values present during multivariate 

analysis the score estimation error increases as the loading vector approaches the missing 

variable axis. Since influential variables will have large weights in the loading vector, the 

score estimation error will increase as well. The presence of missing data in the 

multivariate analysis thus caused a bias towards the selection of proteins containing 60% 

missing values (Figure 5b). It has been shown that NIPALS tends to cause loss of 

robustness as the amount of missing values increases to 20% [22] compared to other 

algorithms such as BPCA
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 [16] or Multiple imputation (MI) [28]. It is worth to mention 

here that not only the total amount of missing data in the dataset (24%) is important but 

how it is distributed among the different proteins. For instance, in the‘incomplete DIGE’ 

dataset, 27% of the total number of proteins containing missing values showed to have 

missing values equal or higher than 50%  

From the original datasets false positives or negatives cannot be recognized, but 

imputation of missing values by BPCA is more appropriate than just handling them 

during the multivariate analysis. In contrast to the BPCA method that includes maximum 

likelihood estimation, the other two methods do not take into account the uncertainty 

associated with the prediction of the missing values. In addition the maximum likelihood 

algorithm does not assume the existence of missing values completely at random across 

all the observations but only at random within one or more subgroups (e.g., missing more 

among low abundant proteins than high abundant proteins, but within this low abundant 



category they are missing at random) which is an advantage. However, the total 

uncertainty associated with the prediction is not included and some other features such as 

the dependency of missing values on the characteristics (e.g. abundance, hydrophobicity, 

etc) of the proteins might be disregarded.  
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For the classical dyes dataset, the normality and equal variance assumptions were 

tested before performing the statistical analysis. The use of different transformations to 

stabilize the variance has been described before for proteomics data [5, 7, 11, 29]. For the 

classical dyes dataset it was shown that applying a log transformation is only needed to 

stabilize the variance but not to turn the data normal as 95 % of the data was already 

normally distributed regardless the transformation applied. For the different ways to 

handle missing data in the classical dyes dataset, 60% homology in terms of the same 

selected 50 most important proteins remains (Figure 7a). It has been shown in a previous 

study with gene expression data by Bras and Menezes [30] that PLS based imputation 

methods performed better when the correlation structure of the data is weak (e.g non time 

series experiments), as this experiment. However, with all the datasets tested (time series, 

non-time series and mixed experiments) BPCA in most of the cases outperformed the 

PLS based estimation methods. The fact that the three of them yielded more or less the 

same results is encouraging in terms of robustness for a biological interpretation of the 

data, given that a choice has to be taken. Some examples of how the imputation methods 

are affecting the inclusion of particular proteins in the final VIP selection for the ‘pear 

dataset’ are given in Figure 9. All these proteins were visually inspected and confirmed as 

real spots. The figure shows both the imputed and original non-missing observations. In 

case of BPCA and KNN imputed data the VIP selection is based on the combination of 



the original non-missing observations with the respective imputed values. In case of the 

NIPALS data set, the VIP selection is based on the original non-missing observations 

only. A typical protein included in all final VIP selections after each of the three methods 

used to deal with missing data (Figure 9A) showed imputed values similar to the original 

non-missing spot volumes, suggesting accurate imputations. The protein selected by the 

three methods showed to be involved in a physiological disorder in pears which confirms 

what was found in our previous study [3]. Whenever a protein was not selected after one 

missing values handling method but was selected by the remaining two missing values 

handling methods (Figure 9B-D) this was due to the fact that the imputed values were 

clearly different from each other and the original non-missing values. However, one 

needs to be careful in interpreting data of individual proteins (an implicit univariate 

approach) as the selected proteins were identified within their original multivariate 

context. 
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One possible argument, for the disagreement in performance of the NIPALS 

algorithm between this dataset and the ‘incomplete DIGE dataset’ might be related to the 

total percentage of individual proteins containing huge amounts of missing data. Even 

when this classical dyes dataset presents a higher total amount of missing values (29%) 

than the ‘incomplete DIGE’ dataset (24%), the classical dyes dataset only presented 13% 

of the total proteins containing missing values with  50% or more missing values. This 

feature leads to a better performance of the NIPALS algorithm for this particular dataset. 

It might be argued that a ’preliminary filtering’ of proteins, in terms of the maximum 

amount of missing values allowed within each protein would be good practice but would 

still be subjective in where to set the maximum.  
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 5. Conclusions  

Data pre-processing steps have a large impact on the final selection of the most 

important proteins when using multivariate statistical tools such as PLS and VIP and 

heavily rely on how missing values are treated. There is no absolute truth in terms of 

which is the most appropriate way to deal with missing data, however, from the ones 

studied, BPCA gave the best result. 

We recommend: (1) not to discard proteins containing missing values from the 

start, (2) estimate the amount of missing values in the dataset and within each individual 

protein, (3) based on the amount of missing values make a choice to impute missing 

values with an appropriate available method (we recommend BPCA in our case), (4) go 

back to the gels to check whether those selected proteins are real spots and not just 

artifacts or threshold values.  
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Table 1A. Matching results for incomplete DIGE dataset 

Gel (treatments: 
cy3, cy5, cy2) 

Detected spots % spots matched to 
master gel 3 

Gel 1 1601 75 

Gel 2 1532 67 

Gel 3 1692 100 

Gel 4 1412 67 

Gel 5 1548 78 

Gel 6 1256 69 

 

Table 1B. Matching results for classical dyes dataset 

Treatments Average detected 
spots (n=6) 

% average matched 
spots to reference 
gel (n=6) 

Condition 1 733 63 

Condition 2 520 64 

Condition 3 622 69 

Condition 4 609 63 



Figure Legends 

 

Figure 1. Flow chart detailing the procedure followed for (A) testing the performance of 

handling missing values using the ‘Complete DIGE dataset’ composed of 542 totally 

matched proteins, (B) testing the impact of missing values handling techniques on VIP 

selection using the ‘incomplete datasets’: DIGE and classical dyes. The asterisk indicates 

that missing values were not imputed during preprocessing but were handled during the 

multivariate analysis through the NIPALS algorithm. 

 

Figure 2. Distribution of missing values for (a) random removal in ‘complete DIGE’ 

dataset (test dataset, containing 542 proteins matched across all gels) and (b) incomplete 

DIGE dataset (containing 1462 proteins). 

 

Figure 3. PLS-DA score plots for the (a) ‘complete DIGE’ dataset (542 proteins matched 

across all gels), (b) after random removal of 30% of the data and treated with, 

Unscrambler (NIPALS algorithm) or imputed with (c) BPCA and (d) KNN.  

 

Figure 4. (a) Number of important proteins selected through VIP 50* after random 

removal of 30% of the data in the ‘complete DIGE’ dataset and treated with the different 

options to handle missing values, (b) ‘complete DIGE’ dataset versus imputed data with 

BPCA or KNN. VIP 50* is defined as the fifty most important proteins selected by PLS-

DA and VIP analysis. 

 



Figure 5. (a) Venn diagrams showing the overlap of the selected proteins through PLS-

DA and VIP 50* (b) Percentage of proteins from the 50 selected as a function of the 

number of missing values for the incomplete DIGE dataset. VIP 50* is defined as the 

fifty most important proteins selected by PLS-DA and VIP analysis. The maximum 

number of missing values in this dataset would be 10 out of 12 because of the DIGE set 

up (3 dye approach). 

 

Figure 6. Score plots (PLS) after the VIP 50* procedure for the incomplete DIGE 

dataset, (a) missing values handled during the calculations NIPALS (b) BPCA imputed, 

(c) KNN imputed. VIP 50* is defined as the fifty most important proteins selected by 

PLS-DA and VIP analysis. 

 

Figure 7. (a) Venn diagrams showing the overlap of the selected proteins through PLS-

DA and VIP 50*, (b) Percentage of proteins from the 50 selected as a function of the 

number of missing values for the incomplete classical dyes dataset. VIP 50* is defined as 

the fifty most important proteins selected by PLS-DA and VIP analysis. The maximum 

number of missing values in this dataset would be 23 out of 24 for this dataset. 

 

 

Figure 8. Score plots (PLS-DA) after the VIP 50* procedure for the classical dyes dataset 

(563 proteins containing 29% missing values), (a) missing values ignored during the 

calculations (b) BPCA imputed, (c) KNN imputed. VIP 50* is defined as the fifty most 

important proteins selected by PLS-DA and VIP analysis. 



 

Figure 9. Observed and imputed spot volume values for 4 selected proteins (plot A-D) 

from the ‘classical dyes dataset’. Treatments (1-4) stand for the different storage 

conditions used. The open symbols represent the imputed values using either BPCA (◊) 

or KNN (∆) imputation. The closed symbols (●) represent the original non-missing 

observations making up the NIPALS dataset. Plot A, ‘None differs’ shows data for a 

protein (439) that was included in the VIP selection for all three missing values handling 

methods (either imputed during preprocessing, by BPCA or KNN imputation, or handled 

during the multivariate analysis through the NIPALS algorithm). The other plots (B-D) 

show data for proteins (respectively 401, 589 and 348) that were NOT selected after the 

missing values handling method referred to in the heading of the plot, but were selected 

by the other two missing values handling methods. 
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Figure 4 
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Figure 6 
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Figure 9 
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