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>< 1 INTRODUCTION

Being an ill-posed problem, it is not surprising that
gravitational lens inversion is plagued by degeneracies.
Several classes of degeneracies were first identified by
Gorenstein et all (1988) and were later reinterpreted by
Saha (2000) in terms of changes in the arrival-time sur-
face. Of these, the most widely known degeneracy is usu-
ally called the mass-sheet degeneracy, although recently
the more correct name of steepness degeneracy has been
suggested (Saha & Williams 2006). This degeneracy was
first mentioned in the context of the strong lensing system
Q09574561 (Falco et all [1985), but has also been studied
in weak lensing systems (e.g. [Schneider & Seit7 (1995)) and
even in the context of microlensing (Paczynski|1986).

In strong lensing systems, it is often claimed that the
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ABSTRACT

The inversion of a gravitational lens system is, as is well known, plagued by the
so-called mass-sheet degeneracy: one can always rescale the density distribution of
the lens and add a constant-density mass-sheet such that the, also properly rescaled,
source plane is projected onto the same observed images. For strong lensing systems,
it is often claimed that this degeneracy is broken as soon as two or more sources at
different redshifts are available. This is definitely true in the strict sense that it is then
impossible to add a constant-density mass-sheet to the rescaled density of the lens
without affecting the resulting images. However, often one can easily construct a more
general mass distribution — instead of a constant-density sheet of mass — which gives
rise to the same effect: a uniform scaling of the sources involved without affecting the
observed images. We show that this can be achieved by adding one or more circularly
symmetric mass distributions, each with its own center of symmetry, to the rescaled
mass distribution of the original lens. As it uses circularly symmetric distributions, this
procedure can lead to the introduction of ring shaped features in the mass distribution
of the lens. In this paper, we show explicitly how degenerate inversions for a given
strong lensing system can be constructed. It then becomes clear that many constraints
are needed to effectively break this degeneracy.
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such a case, we show in this paper how a more general mass
distribution, to be added to the original lens mass distri-
bution, can be constructed which gives rise to a similar
type of degenerate solutions. In particular, the alternative
name of steepness degeneracy is still applicable since the
construction of degenerate solutions still requires the origi-
nal mass distribution to be rescaled. Although the method
described below is quite straightforward, the authors, hav-
ing performed a thorough literature study, are not aware of
this result being published before.

In section [2] the necessary equations from the gravita-
tional lensing formalism will be reviewed. These equations
will be used to derive the mass-sheet degeneracy in section [3]
and to explain the extension to multiple redshifts in section
[ Finally, in section 5] the results and their implications are
discussed.

presence of two sources at different redshifts suffices to break
the mass-sheet degeneracy (e.g. |[Abdelsalam et all (1998)).
While it is definitely true that a constant-density mass-sheet
can no longer be used to construct degenerate solutions in 2 LENSING FORMALISM
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We shall briefly review the necessary equations related to
the gravitational lensing formalism. The interested reader is
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gravitational lensing theory.
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In the thin lens approximation, the gravitational lens
effect is essentially a mapping of the source plane (3-space)
onto the image plane (6-space), described by the lens equa-
tion:

Dys ..
B(0) =0 - a(0). M
S
Here, &(0) describes the instantaneous deflection of a light
ray that punctures the lens plane at the position 8, and
depends linearly on the two-dimensional projected surface
mass density X(0) of the lens.

For a circularly symmetric projected mass density cen-

tered on the origin, the defection angle reduces to:
4G M(0)

&(0) = 552 0 (2)

in which M(0) is the total mass within a radius 6. The ge-
ometry of the situation is described by the angular diame-
ter distances Dgq, Dgs and Ds. As a result, for a circularly
symmetric projected mass distribution, only the total mass
inside a specific radius contributes to the deflection of light
rays.

3 THE MASS-SHEET DEGENERACY

Let us first consider a strong lensing system with images
coming from a single source. A uniform sheet of mass with
density s produces a deflection described by

N Ds
6:(0) = 550, 3)

in which the critical mass density for the current geometry
is defined as follows:

- D ()
"~ 4wGDg Dgs”

Note that X.: depends on the redshift of the source via the
angular diameter distances Ds and Dgs. Let Xo(0) be a mass
distribution that is compatible with the observed images.
This means that the corresponding lens equation

By(8) = 0 — 224,(0) 5)

projects the images onto the source plane in such a way that
they overlap exactly. Without further constraints, this im-
mediately yields an infinite number of alternative solutions.
Indeed, if the mass distribution is replaced by

Z:cr

S

1(8) = AZ0(0) 4+ (1 — A\)Zer, (6)
the new lens equation becomes

Das . Das .
B1(0) =0 — AF=a0(6) — (1= X)=as(8) = ABy(6). (7)

The transformation (B) describes the so-called mass-sheet
degeneracy and simply rescales the source plane by the fac-
tor A, producing an equally acceptable source reconstruc-
tion. Note that merely adding a mass-sheet is not sufficient;
one also needs to rescale the original mass distribution by
the same factor A, which justifies the alternative name of
steepness degeneracy. The density of the mass-sheet has to
be precisely the critical mass density for this to work. For
this reason, a mass-sheet cannot be used when there are
sources at different redshifts, since these would require dif-
ferent critical densities.

4 EXTENSION TO MULTIPLE REDSHIFTS

An infinite sheet of mass, however, is not the only mass dis-
tribution which can be used to produce degenerate solutions.
If the mass density is circularly symmetric and equal to X,
in an area large enough to encompass all the images, the
same source scaling effect will arise, thanks to equation (2)).
The center of symmetry of such a distribution determines
the center of the scaling (which is the origin of the coor-
dinate system in case of an infinite sheet). This way, the
mass-sheet degeneracy is easily transformed into a mass-
disk degeneracy. In fact, the added mass density need not
be constant inside such a disk to produce the same effect. As
long as the total mass inside each image point is the same
as for the mass-disk, equation () ensures that the distribu-
tion can be used to construct a degenerate solution as well.
This constraint automatically implies a density equal to ¥,
inside the annuli in which the images reside, but otherwise
allows a lot of freedom.

This freedom allows us to construct a mass distribution
which, when added to a scaled version of an existing solu-
tion for the lens mass density, is equally compatible with
the observed images, but which will rescale the sources. The
effect is therefore very similar to that of the mass-sheet de-
generacy, but this degeneracy is not necessarily broken by
the presence of additional images of sources at different red-
shifts.

To illustrate the procedure, consider the two sources
and their respective images in Fig. [l The two sources are
placed at redshifts z; = 1.2 and 22 = 1.8 and the images
are created by a non-singular isothermal ellipse at z = 0.5.
This non-singular isothermal ellipse then provides us with
the initial mass density ¥0(0). A flat cosmological model
with Qm = 0.27, QA = 0.73 and Ho = 70kms~* Mpc ™! was
used to calculate the necessary angular diameter distances.

The circularly symmetric mass density Xgen (6) and cor-
responding Mgen (0) that we shall construct, must have the
same effect as a mass-sheet for both sources. This mass den-
sity will serve as the generator of the transformation which
creates a degenerate solution X;(0) from an existing solu-
tion Xo(0). The procedure is very similar to the mass-sheet
case:

31(0) = A%0(0) + (1 — A)Xgen (10 — Ocl), (8)

in which 6. is the center of symmetry of the generator. The
mass distribution of the generator must satisfy constraints
provided by the images: the mass enclosed by each image
point must equal the mass of the corresponding constant-
density mass-sheet. Therefore, if a specific image of a source
at redshift z lies in an annulus with inner radius 6, and
outer radius Oout, the constraint provided by said image is
the following:

V0 € [fin, Oout] : Mgen(0) = mD30°Ser(2), (9)

in which the radii are measured with respect to the chosen
center of symmetry 8.. Consequently, within such an annu-
lus the mass density must equal the critical density for an
image at redshift z and in the region enclosed by the an-
nulus, the mean density must equal the critical density. In
the left panel of Fig. [2] we plot the annuli of the images, as
seen from the center of the non-singular isothermal ellipse.
Looking at the furthest image of each source, it is clear that
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Figure 1. Left panel: original sources used to illustrate the construction of degenerate solutions. The source surrounded by a box is
placed at redshift z; = 1.2, the second source is at zo = 1.8. The caustics created by the non-singular isothermal ellipse placed at z = 0.5
are also visible. The solid line corresponds to z; = 1.2, the dotted line to za = 1.8. Right panel: images of the two sources used to
illustrate the construction of degenerate solutions. The critical lines are also shown.
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Figure 2. Left panel: the annuli in which the images reside, as seen from the origin of the coordinate system, are displayed as grey rings.
The darker ring indicates the region in which the annuli of the outer images overlap. Because of this overlap, no suitable mass density
can be constructed (see text). Right panel: similar to the left panel, but now the annuli are centered on (0, —5). This center can be used
in the construction of a degenerate solution since there are no longer overlapping annuli.

no Ygen can be constructed. The mass density would have
to be equal to ¥¢:(z1) inside the annulus of one image and
Yer(22) inside the annulus of the other image. Since these
regions overlap, as is indicated by the darker ring, this is
impossible. However, if we take (0, —5) as the center, there
are no overlapping annuli as can be seen in the right panel
of Fig.

Once an appropriate center has been identified, the po-
sitions of the images of each source can be used to calculate
parts of the total mass map Mgen(0), as specified by (@). In
our example, these constraints are illustrated by thick black
lines in Fig. [ (left panel), when using (0, —5) as the center

of the distribution. The rest of the mass map can easily be
interpolated, after which the full density profile of Ygen(6)
can be derived. In the left panel of Fig. [3 a third degree
polynomial was used to interpolate between the constrained
regions. The resulting density profile is plotted in in the
right panel of the same figure and the critical densities for
the two sources are indicated with dotted lines. Note that
although this particular example does not require negative
densities, in general it is possible that this is indeed neces-
sary. This need not be a problem, since the resulting mass
distribution will be combined with the existing distribution
30(0) (the non-singular isothermal ellipse in this example)
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Figure 3. Left panel: the positions of the images of each source place constraints on the enclosed mass Mgen (thick lines on the mass
profile). The regions in between can easily be interpolated. Right panel: the total mass profile in the left panel gives rise to the density
profile ¥gen shown here. The dotted lines indicate the critical mass densities for the two sources.
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Figure 4. The profile of the degenerate solution (thick line) is
compared to the profile of the original mass distribution, a non-
singular isothermal ellipse. In this example, A\ = 0.75 was used.

and may still yield an overall positive density profile. Still,
placing a positivity constraint on the overall density profile
may help to alleviate this degeneracy.

By construction, the procedure (§)) has the same effect
as the mass-sheet degeneracy: the observed images are iden-
tical but the reconstructed sources are scaled versions of the
original ones while the density profile of the lens has be-
come less steep. The resulting density profile for A = 0.75
can be seen in Fig. @ in which the original profile is shown
as well. Clearly, the central peak has become weaker while
at larger radii a ring of excess density has been introduced.
This figure illustrates nicely that the term steepness degen-
eracy still applies to this kind of degenerate solution. When
the images of Fig. [Tl are projected back onto their source
planes using the new mass distribution X1, the sources in
Fig. [l (solid lines) are retrieved. The fact that the images of
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Figure 5. Sources recreated by the degenerate solution (thick
solid lines); the original sources are indicated by dotted lines.
The direction of the scaling is clearly towards (0, —5).

a specific source overlap perfectly when projected onto the
source plane proves that the constructed mass distribution is
still compatible with the observed images and can therefore
correctly be identified as a degenerate solution. Since each
dimension is scaled by A = 0.75, the reconstructed sources
are smaller than the original ones (dotted lines). The image
also clearly shows that the direction of the scaling is towards
(0, —5), the center of the circularly symmetric ¥gen which
was constructed.

Of course, since the positions of the images are not af-
fected, one is free to repeat the entire procedure using the
newly acquired X, as the “original” solution. In general, if it
is possible to create N different circularly symmetric density
distributions ¥gen,i, each with another center of symmetry
0., it is easily derived that for any A, the following mass
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Figure 6. Left panel: sources and caustics predicted by a degenerate solution. Comparing with the left panel of Fig. [l one sees that
both sources and caustics are scaled versions of their original counterparts. Right panel: the reconstructed sources and caustics shown
in the left panel predict the images and critical lines shown here. The same images as in the right panel of Fig. [[] can be seen and the

critical lines still resemble the original ones.
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Figure 7. Left panel: the degenerate solution which gives rise to the source and image planes shown in Fig. [6l Several ring-like features
can be seen, the most prominent one being centered on (—8, —8). Right panel: density profile as seen from (—8, —8). Apart from the
peak of the non-singular isothermal ellipse, one can clearly see a ring-like feature.

distribution will still project the images back onto consistent
sources:
N
Sn(0) = AVS0(0) + (1= A) > AN Syeni(10 = 0c.i)). (10)
i=1
This way, the mass distribution which is added to ¥ need
not possess circular symmetry anymore and its density pro-
file can become much more complex. Equation ({0) is im-
portant from a practical point of view: the target scale AV
can easily be reached by using N generators, each producing
only a very small effect. If a large number of suitable center
positions can be found, this can severely reduce the amount
of substructure introduced by the procedure.
An example of degenerate source and image planes ob-

tained by using N = 100 different 3gen,; can be seen in Fig.
Each source is scaled by a factor AV = 0.75 in each di-
mension; the caustics are scaled as well. The critical lines
still show the same general structure. The mass distribution
of the degenerate solution can be seen in Fig. [Tl (left panel)
and contains several ring-like structures, the most prominent
one being centered on (—8, —8). This can also be clearly seen
when the density profile is calculated using (—8, —8) as the
center (right panel of Fig. [[]). The first peak in this plot is
due to the non-singular isothermal ellipse, the second one
is caused by the ring-like substructure of the degenerate so-
lution. Note that the ring is not caused by one particular
generator, but is a combined effect.

As an aside, even when it is impossible to rescale the
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sources, it may still be possible to introduce ring-shaped
features. One only needs a ring-shaped region without data
points. A circularly symmetric distribution which is zero ev-
erywhere but which fluctuates in the ring-shaped region in
such a way that the total mass inside the region is zero as
well, can simply be added to the original, again thanks to
equation (2)). Doing so can obviously introduce a ring-like
feature in the mass distribution of the lens.

5 DISCUSSION AND CONCLUSION

In this article we have presented a straightforward extension
of the mass-sheet degeneracy to multiple redshifts. Although
there is no actual sheet of mass involved, the procedure and
effect of the degeneracy are the same. In both cases, the
existing mass distribution is rescaled and a component is
added, leading to a rescaling of the sources. This justifies
placing the degeneracy described above in the same cate-
gory as the mass-sheet or steepness degeneracy. Although
we illustrated the construction of degenerate solutions using
a strong lensing example, it is clear that weak lensing stud-
ies can be affected as well. In particular, if weak lensing data
alone leads to solutions prone to the mass-sheet degeneracy,
it will not suffice to add strong lensing data of a single source
to break the degeneracy if strong and weak lensing regions
do not overlap. Otherwise, a similar construction as above is
possible, using one critical density in the weak lensing region
and another in the strong lensing region.

However, as was shown by [Bradac et al! (2004), using
weak lensing data it is in principle possible to break the
mass-sheet degeneracy — including the extension described
here — if individual source redshifts are available and if
sources with a rather high distortion are included. Another
way to break the degeneracy is to add information about the
magnification, for example by using source number statistics
(Broadhurst et alll1995) or Type Ia supernovae observations
(Holz 12001). Additional information about stellar dynamics
in the gravitational lens can also help to break the degen-
eracy (Koopmans [2006). Since the mass-sheet degeneracy
rescales the time delay surface, time delay measurements
can be used to break it as well.

This degeneracy seems to explain what we observed
during tests of our non-parametric inversion algorithm
(Liesenborgs et all [2007). Although an example using two
sources was used to avoid the mass-sheet degeneracy, we
found that our algorithm did not succeed in finding the cor-
rect source sizes. However, the general shape and features
of the reconstructed mass map did resemble closely the true
mass distribution, which was used to create the images that
served as input for the inversion routine. It is now clear
that images of two sources at different redshifts do not pro-
vide enough constraints to firmly establish the scale of these
sources.

The procedure outlined above still allows much free-
dom in the interpolation scheme, and therefore in the pre-
cise shape of Ygen. It is clear, however, that in general it
will always be necessary to introduce substructure in Xgen,
which may lead to the presence of substructure in the new
mass map. The presence of such substructure will limit the
range in which the parameter A may lie: if too much sub-
structure is introduced, additional images will be predicted

and the created mass distribution will no longer be compat-
ible with the observed situation. However, by using several
versions of Ygen, each with a different center of symmetry,
the amount of substructure that needs to be introduced to
obtain a specific scaling can be limited.

It is straightforward to extend the procedure to more
than two sources, but at some point it will no longer be
possible to construct such degenerate solutions. How many
sources are needed will depend on a number of factors. The
number of the images and their sizes play an important role,
as this determines how easily their annuli will overlap and
therefore how difficult it will be to find appropriate scaling
centers. The precise redshifts of the sources will determine
how much substructure needs to be introduced, since the
redshifts will determine if the corresponding critical densi-
ties lie close to each other or differ a lot. If the latter is the
case, automatically more substructure will need to be intro-
duced, allowing only a limited range of A values to avoid the
prediction of extra images.

Although at a first glance the mass-sheet or steepness
degeneracy is easily broken, this article shows that it is in
fact a lot more difficult to do so and a relatively large number
of constraints may be needed. The examples above also sug-
gest that circularly symmetric features should be distrusted,
as they are easily introduced in degenerate solutions.
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