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Abstract

The distributions of non-negative random variables occurring in
scientometrics are said to have a proper tail if they asymptotically
obey "Zipf's Law", i.e., if

lim (1-F(K) k ® = const

K+ o

for some real o > 0 where F denotes the cumulative distribution. The
tail of scientometric distributions has a particular significance because
it generally contains the most "prominent" elements of the population
{e.g. highest cited papers or most productive authors). In addition, the
tail parameter, « , is a sensitive indicator of several fundamental
features of the whole distribution. It is shown that, among others, the
tail parameter governs order and rank statistics. New estimation
methods of o as well as statistical tests for extreme values and
ranked tail elements are developed. The methods are illustrated on
empirical samples of citation rates and publication activity.

1 INTRODUCTION

A variety of statistical studies in scientometrics are based on ranked statistics,
Interesting and important rules and laws have been discovered, and models have
been built. Rank statistics containing the most "prominent" members of a
population are closely associated with the tails of the scientometric distributions
-concerned. In the case of the wide class of Paretian distributions ("Zipf's Law")
the "tail behaviour" is approximately determined by a single parameter, the
characteristic tail parameter, «. In the following, some statistical tests based on
the properties of Paretian tails are presented. Multi-sample tests can be used
for testing the extreme values of sets of like samples. Moreover a test for
large samples based on logarithmic transformations is developed. All the tests
presented are applicable for both Gaussian and non-Gaussion distributions.

2 THE CHARACTERISTIC TAIL PARAMETERS

The present study is focussed on scientometric distributions, therefore only
discrete non-negative integer valued random variables (modelling , e.g., publication
activity and citation rates) are taken into consideration. The distribution of such
a random variable, X, is said to have a proper tail, if it asymptotically obeys
"Zipf's Law", i.e., if

(2.1) lim (-FU)k* = const

k+co
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for some real o > 0, where F denotes the cumulative distribution function of X.
The parameter a is called the characteristic tail parameter. The distributions
obeying the asymptotic form of Zipf's PLaw together with the analogous
continuous distributions form the class of Paretian distributions. If o > 2, a
distribution of the above type belongs to the domain of attraction of the normal
distribution and is therefore said to be Gaussian, else, if o < 2 then the
distribution belongs to the domain of attraction of a non-Gaussian stable
distribution with the characteristic parameter o . Thus for o <2, but not fora >2,
the characteristic tail parameter is at the same time the -characteristic
parameter of the stable limit distribution.

According to Eq. (2.1} the behaviour of a Paretian distribution function for great
values is governed by the characteristic tail parameter only. Some simple but
effective methods for the estimation of the parameter o derive from
characterization theorems based on truncated moments (Glinzel & al. 1984,
Glanzel 1987). Tail properties of a distribution are reflected by moments
truncated from the left side. For a given non-negative integer valued random
variable X and a real function h the truncated moments are defined as

T hidp,

2.2) BRI X > W =25 g,
z Pi
i=k

provided this quantity is defined. It can be shown that if X has a Paretian
distribution with a characteristic tail parameter a > 1 then E(X) < o
and

(2.3} Lim EX/K X > k) =a [(a-1)

K> o

The following lemma sets bounds to the approximation in the case of
distributions satisfying weaker conditions :

Lemma 2.[ : Let X be a non-negative integer-valued random variable. Assume
that a threshold value ko > 0 can be given so that

PX 2 )~ o, + K% 5 k2 K

1 2
for some real ) > 0, <, > 0 and o > I. Then the following inequality holds :

(2.4) E(X/k-1) (X/k-1) > 0} = WMa- 1+ e 5 k2kys
where
be ) & eyfk ey > 0

Eq. (2.3) is obviously a direct consequence of the lemma. Note that the above
approximations assume a finite expectation of the random variable. If the
expectation is suspected to be infinite (o < I), then Eq. (2.3} and Lemma 2.1
must be modified : the first descending factorial moment, which is finite for any
non-negative integer valued random variable with Paretian distribution
0 <E(f(X+1)} < 1), is to be used. The alternative Lemma 2.2 is thus valid for
all Paretian distributions. Since this lemma is also a consequence of the above
mentioned characterization theorems, the proof is omitted.

Lemma 2.2 : Let X be a non-negative integer valued random variable. Assume
that a threshold value k, > 0 can be given so that

PX > K ~c . {c, + K s k= ko
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for some real < > 0, <y > 0D and o > 0. Then the following inequality holds :
(2.5 E((-k/(14X) | ((1-k/(1+XD) > 0) = L/(l+a) + € 5 Kk > Kk
where

le < ek (eg > O

The condition (I-k(1+X}} > 0 in Eq. {2.5) is equivalent to the condition X > k

because X is integer valued. The following equation is an obvious consequence
of Lemma 2.2

(2.6) lim EK/(1+X) | X > K) = af(l+a) ,

+ oo

provided X has a Paretian distribution. The above lemmas and equations are the
necessary tools of statistical applications. For the estimation of the parameter
@, the theoretical values of the tiruncated moments have to be replaced by the
corresponding empirical values.

2 CHARACTERIZATION OF TAILS BY RANK STATISTICS AND EXTREME
VALUES

Consider a given sample (X} . Assume that the sample elements are ranked
in decreasing order

X1*>X*>...>X*.
It is obvious that a certain number m << n of ranked sarnple elements (X *)

form the tail of the empirical distribution. The question arises which theoretncal

values can be assighed to the values of the ranked "tail" elements. In the
"quantile approximation" the statistic Xy * is considered as the empirical (l-k/n)-
quantile. This is associated with Gumbel's so-called "characteristic k-th extreme
value" (Gumbel 1958). The characteristic k-th greatest value is defined by

(3.1) u U (k/n) = sup {x:G{x) > Kn} ; k= 1,2, oo, N,

K =
where n is the sample size, G = I1-F and F is the common cumulative
distribution function of the random variables X;. up is properly speaking the
{1-k{n)}-quantile of the distribution while Xy * is the corresponding quantile of the
sample.  The definition (cf. Eq. (3.1)) makes sure that the rank of Gumbel's
characteristic extremes coincides with the sample rank :

u, > U, 2 LU,

1 2= n
If there is a Paretian distribution underlying to the model then the values uy
have the foljowing property which can be obtained immediately from Eqs (3.1}
and (2.1):

(3.2) u ~ C (/i = ;>0
and

- 1f o
3.3 wfu ~ W Y s L2 e
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Whiie Uk depends on t'he sample size, and the rate of divergence for increasing
sample size {n > =) is n, the ratios uy/ uy,| are asymptotically independent of

[+
n, and thus upfug,y = (1 + Y % is an exact limiting formula for Paretian
distributions i n -+ oo (k << n). In this context the case o = ! (Price
distribution) was studied by Gidnzel & Schubert (1985).

3 A MULTI-SAMPLE TEST FOR RANKED TAIL ELEMENTS

tti-sampl i £ cix gy g
A multi-sample test examines a set of samples i Tis1 %51 simultaneously.

The test is used pointwise, l.e., ranked sample elements (tail elements) such as
the greatest, the second greatest etc. sample elements are tested separately. A
multi-sample test based on Gumbel's extreme values was introduced and applied
to Waring-type distributions by Schubert and Telcs (1987). The test can be
essentially described as follows.
We proceed on one unique sample {X;j}iT;. If n > XA > 0 is a given real
number and n the size of the sample, then it can be shown (e.g. Rényi, 1962)
that
k-1
(&.1) lim P(X* < G”‘(Ak/n)) = exp{a  } .:51 A i < Fr0 )5k <<n,

N> oo 1=

where -G = F is the common distribution function of the random variables X;j.
If the values A, are determined so that F*( ) = 0.5 then we have

(#.2) P> < G /m) ~ POGE 2 GTH O/~ 055 n> L

According to Egs (4.1) and (4.2), s are determined as the solutions of the
equations 1

#.3) exp{-rx} £ A ;(/i b= 05,
i=1

i.e., (2%;) can be considered as the median of ax Z_distribution with 2k degrees
of freedom. On the other hand, the theoretical values for the comparison with
the ranked tail elements can be deteremined according to Eq. (4.1) as

s gt om .

‘Since (k1) ¢ Ap<k (. rp ~ k-0.3) u* can be interpreted as a modification of
Gumbel's characteristic extreme values. Table 1 contains more precise
approximations of the values . (k = 1,2, .., 10O)

k 1 2 3 & 5 6 7 8 9 10

0.6931 | 1.6783 | 2.6741 | 31.6720 | 4.6709 | 5.6701 | 6.6696 | 7.6692 | 8.6689 | 9.6637

Table | The values A for k = 1, ..oy N
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in the case of Paretian distributions the preceding equation has the following
approximate solution (cf. Eq. (3.2)) :

(4.5) u* ~ elo/r) . e> 0.

The values w* can be calculated based on a particular distribution, or, if Eq.

(4.5) is used, the factor ¢ must be estimated, too.

If we have to answer the question whether the maxima of a set of m samples
correspond to theoretical values expected from the Pareto property, we
determine the maodified characteristic extreme values {ul*(l ¥, and if our
hypothesis is true, then the test statistic (see Eq. (4.2}) =1

m

6o @y - mkm = 22 x Cupr Ly vm
i=1

has approximately a standard normal distribution. If v ., significantly differs
from m/2 then the hypothesis must be rejected. [f needed, the test can be
pointwise repeated for the second greatest sample elements {Xz*(J ]'__ml s the
third greatest sample elements {X3*] i"—]1 and so on. =

4 A TEST FOR LARGE SAMPLES

In this section a large sample test for Paretian tail properties is presented.
Consider a given sample Xi}igl with n >> L, The distribution of the

transformed ranked sample elements alog Xp* (k << n) can then be approximated
by an exponential distribution. It was shown that the differences

* o *) = . -

kilog Xk log Xk-l ) = k.log(xk*lxk+l*) i k= 1,2, ko «n
are approximately independent identically distributed random wvariables, where the
common distribution  is exponential with parameter o {cf. Glinzel & al.,, 1934},
i.e.,

(5.1) P(k.log(xk*l)(k+i*) < x) ~1-exp {-ax}; k¢ L
So, if the characteristic parameter, o, Is known, the set {k.og xk*/xk+1*} can
.be tested for having an exponential distribution with parameter o, The threshold
kg can be estimated for instance with the help of Gumbel's characteristic
extremes, or if there is no other way, ko can roughly be approximated by log n,

where n is the sample size., A Kolmogorov-Smirnov test can be applied. We
define the maximum deviation Dko x} from the hypothetical exponential
distribution as follows :

D, (x} = max IFk (x) + exp ~ax} - 1 |,
0 ¢}

where the empirical distribution function Fk is defined by
kg °
= z
Fko(x) = l/ko . ¥ (k.logxk*lxk+l* < x) .
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According to the Kolmogorov-5mirnov test the hypothesis can be accepted if
Dkgl{x) does not exceed the critical value Kikg, x} belonging to a given

confidence level., Table 2 presents the values K(kg, x) for three confidence
levels ¢ = 0.90, 0.95 and 0.99.

If the characteristic tail parameter, o, is unknown one can apply some standard
methods for parameter estimation based on a hypothetical distribution. The
parameter estimation can then be followed by a standard goodness-of-fit test.

Table 2. The values of the function K(kO’ x) for three confidence levels.

k e= 0.90 e= 0.95 £ = 0.99
1 0,950 0.975 0.995
2 10776 D.342 0.929
3 |0.636 0.708 0.829
4 {0,565 0.624 0.734
5 |0.509 0.563 0.669
6 {0468 0.519 0.617
7 |0.43s 0.483 0.576
3 10410 0.454 0.542
9 10,387 0.530 0.513
10 0.3 0.409 0.489
> 10 ~1.22M<0 ~1.36Nk0 ~ 1.53M<0

5 APPLICATIONS

The first example, a multi-sample test, illustrates the theoretical considerations
of section 4 on the fregquency distribution of scientific productivity of 51 US
states in the two-years period [978-79. This example is a part of a study on
publication potential (Schubert &Telcs, 1987). The data were cbtained from the
Science Citation Index (SCI} of the ISI. The underlying model assumed the
publication activity to have a Waring distribution, i.e.,

Q@ N Nek-1 | _
N+y  Neasl®™ Nta + k = 0,,2, ... ,

P(X=k) =

where X denotes the random variable "publication activity", and ¢, N > 0 are
real parameters. The Waring distribution is Paretian with characteristic
parameter a. The characteristic maximum uj* can be calculated after estimation
of the parameters o and N according to the following equation {cf. Eq. (4.6} :

u* = GOy = G (log 2)m)

The probabilities Gk can be explicitly expressed by the formula

N o (N+k-1)
(N+a) ... (N+a+k-1)

G k>0,

k:

and thus u;* can easily be calculated. Table 3 contains the characteristic
parameters, o, the values of the observed maximum productivity and the
characteristic greatest values uj* for all the 51 US states.

We examine the hypothesis whethet the maxima of the 351 samples {it the
expected extreme values resulting from the sample size and the parameters of
the assumed distribution. According to Eq. (4.6) we have v 51 = 21 | (Half of
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Table 3. The characteristic parameters, o , the sample sizes, n, the observed
maxima, X#, and the characteristic greatest values, ul*, for 51 US states.

* * * *
State n a X, uy sgn(X; -u )
AK 167 3.58 14 9 +
AL i3le 5.02 L5 16 -
AR 520 3.90 14 14 G
AZ 1620 5.90 13 15 -
CA 20414 5.81 21 28 -
co 3091 4.13 25 23 +
CT 2996 3.49 15 18 -
DC 3630 6.62 12 15 -
DE 592 i3.15 3 8 0
FL 3221 5.07 23 19 +
GA 2470 4.85 22 20 +
HI 695 3.78 17 16 +
IA 1986 4.84 21 13 +
1D 3410 10.60 6 7 -
IL 7741 5.4 19 23 -
IN 2720 3.50 33 25 +
KS 1222 331 13 14 -
KY 1167 4.37 23 15 +
LA 1505 3.66 27 20 +
MA 9505 4,31 39 31 +
MD { 7344 6.34 32 23 +
ME 365 14.20 7 7 ¢
MI 4724 4.35 26 23 +
MN 3372 5.08 16 21 +
MO 2762 6.75 11 16 -
M5 696 8.85 9 10 -
MT 3297 11.83 7 7 0
NC 3572 5.21 25 19 +
ND 3% 4,27 16 11 +
NE 771 3.30 13 16 +
NH 496 7.66 9 9 0
NJ 4911 4.83 19 23 -
NM 1569 3.37 15 17 -
‘I NV 176 2.80 15 i2 +
NY 16571 5.05 33 30 +
OH 3149 §.96 28 20 +
OK 1143 4.76 15 13 +
OR 1630 7.33 i1 12 -
PA 7336 h.06 27 30 *
RI 836 14.39 8 9 -
SC 994 3.33 3% 19 +
SD 177 8.39 6 3 0
TN 2474 3.02 12 15 -
X 7450 4.33 45 28 +
uT 1241 5.99 14 13 +
VA 2829 6.34 15 i5 0
vT 334 8.52 9 8 +
WA 29383 6.43 13 16 -
wi 3204 3.95 35 24 +
wv 538|  5.32 13 10 +
wY 217 33.04 & 6 0
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the cases X * = uy* is considered as X * < uj*), Hence (2v5] - SDA/SI = -1.26
follows, and thus our hypothesis can be accepted at a level of p = 0.95 (the
corresponding critical value is 1.96).

The second example, a citation rate, is given for large sample tests described in
the preceding section. Data were obtained from the same source as above, The
considered papers were published in 22 analytical chemistry journals in the two
years period 1981/82. Citations received by them were counted in 1983. As in
the above example, a Waring distribution was assumed.  The estimated
parameters are g = #.299 and N = 4.721, Table 4 presents observed and
estimated frequencies of the distribution.

Table 4. Frequency distribution of analytical chemistry
papers published in 1981/82.

frequency
k

observed estimated

0 5965 6010.5
1 2810 2831.9
2 1549 1470.2
3 845 §22.0
4 498 487.5
3 a1z 303.2
6 177 196.3
7 140 1313
8 79 20.4%
9 63 63.9
10 43 46.1
11 22 33.9
12 27 25.3
13 5 19.2
14 16 14.8
15 14 11.5
16 9 9.1
17 2 7.2
18 9 5.8
19 4 4.7
20 b 3.9
2] 1 3.2
22 0 2.6
23 3 2.2
24 1 1.8
25 1 1.6
> 25 11 10.8

The sample size (n = 12611) seems to be large enough for applying a large

sample test to this citation rate distribution., We want to answer the question
whether the observed extreme citation rates of the sample (cf. Table 5) are
really in accordance with the applied distribution model. Since 10 is the
smallest integer not less than log 12611 ™~ 9.4 the test is based on a set of i0
sample elements.

The application of the Kolmogorov-Smirnov test to the comparison of the
empirical distribution function Fjg with the exponential distribution function with
parameter & = %.299 has the result K(10,x) = 0.7l. According to Table 2 the
hypothesis must be rejected at any reasonable confidence level. In order to
detect the tendency of deviation from the model an additional test is presented.

Since the standard deviation of the estimated parameter % is unkmown and the
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sample size kg = 10 is small, instead of the sample mean the median is used,
and, consequently, a sign test is applied. Data are presented in Table 6.

Table 5. The 10 greatest observations of the citation rate sample {n = 12611)

k 186 | 174 | 121 92 58 b4 40 36 36 33

Table 6.,

klog Xk*leH* 0.067 0.727 0.822 L343 1.206 0.572 0.738 | 0.000 ] 0.783 2.007

The median of the exponential distributions is m = log 2/% = 0.161. Because of
the above test result, the counterhypothesis

10

: Vo= 0, z . * * .
H, 0.1 | x (k.dog X *X _* > m) > 0.5
is examined. The critical value corresponding to a confidence level p < 0.99 is
t, < 8 Since v= 8 > t, = 8 the deviation of the sample median must be
considered as significantly greater than 0.161. The test results suggest a tail
parameter signficantly less then % for characterizing the tail of the distribution.
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