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Abstract 

The distributions of non-negative random variables occurring in 
scientometrics a r e  said to have a proper ta i l  if they asymptotically 
obey "Zipf's Law", i.e., if 

lim (I-F(k)) k a = const 
k- " 

for  some real a > 0 where F denotes the  cumulative distribution. The 
tail  of scientometric distributions has a particular significance because 
i t  generally contains the  most "prominent" elements of the  population 
(e.g. highest cited papers or most productive authors). In addition, the  
tail  parameter,  a ,  is a sensitive indicator of several fundamental 
features  of t h e  whole distribution. It is shown that ,  among others, t h e  
ta i l  parameter governs order and rank statistics. New estimation 
methods of a a s  well a s  statistical tes ts  f w  extreme values and 
ranked ta i l  elements a r e  developed. The methods a r e  illustrated on 
empirical samples of citation ra tes  and publication activity. 

I INTRODUCTION 

A variety of statistical studies in scientometrics a r e  based on ranked statistics. 
Interesting and important rules and laws have been discovered, and models have 
been built. Rank s ta t is t ics  containing the  most "prominent" members of a 
population a r e  closely associated with t h e  tails of the  scientometric distributions 
concerned. In the  case  of the  wide class of Paretian distributions ("Zipf's Law") 
the  "tail behaviour" is approximately determined by a single parameter,  the  
characteristic tail  parameter,  a. In the  following, some statistical t e s t s  based on 
the  properties of Paretian tails a r e  presented. Multi-sample tes ts  can be used 
for  testing the  ex t reme  values of se t s  of like samples. Moreover a t es t  for  
large samples based on logarithmic transformations is developed. All the  tes ts  
presented a r e  applicable for both Gaussian and non-Gaussion distributions. 

2 THE CHARACTERISTIC TAIL PARAMETERS 

The present study is focussed on scientometric distributions, therefore only 
discrete non-negative integer valued random variables (modelling , e.g., publication 
activity and citation ra tes)  a r e  taken into consideration. The distribution of such 
a random variable, X, is  said t o  have a proper tail, if i t  asymptotically obeys 
"Zipf's Law", i.e., if 

(2.1) Lim ( l - ~ ( k ) ) k ~  : const 
k* " 
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for  some real a > 0, where F denotes t h e  cumulative distribution function of X. 
The parameter a is called t h e  characteristic tail  parameter. The distributions 
obeying the asymptotic form of Zipf's Law together with t h e  analogous 
continuous distributions f w m  the  class of Paretian distributions. If a > 2, a 
distribution of the  above type belongs t o  the  domain of a t t ract ion of t h e  normal 
distribution and is therefore said to be Gaussian, else, if a < 2 then t h e  
distribution belongs t o  the  domain of a t t ract ion of a non-Gaussian stable 
distribution with t h e  characteristic parameter a .  Thus for a <2, but not f o r a  >2 ,  
t h e  characteristic ta i l  parameter is at the  same t ime  the  characteristic 
parameter of t h e  s table  l imit distribution. 
According t o  Eq. (2.1) t h e  behaviour of a Paretian distribution function f w  grea t  
values is governed by t h e  characteristic tail  parameter only. Some simple but 
effect ive  methods fw the  estimation of t h e  parameter a derive from 
characterization theorems based on truncated moments (Clanzel & al. 1984, 
Gianzel 1987). Tail properties of a distribution a r e  reflected by moments 
truncated f rom t h e  lef t  side. For  a given non-negative integer valued random 
variable X and a real function h the  truncated moments a r e  defined a s  

provided this quantity is defined. I t  can  b e  shown t h a t  if X has  a Paretian 
distribution with a character is t ic  tail  parameter a > I then E(X) < - 
and 

(2.3) iim E(X/!d X 2 k) = u /(a-1). 
k + -  

The following lemma se t s  bounds t o  the  approximation in t h e  case  of 
distributions satisfying weaker conditions : 
Lemma 2.1 : Let  X be a non-negative integer-valued random variable. Assume 
t h a t  a threshold value ko 2 0 can b e  given s o  tha t  

for  some real c l  > 0, c 2  2 0 and a > 1. Then the  following inequality holds : 

where 

Eq. (2.3) is  obviously a direct  consequence of the  lemma. Note t h a t  t h e  above 
approximations assume a finite expectation of the  random variable. If  t h e  
expectation is suspected t o  be infinite ( a ( I), then Eq. (2.3) and Lemma 2.1 
must b e  m d i f i e d  : t h e  first  descending factorial moment,  which is finite fo r  any 
non-negative integer valued random variable with Paretian distribution 
(0 < E(I/(X+I)) < I), i s  t o  be used. The al ternat ive  Lemma 2.2 is thus  valid for 
all Paretian distributions. Since this lemma is also a consequence of t h e  above 
mentioned characterization theorems, t h e  proof is omitted. 
Lemma 2.2 : L e t  X be a non-negative integer valued random variable. Assume 
t h a t  a threshold value ko 2 0 can  be given so  tha t  
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for  some real cl > 0, c2 2 0 and n > 0. Then the  following inequality holds : 

(2.5) E((I-W(ltX)) I ((1-k/(l+X)) L 0) = l l ( l + a )  + E ; k 2 ko , 
where 

I ~ , ) ( c ; l k  ( c j  > 0). 

The condition (I-k(l+X)) > 0 in Eq. (2.5) is equivalent t o  the  condition X k 
because X is integer valwd. The following equation is  an obvious consequence 
of Lemma 2.2 : 

(2.6) lim E(kl(1tX) I X 1 k) = u l ( l + a )  , 
k + -  

provided X has a Paretian distribution. The above lemmas and equations a r e  the  
necessary tools of statistical applications. For  t h e  estimation of t h e  parameter 
a, t h e  theoretical v a l w s  of the  truncated moments have t o  b e  replaced by t h e  
corresponding empirical values. 

2 CHARACTERIZATION O F  TAILS B Y  RANK STATISTICS AND EXTREME 
VALUES 

n Consider a given sample . Assume tha t  t h e  sample elements a r e  ranked 
in decreasing order 

XI* , X2* , ... , Xn*. 

m 
It is obvious tha t  a certain number m << n of ranked sample elements 
form the  ta i l  of t h e  empirical distribution. The question arises which theoretical 

values can be assigned t o  the  values of the  ranked "tail" elements. In t h e  
"quantile approximation" t h e  s ta t is t ic  Xk* is considered a s  t h e  empirical (I-k/nb 
quantile. This is associated with Gumbel's so-called "characteristic k-th extreme 
value" (Gumbel  1958). The characteristic k-th greates t  value is defined by 

(3.1) uk a G-I (kin) = sup (x:G(x) > k/n} ; k = 1,2, ..., n , 
where n is the  sample size, G = I-F and F is  the  common cumulative 
distribution function of the  random variables Xi. uk is properly speaking the  
(I-k/nbquantile of t h e  distribution while Xk* is t h e  corresponding quantile of the  
sample. The definition (cf. Eq. (3.1)) makes sure t h a t  the  rank of Gumbel's 
characteristic extremes coincides with t h e  sample rank : 

U I  , UZ , ... , U" . 
If there  is a Paretian distribution underlying t o  the  model then the  values uk 
have the  following property which can b e  obtained immediately from Eqs (3.1) 
and (2.1) : 

(3.2) uk - c. (nik) I / u  ; c > 0 

and 

(3.3) u I ( u ~ + ~  " ( I  + l /k) l /  a ; k = 1, 2, ..., n . 
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While uk depends on the  sample size, and the  r a t e  of divergence for  increasing 
sample s ize  (n + ") i s  n, t h e  ratios uk/ uk+l a r e  asymptotically independent of 

n, and thus uk/uk+l = (I + i / d /  a i s  an exac t  limiting fwmula  for  Paretian 
distributions if n + - (k << n). In this context the  case  a = 1 (Price 
distribution) was studied by GiZnzel & Schubert (1985). 

3 A MULTI-SAMPLE TEST FOR RANKED TAIL ELEMENTS 
(j) n. m 

A multi-sample t e s t  examines a Set of Samples {{Xi l i d l > j = l  simultaneously. 

The tes t  i s  used pointwise, i.e., ranked sample elements (tail elements) such a s  
the  greatest,  the  second greates t  e tc .  sample elements a r e  tes ted separately. A 
multi-sample t e s t  based on Gumbel's ex t reme  values was introduced and applied 
t o  Waring-type distributions by Schubert and Telcs (1987). The tes t  can be 
essentially described a s  follows. 
We ~ r o c e e d  on one unique sample { ~ ~ ) ~ 2 ~  . if  n > A k > 0 is a given real 
number and n the  s ize  of t h e  sample, then i t  can  be shown (e.g. R&nyi, 1962) 
t h a t  k- i 

(4.1) lim p(Xk* < G"(A((n)) = exp{" ) Z: h /i! = F*(A ) ;  k < < n ,  
n+" k i = ~  k 

where I-G = F is  t h e  common distribution function of the  random variables Xi. 
If the  values Ak a r e  determined s o  t h a t  F*( k) = 0.5 then we have 

According t o  Eqs (4.1) and (4.2), ?,kls a r e  determined a s  the  solutions of the  
equations k- 1 

i 
(4.3) expi-h k) E A / i  ! = 0.5 , 

i= 1 

i.e., (2hk) can be considered a s  the  median of a x  2-distribution with 2k degrees 
of freedom. On t h e  other hand, the  theoretical values for  the  comparison with 
the  ranked tail  e lements  can be deteremined according t o  Eq. (4.1) a s  

Since (k-1) < h k-$ f i r .  h k " k-0.3) uk* can b e  interpreted a s  a modification of 
Gumbel's characteristic extreme values. Table I contains more precise 
approximations of the  values 1 k (k = 2 . 10). 

Table 1 The values Ak for k = I, ..., n. 
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In the case  of Paretian distributions the preceding equation has t h e  following 
approximate solution (cf. Eq. (3.2)) : 

The values u,* can be calculated based on a particular distribution, or, if Eq. 

(4.5) is  used, t h e  factor c must be estimated, too. 
If we have t o  answer t h e  question whether the maxima of a s e t  of m samples 
correspond t o  theoretical values expected from the Pareto property, we 
determine t h e  modified characteristic extreme values { u ~ * ( ~ ) } F ~  , and if our 
hypothesis is true, then the t es t  s ta t is t ic  (see Eq. (4.2)) 

has approximately a standard normal distribution. If v significantly differs 
from m12 then the h v ~ o t h e s i s  must be reiected. If needed. the t e s t  can be 
pointwise repeated f o; ' the  second . reate; sample elements ' { x ~ ~ ( ~ ) } ~ T ~  , the  
third greatest  sample elements { ~ ~ * ( 1 / 3 ~ ~  and so on. 

4 A TEST FOR LARGE SAMPLES 

In this section a large Sam le  t e s t  for  Paretian tail  properties is presented. 
Consider a given sample with n >> I. The distribution of t h e  

transformed ranked sample elements d o g  Xk* (k << n) can then be approximated 
by an exponential distribution. I t  was shown tha t  the differences 

kUog Xk* - log X *) = k.log(xk*/Xk+,*) ; k = I,2, ..., ko << n 
k- 1 

a re  approximately independent identically distributed random variables, where the 
common distribution is  exponential with parameter a (cf. Glanzel & al., 1984), 
i.e., 

(5.1) P ( k . l ~ g ( X ~ f / X ~ + ~ * )  < X) - I - exp {-ax} ; k ( kO. 

SO, if t h e  characteristic parameter,  a ,  is known, the s e t  {k.log X ~ * / X ~ + ~ * )  can 
be tested fo r  having an exponential distribution with parameter a. The threshold 
ko can be estimated for instance with the help of Gumbel's characteristic 
extremes, or if there  is  no other way, ko can roughly be  approximated by log n, 

where n is t h e  sample size. A Kolmo mov-Smirnov tes t  can be applied. We 
define the maximum deviation Dko a from the hypothetical exponential 
distribution a s  follows : 

Dk (x) = max I F (x) + exp (-ax) - I I , 
0 

where t h e  empirical distribution function F 

kn 
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According t o  t h e  Kolmogwov-Smirnov t e s t  the  hypothesis can be accepted if 
Dko(x) does not exceed t h e  crit ical value K(ko, x) belonging t o  a given 

confidence level. Table 2 presents the  values K(k0, x) for  th ree  confidence 
levels E = 0.90, 0.95 and 0.99. 
If the  characteristic ta i l  parameter,  a , is unknown one can  apply some standard 
methods f w  parameter estimation based on a hypothetical distribution. The 
parameter estimation can  then be followed by a standard goodness-of-fit test. 

Table 2. The values of the  function K(kO, X) fo r  th ree  confidence levels. 

5 APPLICATIONS 

The f i rs t  example, a multi-sample tes t ,  i l lustrates the  theoretical considerations 
of section 4 on  t h e  frequency distribution of scientii ic productivity of 51 US 
s ta tes  in t h e  two-years period 1978-79. This example is  a par t  of a study on 
publication potential (Schubert &Telcs, 1987). The d a t a  were obtained from t h e  
Science Citation Index (SCI) of the  ISI. The underlying model assumed the  
publication activity t o  have a Waring distribution, i.e., 

where X denotes t h e  random variable "publication activity", and a ,  N > 0 a r e  
real parameters. The Waring distribution is Paretian with characteristic 
parameter e .  The character is t ic  maximum ul* can  be calculated a f t e r  estimation 
of t h e  parameters u and N according t o  t h e  following equation (cf. Eq. (4.4)) : 

I ul* = G-'( ~ , / n )  = G- ((log ~ ) / n )  . 
The probabilities G k  c a n  be explicitly expressed by t h e  formula 

and thus ul* can easily be calculated. Table 3 contains t h e  characteristic 
parameters,  a ,  t h e  values of the  obaerved maximum productivity and the  
character is t ic  greates t  values U l *  fo r  all  the  51 US states.  
We examine t h e  hypothesis whether t h e  maxima of t h e  51 samples f i t  t h e  
expected extreme values resulting from t h e  sample size and t h e  parameters of 
the  assumed distribution. According t o  Eq. (4.6) we have 9 51 = 21 . ( ~ a l f  of 
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Table 3. The characteristic parameters, a ,  the sample sizes, n, the observed 
maxima, XI*, and the characteristic greatest values, uI*, for 51 US states. 

State 
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the  cases XI* = ul* is considered as XI* < ul*). Hence ( 2 ~ ~ ~  - 51)/,/51 = -1.26 
follows, and thus our hypothesis can be accepted a t  a level of p z 0.95 (the 
corresponding crit ical value is 1.96). 
The second example, a citation ra te ,  is given for  large sample t e s t s  described in 
the  preceding section. Da ta  were obtained from t h e  same  source a s  above. The 
considered papers were published in 22 analytical chemistry journals in the t w o  
years period 1981/82. Citations received by them were counted in 1983. As in 
the  above example, a Waring distribution was assumed. The estimated 
parameters a r e  & = 4.299 and N = 4.721. Table 4 presents observed and 
estimated frequencies of the  distribution. 

Table 4. Frequency distribution of analytical chemistry 
papers published in 1981182. 

The sample s ize  (n = 12611) seems t o  be large enough for  applying a large 
sample t e s t  t o  this citation r a t e  distribution. We want t o  answer t h e  question 
whether the  observed ex t reme  citation ra tes  of the  sample (cf. Table 5) a r e  
really in accordance with t h e  applied distribution model. Since 10 is the  
smallest integer not less than log 12611 " 9.4 t h e  t e s t  i s  based on a s e t  of 10 
sample elements. 
The application of the  Kolmogorov-Smirnov t e s t  t o  the  comparison of the  
empirical distribution function FIO with the  exponential distribution function with 
parameter  ô  = 4.299 has  t h e  result K(l0,x) = 0.71. According t o  Table 2 the  
hypothesis must be re jected a t  any reasonable confidence level. In order t o  
de tec t  the  tendency of deviation from t h e  model an additional t e s t  is presented. 
Since t h e  standard deviation of the  es t imated parameter h is unknown and the  

k 
frequency 

observed es t imated 
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sample size ko = 10 is small, instead of t h e  sample mean t h e  median is used, 
and, consequently, a sign tes t  is applied. Data  a r e  presented in Table 6. 

Table 5. The 10 greatest observations of the  citation ra te  sample (n = 12611) 

* 

Table 6. 

The median of t h e  exponential distributions is  rn = log 21 b = 0.161. Because of 
t h e  above tes t  result, t he  counterhypothesis 

I0  

HI : V = 0.1 Z (k.log Xk*lXk,,f > m) > 0.5 
k= I 

is examined. The crit ical value corresponding t o  a confidence Level p ( 0.99 is 

tp 5 8. Since v = 8 2 tp = 8 t h e  deviation of t h e  sample median must be 
considered a s  significantly greater  than 0.161. The t e s t  results suggest a ta i l  
parameter signficantly Less then ^a fo r  characterizing the  ta i l  of the  distribution. 
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