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ABSTRACT 

 

The theorem of Fellman and Jakobsson of 1976 deals with transformations   of the rank-

frequency function g and with their Lorenz curves ( )L g°  and ( )L g . It states (briefly) that 

( )L g°  is monotonous (in terms of the Lorenz dominance order) with 
( )x

x


. In this paper we 

present a new, elementary proof of this important result. 
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The main part of the paper is devoted to the dual transformation 1g -° , where   is a 

transformation acting on source densities (instead of item densities as is the case with the 

transformation  ). We prove that, if the average number of items per source is changed after 

application of the transformation  , we always have that ( )L g °  and ( )L g  intersect in an 

interior point of [ ]0,1 , i.e. the theorem of Fellman and Jakobsson is not true for the dual 

transformation. We also show that this includes all convex and concave transformations. We 

also show that all linear transformations   yield the same Lorenz curve. 

 

We also indicate the importance of both transformations   and   in informetrics. 

 

 

I.  Introduction 

 

Econometric as well as informetric production processes are, classically, described by sources 

producing items ands by two, equivalent functions: the size-frequency function f and the rank-

frequency function g: 

 

 [ ]mf : a, +® ¡  (1) 

 

such that, for all [ ]mj a,Î  

 

 ( )
m

j
f j dj



ò  (2) 

 

is the number of sources with production density larger than or equal to j and 

 

 [ ]g : 0,T +® ¡  (3) 

 

is such that for all [ ]r 0,TÎ  (T = total number of sources), ( )j g r=  denotes the item density 

in the source density r. By their very definition we have that, for all [ ]mj a,Î , [ ]r 0,TÎ : 
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 ( ) ( )
m1

j
r g j f j dj


-= = ò  (4) 

 

We only work with decreasing functions f and g: for f this means, in practise, that the higher 

the source productivity, the less sources we have, while for g this means that we arranged the 

sources in decreasing order of productivity. 

 

Such a production system can be described in terms of its “inequality” properties, e.g. using 

Lorenz curves (Lorenz (1905)). To answer the question “How unequal is the production of the 

sources?” we can construct the Lorenz curve of g, denoted ( )L g , defined on [ ]0,1  as follows: 

using the bijective relation between [ ]r 0,TÎ  and [ ]y 0,1Î  via r yT=  we define 

 

 ( )( )
( )

( )

yT

0

T

0

g r dr
L g y

g r dr

=
ò

ò
 (5) 

 

, i.e. the fraction of the items contained in a fraction y of the sources, cf. Egghe (2005a,b) 

(there we increased the ranks with 1 for reasons that are of no importance here, but, of course, 

leading to the same Lorenz curve ( )L g ). In terms of the size-frequency function f we have 

that 

 

 ( )( )
( )

( )

m

m

j

a

j'f j' dj'
L g y

j'f j' dj'




=
ò

ò
 (6) 

 

where 

 

 
( )

( )

m

m

j

a

f j' dj'
y

f j' dj'




=
ò

ò
 (7) 

 

Indeed, by (4), (7) gives the fraction [ ]y 0,1Î  of the sources with item density j or higher and, 

by definition of f, (6) gives the corresponding fraction of the items, hence ( )( )L g y . It is 
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hence clear that ( )L g  is the same as the Lorenz curve introduced e.g. in Lambert (2001) in 

econometrics except for one point: in the above approach we use the sources in decreasing 

rank of production while in Lambert (2001) one uses (see e.g. formula (2.11)) the increasing 

order of sources with respect to their production: this leads to completely equivalent Lorenz 

curves: in our case concavely increasing curves ( )L g , connecting ( )0,0  with ( )1,1  while in 

the latter case we have convexly increasing curves connecting ( )0,0  with ( )1,1 . The former 

curves are all situated above the line of equality (the straight line connecting ( )0,0  with ( )1,1 ) 

while the latter curves are all situated below this line of equality. Our concave curves have a 

bijective relation with the convex ones by applying two mirroring transformations: one over 

the line of equality and one over the straight line which is perpendicular to this line, as is well-

known and trivial to see. Because of this, the two theories are completely equivalent. 

 

Inequality is now described in terms of increasing or decreasing Lorenz curves. Let us have 

two situations as above, described by two rank-frequency functions g and g* . We say that the 

* -situation is more unequal (more concentrated) than the other one if 

 

 ( ) ( )L g L g* >  (8) 

 

as functions, i.e. 

 

 ( )( ) ( )( )L g y L g y* ³  (9) 

 

for all ] [y 0,1Î  where we also have > in at least 1 point (hence in an infinite number of 

points). Note that higher concentration is described via higher Lorenz curves (which we 

prefer); in the other (equivalent) definition (as e.g. in Lambert (2001)), higher concentration is 

described via lower Lorenz curves. 

 

It is well-known (see e.g. Egghe and Rousseau (1990a), Lambert (2001)) that Lorenz 

dominance (8) describes the overall inequality of a system (e.g. income inequality in a 

company or country, publication or citation, including well-known “good” principles such as 
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the transfer principle or the principle of nominal increase (see also Egghe and Rousseau 

(1990b, 1991)). 

 

Lorenz concentration theory has become a basic econometric theory and has also lead to 

important applications in e.g. informetrics (measuring inequality in information production – 

see the above references) and biomathematics (measuring diversity, the opposite of 

concentration – see e.g. Rousseau and Van Hecke (1999)). Lorenz theory, which development 

started in the beginning of the 20
th

 Century, experienced a continuous interest since then. A 

(rather late) development came in 1976 when, independently, two econometricians: Fellman 

and Jakobsson studied the following problem: what is the influence of applying 

transformations to (in our terminology and notation) the rank-frequency function g to the 

Lorenz curve? In other words: if we transform a function g into g g* = °  what is the relation 

between ( )L g  and ( ) ( )L g L g* = ° ? This has applications in econometrics (see e.g. Lambert 

(2001)) where   is the function that calculates the taxes based on the income ( )g r . The 

answer to the above problem is the so-called theorem of Fellman and Jakobsson which reads 

as follows: 

 

Theorem (Fellman (1976), Jakobsson (1976)): 

In the above notation we have 

 

  ( ) ( )L g L g° ³  iff 
( )x

x


 increases 

  ( ) ( )L g L g° =  iff 
( )x

x


 is constant 

  ( ) ( )L g L g° £  iff 
( )x

x


 decreases 

 

and strict inequalities apply if the monotonicity of 
( )x

x


 is strict. 

 

As said above, Fellman (only proving the – most important – “if” part) and Jakobsson proved 

this theorem independently in 1976. One year later, Kakwani also presented this result with a 

new, elegant, proof (see Kakwani (1977) but also Lambert (2001) – note again that here the 
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Lorenz order is reversed as explained above). In the next section we will present a new, short, 

and direct proof of this important theorem. 

 

The above theorem has also been applied in informetrics, where one talks about positive 

reinforcement (of the source production) by applying transformation   (e.g. such that 

( )x x ³  for all x) – see Rousseau (1992), or where one makes the link with linear, three-

dimensional informetrics, see Egghe (2004). Still in informetrics, the transformation   can 

explain dynamical aspects of information production processes or demographical evolutions 

such as the evolution to which sources can only have a large number of items as e.g. is the 

case with database sizes or village/city or country sizes – see Egghe and Rousseau (2005). 

 

While studying the above informetric applications, the present author came across the 

following substantial extension of the transformation  : the transformation   can be 

considered as a transformation of the item densities. It is, however, equally important to allow 

for a transformation of the source densities. In other words, one should not only allow for a 

(differentiable) transformation  , working on ( )j g r= : 

 

 [ ]m m: a, a ,  * *é ù® ê úë û
 (10) 

         ( )j j j*® =  

 

but also one should consider a possible (differentiable) transformation 

 

 [ ]: 0,T 0,T *é ù® ê úë û
 (11) 

          ( )r r r*® =  

 

acting on source densities [ ]r 0,TÎ . Both transformations together yield the general equation 

 

 ( ) ( )( ) ( )( )g r g r g r * * *= =  (12) 

 

for all [ ]r 0,TÎ , yielding 
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 g : 0,T* * +é ù®ê úë û
¡  (13) 

            ( )r g r* * *®  

 

Transformations as in (12) have been used in Egghe (2006) to model the dynamics of 

information production processes such as networks (with nodes as sources and with in- or out-

links as items) in which not only links can be added or disappear (transformation  ) but 

where even sources can be added or destroyed (transformation  ). As proved in Egghe 

(2006), the size-frequency function f * , equivalent with g*  above is given by the following 

theorem: 

 

Theorem (Egghe (2006)): 

If   and   are differentiable and ' 0 ¹ , then for all [ ]mj a,Î  and 
mj a ,* * *é ùÎ ê úë û

 such that 

( )j j* = , we have 

 

 ( ) ( )
( )( )

( )

1' g j
f j f j

' j





-

* * =  (14) 

 

Proof: 

We present the proof since it is short and for the sake of completeness. The defining relation 

(4) (and the similar one for the transformed system, indicated with * ) yield: 

 

 ( ) ( )
m1

j
r g j f k dk


-= = ò  (15) 

 

 ( ) ( )
m1

j
r g j f k dk

*

*

* *- * * * *= = ò  (16) 

 

hence, by (10) and (11), 

 

 ( ) ( )
( )

m m

j j
f k dk f k dk

 




*

* * *æ ö
÷ç =÷ç ÷è øò ò  (17) 
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Differentiating both sides of (17) with respect to j yields: 

 

 ( ) ( ) ( )( ) ( )
m

j
' f k dk f j f j ' j



  *æ ö
÷ç- = -÷ç ÷è øò  

 

whence (14), using (10) and (15).                                      W 

 

Clearly, equation (12) is the most general formalism for the dynamics of information 

production processes but we are convinced that it must have applications in other fields (such 

as econometrics and biometrics) as well: all these fields are also faced with a variable number 

of sources (transformation  ) as well as of items (transformation  ). The theorem of 

Fellman and Jakobsson clearly only deals with transformation  : in the next section we will 

present a new, very simple, proof of this theorem. This result could be considered as a theory 

of (12) where   is taken as the identical transformation: Id = . 

 

Therefore, in Section III, we will study the general relation (12) but now taking  Id= , 

hence focusing completely on the transformation  . In Section III we will show that the 

theorem of Fellman and Jakobsson does not hold for transformation  : we will show that, if 

 *¹  (= the average number of items per source before the transformation, * = the 

average number of items per source after the transformation), we always have that the Lorenz 

curves ( )L g  and ( ) ( )1L g L g * -= °  intersect in a point in ] [0,1 . We also show that all strictly 

convex and all strictly concave transformations   satisfy  *¹  and hence yield intersecting 

] [( )on 0,1  Lorenz curves ( )L g  and ( )L g* . While leaving the limiting case  *=  open for a 

complete study we also show that, for linear transformations  : 

 

 [ ]: 0,T 0,T *é ù® ê úë û
 (18) 

     r yT r yT* *= ® =  

 

(T T* ³  or )T T* £ , we always have that ( ) ( )L g L g* = . This result can then be combined 

with the theorem of Fellman and Jakobsson to yield a full treatment of the case (12), where   

is as in (18). 
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II.  A new, simple, proof of the Theorem of Fellman 

and Jakobsson 

 

Although the theorem of Fellman and Jakobsson is a very important result, it can be proved in 

a very simple way as the next proof shows. The new proof is given for the “if” part (the “only 

if” part is a simple consequence of it as indicated in Lambert (2001) and is not modified here). 

 

Proof: 

Since the transformation   only works on the densities [ ]mj 1,Î  we have that the rank 

densities r are unchanged (in our notation: Id = ). Hence, for every [ ]y 0,1Î , by (5): 

 

 ( )( )
( )

( )

yT

0

T

0

g r dr
L g y

g r dr

=
ò

ò
 (19) 

 

 ( )( )
( )( )

( )( )

yT

0

T

0

g r dr
L g y

g r dr






°
° =

°

ò

ò
 (20) 

 

Hence 

 

 ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( )
r yT r yTr ' T r ' T

r 0 r ' 0 r 0 r ' 0

1
L g y L g y g r g r ' drdr ' g r g r ' drdr '

N
  

= == =

= = = =

é ù
ê ú° - = -ê ú
ê úë û
ò ò ò ò  

 

, where 

 

 ( ) ( )( )
T T

0 0
N g r dr g r dr 0= >ò ò  

 

So 
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( )( ) ( )( )L g y L g y° -  

 

  ( )( ) ( ) ( )( ) ( )
r yT r ' yT r yT r ' T

r 0 r ' 0 r 0 r ' yT

1
g r g r ' drdr ' g r g r ' drdr '

N
 

= = = =

= = = =

é
ê= +ê
êë
ò ò ò ò  

 

   ( ) ( )( ) ( ) ( )( )
r yT r ' yT r yT r ' T

r 0 r ' 0 r 0 r ' yT

g r g r ' drdr ' g r g r ' drdr ' 

= = = =

= = = =

ù
ú- - ú
úû

ò ò ò ò  

 

  ( ) ( )
( )( )

( )

( )( )

( )

r yT r ' T

r 0 r ' yT

g r g r '1
g r g r ' drdr '

N g r g r '

 
= =

= =

é ùæ ö
÷çê ú÷= ç - ÷ê úç ÷÷çè øê úë û

ò ò  

 

If 
( )x

x


 (strictly) increases, we have, since g strictly decreases, that, since [ ]r 0, yTÎ  and 

[ ]r ' yT,TÎ  

 

 
( )( )

( )

( )( )

( )

g r g r '

g r g r '

 
>  

 

and hence 

 

 ( ) ( )L g L g° > . 

 

The other assertions of the theorem of Fellman and Jakobsson are proved in the same way. W 
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III.  Concentration aspects of the transformation 

g g g *
® = °  

 

We repeat that the Fellman-Jakobsson theorem deals with the concentration properties of the 

transformation 

 

 g g g *® ° =  (21) 

 

where Id =  in the relation (12) 

 

 ( ) ( )( ) ( )( )g r g r g r * * *= =  (22) 

 

for [ ]r 0,TÎ . 

 

Now we take Id=  in the above relation (22), yielding 

 

 ( ) ( )( ) ( )g r g r g r* * *= =  (23) 

 

or the transformation 

 

 1g g g- *® ° =  (24) 

 

Note that, since Id= , a a*= , m m *=  (see (10)) and we, naturally, assume (see (11)): 

( )0 0 = , ( )T T *= . 

 

We can prove the following theorem. 
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Theorem III.1: 

Let   (respectively * ) denote the average number of items per source in the original system 

(respectively in the transformed system) and let  *¹ . Then ( )L g  and ( ) ( )1L g L g * -= °  

always intersect in a point ] [y 0,1Î , i.e. the theorem of Fellman-Jakobsson is not true for the 

transformation (24). 

 

Proof: 

By (5) we have, for every [ ]y 0,1Î : 

 

 ( )( )
( )

( )

yT

0

T

0

g r dr
L g y

g r dr

=
ò

ò
 (25) 

 

and similarly for the transformed system: 

 

 ( )( )
( )

( )

yT

0

T

0

g r dr
L g y

g r dr

*

*

* * *

*

* * *

=
ò

ò
 (26) 

 

We have: 

 

 ( )( )
( )

( )

( )
T

0

Tg yT g yT
L' g y

g r dr 
= =

ò
 (27) 

 

since 

 

 ( )
T

0
A g r dr= ò  (28) 

 

is the total number of items and T is the total number of sources. Likewise, for every 

[ ]y 0,1Î : 
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 ( )( )
( ) ( )T g yT g yT

L' g y
A 

* * * * *

*

* *
= =  (29) 

 

Now note that, by (23) and (14): 

 

 ( )( )
( )

m
g 0

L' g 0


 
= =  (30) 

 

 ( )( )
( )g T a

L' g 1
 

= =  (31) 

 

Likewise, for the transformed system: 

 

 ( )( )
( )

m
g 0

L' g 0


 

*

*

* *
= =  (32) 

 

and 

 

 ( )( )
( )g T a

L' g 1
 

* *

*

* *
= =  (33) 

 

since a a*= , m m *=  (since Id= ). 

 

(i) Let  *>  

Then  

 

 ( )( ) ( )( )L' g 0 L' g 0*<  (34) 

 

and 

 

 ( )( ) ( )( )L' g 1 L' g 1*<  (35) 
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This implies that ( )L g  and ( )L g*  intersect in a point ] [y 0,1Î , by the Lemma below. 

 

(ii) Let  *<  

Then 

 

 ( )( ) ( )( )L' g 0 L' g 0*>  (36) 

 

and 

 

 ( )( ) ( )( )L' g 1 L' g 1*>  (37) 

 

This also implies that ( )L g  and ( )L g*  intersect in a point ] [y 0,1Î , by the Lemma below.  

W 

 

Lemma III.2: 

Let 1L  and 2L  be two Lorenz curves. Suppose that 

 

 ( ) ( )' '

1 2L 0 L 0<  (38) 

 

and 

 

 ( ) ( )' '

1 2L 1 L 1<  (39) 

 

Then we have that 1L  and 2L  intersect in a point ] [y 0,1Î  and the number of intersections is 

odd. 

 

Proof: 

Inequality (38) implies that there exists a right neighbourhood of 0 such that on this interval: 

1 2L L< . Inequality (39) implies that there exists a left neighbourhood of 1 such that on this 

interval: 1 2L L> . This implies that 1L  and 2L  intersect at least once and that the number of 
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intersections (on ] [0,1 ) cannot be even. See Fig. 1 for an illustration of this proof. This 

concludes the proof of this Lemma.                    W 

 

 

 

 

 

Fig. 1.  Illustration of Lemma III.2. 

 

 

Theorem III.1 shows that, for “almost all” transformations   the Theorem of Fellman and 

Jakobsson is not valid. In the next theorem we show that all convex and all concave functions 

  satisfy the condition  *¹  of Theorem III.1. 

 

Theorem III.3: 

(i) Let   be a strictly convex function. Then 

 

  *> . (40) 

 

(ii) Let   be a strictly concave function. Then 

 

  *< . (41) 
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Proof: 

It is intuitively clear (but see Proposition II.1.2.1 in Egghe (2005) for an exact proof – the 

extension to a general lower bound a being trivial) that 

 

 ( )
m

a
A jf j dj



= ò  (42) 

 

is the total number of items. It also follows directly from (4) that 

 

 ( )
m

a
T f j dj



= ò  (43) 

 

is the total number of sources. Hence the average number of items per source ( )  is given by 

 

 
( )

( )

m

m

a

a

jf j djA

T f j dj




 = =

ò

ò
 (44) 

 

Likewise, for the transformed system (24) we have (since Id= ) 

 

 
( )

( )

m

m

a

a

jf j djA

T f j dj






*
*

*

*
*

= =
ò

ò
 (45) 

 

By (14) and using that ( )' j 1 =  for all [ ]mj 1,Î , we have 

 

 
( ) ( )( )

( ) ( )( )

m

m

1

a

1

a

jf j ' g j dj

f j ' g j dj










-

*

-

=
ò

ò
 (46) 

 

We will have proved that  *>  if we have 
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( )

( )

( ) ( )( )

( ) ( )( )

m m

m m

1

1 1

1

1 1

jf j dj jf j ' g j dj

f j dj f j ' g j dj

 

 





-

-

>
ò ò

ò ò
 

 

or 

 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )
m m m mj j' j j'

1 1

j 1 j' 1 j 1 j' 1

jf j f j' ' g j' djdj' jf j ' g j f j' djdj'

   

 

= = = =

- -

= = = =

>ò ò ò ò  

 

Which is equivalent with 

 

 ( ) ( ) ( )( ) ( )( )
m mj j'

1 1

j 1 j' 1

jf j f j' ' g j' ' g j djdj' 0

 

 

= =

- -

= =

é ù- >ê úë ûò ò  (47) 

 

Since the integrand is 0 for j j'=  we have that (47) is equivalent with (integration is still over 

( ) [ ] [ ]m mj, j' 1, x 1, Î  and the same integrand as in (47) is used) 

 

 

( )( )j, j' j, j'
j j' j j'

0

> <

+ >òò òò  

 

Applying the change of notation j j'«  in the second double integral we obtain the equivalent 

condition 

 

( ) ( ) ( )( ) ( )( )
( )

( ) ( ) ( )( ) ( )( )
( )

1 1 1 1

j, j' j, j'
j j' j j'

jf j f j' ' g j' ' g j djdj' j'f j' f j ' g j ' g j' dj'dj 0   - - - -

> >

é ù é ù- + - >ê ú ê úë û ë ûòò òò

 

which is, in turn, equivalent with 

 

 ( ) ( ) ( ) ( )( ) ( )( )
( )

1 1

j, j'
j j'

j j' f j f j' ' g j' ' g j djdj' 0 - -

>

é ù- - >ê úë ûòò  (48) 
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If we suppose   to be strictly convex we have that '  strictly increases, hence, since g 

(hence 1g- ) strictly decreases, we have that 1' g -°  strictly decreases. Consequently 

 

 ( )( ) ( )( )1 1' g j' g j - ->  (49) 

 

on the domain of integration in (48). 

 

Inequality (49) now implies that (48) is true, hence  *> . 

 

The proof that  *<  for a strictly concave function   follows the same lines.            W 

 

Corollary III.4: 

(i) Let   be a strictly convex function. Then 

 

 ( )( ) ( )( )L' g 0 L' g 0*<  

 

 and 

 

 ( )( ) ( )( )L' g 1 L' g 1*<  

 

 and hence ( )L g  and ( )L g*  intersect on a value ] [y 0,1Î . 

 

(ii) Let   be a strictly concave function. Then 

 

 ( )( ) ( )( )L' g 0 L' g 0*>  

 

 and 

 

 ( )( ) ( )( )L' g 1 L' g 1*>  
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 and hence ( )L g  and ( )L g*  intersect on a value ] [y 0,1Î . 

 

Proof: 

The proof follows from equations (30), (31), (32) and (33), Theorem III.3 and Lemma III.2. 

W 

 

The following two examples illustrate Corollary III.4. 

 

Example III.5: 

Let ( ) 2x x = . Hence ( )0 0 = . Let T*  be such that ( ) 2T T T* = =  and take T 3= , hence 

T 9* = . Note that ' 0 >  and that   is convex. Furthermore, ( )1 x x- = . For the function 

g we will use the simple Zipf function with exponent (in the denominator) equal to one: 

 

 ( )
A

g r
r 1

=
+

 (50) 

 

[ ] [ ]( )r 0,T 0,3Î = . 

 

By (25) we have, for all [ ]y 0,1Î : 

 

 ( )( )

3y

0

3

0

A
dr

r 1L g y
A

dr
r 1

+=

+

ò

ò
 

 

 ( )( )
( )ln 3y 1

L g y
ln 4

+
=  (51) 

 

and by (26): 

 

 ( )( )
( )

( )

9y

0

9

0

g r dr
L g y

g r dr

* * *

*

* * *

=
ò

ò
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 ( )( )
( )( ) ( )

( )

( )

( )( ) ( )

1

1

9y

0

3

0

g r ' r dr

L g y

g r ' r dr




 

 

-

-

*

*

*

=
ò

ò
 

 

       
( )

( )

9y

0

3

0

g r rdr

g r rdr

=
ò

ò
 

 

by (23) and since ( )' x 2x = . Hence 

 

 ( )( )

9y

0

3

0

1
1 dr

r 1
L g y

1
1 dr

r 1

*

æ ö
÷ç - ÷ç ÷çè ø+

=
æ ö

÷ç - ÷ç ÷çè ø+

ò

ò
 

 

 ( )( )
( )9y ln 1 9y

L g y
3 ln 4

*
- +

=
-

 (52) 

 

Note that ( )( ) ( )( )L g 0 L g 0 0*= =  and ( )( ) ( )( )L g 1 L g 1 1*= = . Furthermore  

 

( )( ) ( )( )L g 0.01 0.0213222 L g 0.01 0.0233226*= < =  

 ( )( ) ( )( )L g 0.9 0.9437626 L g 0.9 0.9289199*= > =  

 

Hence ( )L g  and ( )L g*  intersect on a value ] [y 0,1Î , which agrees with the above results 

(note that, first, ( )L g  is below ( )L g*  and that, later, ( )L g  is above ( )L g*  as predicted in 

Corollary III.4). 
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Example III.6: 

Let ( )x x = . Hence ( )0 0 = . Let T*  be such that ( )T T T* = =  and take T 9= , 

hence T 3* = . Note that ' 0 >  and that   is concave. Furthermore, ( )1 2x x- = . Using (50) 

again we have, for all [ ]y 0,1Î : 

 

 ( )( )

9y

0

9

0

A
dr

r 1L g y
A

dr
r 1

+=

+

ò

ò
 

 

 ( )( )
( )ln 9y 1

L g y
ln10

+
=  (53) 

 

and 

 

 ( )( )
( )

( )

( )

2
3y

0

9

0

1
dr

r 1 2 r
L g y

1
dr

r 1 2 r

*
+

=

+

ò

ò
 

 

since ( )
1

' x
2 x

 = . 

 

But 

 

 
( )

dr d r

r 1r 1 2 r
=

++
ò ò  

 

              ( )
2

dx
Arc tan x

1 x
= =

+ò  

 

Hence 
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 ( )( )
( )

2
Arc tan 3y

L g y
Arc tan 9

*

é ù
ê úë û=  (54) 

 

since ( )Arc tan 0 0= . Note again that ( )( ) ( )( )L g 0 L g 0 0*= =  and ( )( ) ( )( )L g 1 L g 1 1*= = . 

We now have 

 

 ( )( ) ( )( )L g 0.1 0.2787536 L g 0.1 0.0614723*= > =  

 ( )( ) ( )( )L g 0.9 0.9590413 L g 0.9 0.9824221*= < =  

 

Again ( )L g  and ( )L g*  intersect on a value ] [y 0,1Î . Note that, first, ( )L g  is above ( )L g*  

and that, later, ( )L g  is below ( )L g*  as predicted in Corollary III.4. 

 

We end this paper with the case  *= . We leave open the general study of this case but 

remark that the general linear transformation. 

 

 [ ]: 0,T 0,T *é ù® ê úë û
 (55) 

 

     ( )r yT r yT *= ® =  

 

( T T* < , T T* =  or T T* >  are allowed) satisfies  *= . Indeed, using (28) (for g as well as 

for g* ) we have 

 

 ( )
T

0
A g r dr= ò  (56) 

 

 ( )
T

0
A g r dr

*

* * * *= ò  (57) 

 

But 
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        ( )
T

0
A g r dr

*

* * * *= ò  

 

 ( ) ( )
T

0
g r ' r dr= ò  (58) 

 

by (23) and the fact that ( )0 0 =  and ( )T T *= . But, by (55) 

 

 ( ) ( )
T

yT r yT r
T

 
*

*= = = , 

 

hence 

 

 ( )
T

' r
T


*

=  (59) 

 

Formula (59) in (58) yields 

 

 ( )
T

0

T
A g r dr

T

*
* æ ö

÷ç= ÷ç ÷è øò  

 

whence, by (56), 

 

 
T

A A
T

*
* =  

 

hence 

 

 
A A

T T
 

*
*

*
= = = . 

 

We have the following proposition: 
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Proposition III.7: 

For   as above we have that (with Id= ): 

 

 ( ) ( ) ( )1L g L g L g * -= = °  (60) 

 

Proof: 

By (23) and (26) we generally have, for every [ ]y 0,1Î : 

 

 ( )( ) ( )( )
( )

( )

yT

1 0

T

0

g r dr
L g y L g y

g r dr



*

*

* * *

- *

* * *

° = =
ò

ò
 

 

   

( )
( )

( )
( )

( )
( )

( )
( )

1

1

1

1

yT

0

T

0

g r ' r dr

g r ' r dr













- *

-

- *

-

=
ò

ò
 

 

, by (23). But by (55) and (59) we have 

 

 ( )( )
( )

( )
( )( )

yT

0

T

0

g r dr
L g y L g y

g r dr

* = =
ò

ò
 

 

by (25). Hence we have proved (60).                               W 

 

Corollary III.8: 

For the general transformation (12): 

 

 ( ) ( )( ) ( )( )g r g r g r * * *= =  

 

and   as in (55) we have that the theorem of Fellman and Jakobsson is valid. 
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Proof: 

This follows trivially from the above proposition, applied to g°  instead of g: 

 

 ( ) ( )L g L g* = °  

 

and on ( )L g°  we can apply the theorem of Fellman and Jakobsson.               W 

 

Note also that, if  *= , Id=  and ( ) ( )L g L g*= , then, for all [ ]r 0,TÎ : 

 

 ( )
T

r r
T


*

= . 

 

Indeed: ( ) ( )L g L g*=  implies ( ) ( )L' g L' g*= , hence, by (27) and (28) (and  *= ): 

( )g yT g (yT )* *=  for all [ ]y 0,1Î . Hence, by (24) 

 

 ( ) ( )( )1g yT g yT- *=  

 

Since g is injective we hence also have 

 

 ( )1yT yT- *=  

 

so 

 

 ( )yT yT *=  

 

for all [ ]y 0,1Î , whence (putting r yT= : this can be done for all [ ]r 0,TÎ ) 

 

 ( )
T

r r
T


*

= . 
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IV.  Conclusions 

 

In this paper we gave a new, short proof of the well-known theorem of Fellman and 

Jakobsson on the relation between ( )L g  and ( )L g° , where g is the rank-frequency function 

of a system and   is a transformation. We prove that this theorem is false for the dual 

transformation 1g -°  at least in all cases yielding a different value (after transformation) of 

the average number of items per source. This case comprises all convex and concave 

transformations  . 

 

In the case  *=  we prove that the linear transformation 

 

 ( )
T

r r
T


*

=  

 

satisfies 

 

 ( ) ( )1L g L g-° =  

 

in which case the general transformation (12) 

 

 ( ) ( )( ) ( )( )g r g r g r * * *= =  

 

yields 

 

 ( ) ( )L g L g* = °  

 

and hence, in this case, the theorem of Fellman and Jakobsson is applicable. 

 

We leave open the general study of the special case  *= . 
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