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Abstract

In this paper we extend the conditional Koziol-Green model of Veraverbeke and Cadarso Suárez (2000) to also

accommodate for dependent censoring and in this way introduce a model with two different types of informative

censoring. We derive in this model a copula-graphic estimator for the conditional distribution of the lifetime and

establish an exponential bound and an almost sure asymptotic representation which serve as starting points for

an almost sure consistency and an asymptotic normality result. Afterwards we apply this estimator on a real

data set about the survival of Atlantic halibut.
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1 Introduction

At fixed design points 0 ≤ x1 ≤ . . . ≤ xn ≤ 1, we have nonnegative responses Y1, . . . , Yn such as survival

times or failure times. These responses are independent random variables and the distribution function

of the response Yi at xi will be denoted by Fxi
(t) = P (Yi ≤ t). In many clinical or industrial trials,

the responses Y1, . . . , Yn are subject to random right censoring. For each response, there is a censoring

variable Ci with conditional distribution function Gxi
(t) = P (Ci ≤ t). The observed random variables

at design point xi are in fact Zi and δi (i = 1, . . . , n), with

Zi = min(Yi, Ci) and δi = I(Yi ≤ Ci).

At a given fixed design value x ∈ [0, 1], we write Fx, Gx,Hx for the distribution function of respectively

the response Yx, the censoring variable Cx and the observed variable Zx = min(Yx, Cx) at x. Also we

will write δx = I(Yx ≤ Cx). Note that for the design variables xi, we write Yi, Ci, Zi, Fi, . . . instead of

Yxi
, Cxi

, Zxi
, Fxi

, . . ..

In order to estimate uniquely the distribution function Fx from the observed data, we have to make an

assumption about the dependence between the Yi and Ci for each i (Tsiatis (1975)). It is very common in

survival analysis to assume independence between these random variables (conditional on the covariate).
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However we see that in some practical situations this assumption clearly does not hold. For example

in medicine when the event of interest is death due to a given disease and the censoring event is death

due to other diseases. In industrial testing, it may occur that some piece of equipment is taken away (is

censored) because it shows some sign of future failure. Therefore a dependence model is used in which

the dependence structure is given by specifying a copula for the joint distribution of Yx and Cx. Assume

that the joint survival function of the response Yx and the censoring variable Cx at x can be written as

Sx(t1, t2) = P (Yx > t1, Cx > t2) = Cx(F̄x(t1), Ḡx(t2))

where Cx is a known copula function depending in a general way on x and F̄x(t) (resp. Ḡx(t)) is the

survival function of Yx (resp. Cx) at x. Without covariates x, this idea was introduced by Zheng and

Klein (1995). However their copula-graphic estimator had no closed form expression. Rivest and Wells

(2001) got around this problem by focusing on the class of Archimedean copulas. As in Braekers and

Veraverbeke (2005), we will extend their ideas to the fixed design regression case. We assume that at a

fixed design value x ∈ [0, 1], the joint survival function is given by

Sx(t1, t2) = ϕ[−1]
x (ϕx(F̄x(t1)) + ϕx(Ḡx(t2))) (1)

where, for each x, ϕx : [0, 1] → [0,+∞] is a known continuous, convex, strictly decreasing function with

ϕx(1) = 0. ϕ
[−1]
x is the pseudo-inverse of ϕx, as defined in Nelsen (1999) and given by

ϕ[−1]
x (s) =

{

ϕ−1
x (s) 0 ≤ s ≤ ϕx(0)

0 ϕx(0) ≤ s ≤ +∞
.

We note from (1) that,

1 − Hx(t) = H̄x(t) = Sx(t, t) = ϕ[−1]
x (ϕx(F̄x(t)) + ϕx(Ḡx(t))). (2)

However in the design of some clinical trials, we see another type of informative censoring in which

the distribution function of the failure time and the censoring time are related. Koziol and Green

(1976) considered a sub-model for the Kaplan-Meier estimator in which they assumed that the survival

function of the censoring variable is a power of the survival function of the failure time. This sub-model

has the advantage that the estimator for the distribution function of the failure time has a simpler form.

Other results, like a test-procedure to check the validity of this assumption (Csörgő and Horváth(1981),

Csörgő(1988)) were derived. Veraverbeke and Cadarso Suárez (2000) extended this model for the fixed

design regression situation.

In this paper we will further extend this sub-model to the case where the failure time Yx depends on the

censoring variable Cx. We therefore use the fact that the classical Koziol-Green model is characterized

by the conditional independence of Zx and δx. Translating the latter property into our model (1) leads

to the following assumption: for each covariate value x ∈ [0, 1],

Ḡx(t) = ϕ[−1]
x (βxϕx(F̄x(t))), ∀t > 0 (3)

where βx > 0 is a constant depending only on x.

When we consider both types of informative censoring, we rewrite (2) as

H̄x(t) = ϕ[−1]
x

(

ϕx(F̄x(t)) + βxϕx(F̄x(t))
)

= ϕ[−1]
x

(

(βx + 1)ϕx(F̄x(t))
)

. (4)
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This relation will be used to find a conditional distribution estimator Fxh for Fx where x ∈ ]0, 1[ is a

fixed design value. We organize this paper as follows. In Section 2, we define the distribution function

estimator Fxh and show that it is an extension of the conditional Koziol-Green estimator, as it was

studied by Veraverbeke and Cadarso Suárez (2000). After specifying some assumptions in Section 3, we

give for this estimator an exponential bound with consistency result in Section 4. In Section 5, we derive

an almost sure asymptotic representation which we use in Section 6 to find an asymptotic normality

result for this estimator. In Section 7 we apply the estimator to a practical situation in which we explore

different choices for the generator function ϕx. In the Appendix we give the proofs of the results in

Section 4, 5 and 6.

2 The conditional Koziol-Green model

We develop in this section a non-parametric estimator for the conditional distribution function Fx of

the failure time Yx under two different types of informative censoring. As first type, we assume that

the failure time Yx depends on the censoring variable Cx as given in (1). While for the second type, we

assume that the distribution of the censoring variable Cx is related to the distribution function of Yx as

given by (3).

From (4), we find an estimator for Fx since we can rewrite this equation as

F̄x(t) = ϕ[−1]
x

(

γxϕx(H̄x(t))
)

(5)

with

γx =
1

βx + 1
= P (δx = 1).

The last equation follows from

px1 = P (δx = 1) =

+∞
∫

0

− ∂

∂t1
Sx(t1, t2)

∣

∣

∣

∣

t=t1=t2

dt =

+∞
∫

0

ϕ′
x(F̄x(t))

ϕ′
x(H̄x(t))

dFx(t)

px0 = P (δx = 0) =

+∞
∫

0

− ∂

∂t2
Sx(t1, t2)

∣

∣

∣

∣

t=t1=t2

dt = βx

+∞
∫

0

ϕ′
x(F̄x(t))

ϕ′
x(H̄x(t))

dFx(t)

so that βx = px0

px1
.

To find an estimator for Fx in this model, we replace in (5), the different quantities Hx(t) and γx

by estimators. As in other work with a non-parametric regression problem (Veraverbeke and Cadarso

Suárez (2000), Braekers and Veraverbeke (2005)), we consider estimators which involve a sequence of

smoothing weights {wni(x, hn)}, depending on a positive bandwidth sequence {hn}, tending to zero, as

n → +∞. In our present situation of fixed design points, it is customary to take the Gasser-Müller type

weights, given by

wni(x, hn) =
1

cn(x, hn)

xi
∫

xi−1

1

hn
K

(

x − z

hn

)

dz, (i = 1, . . . , n)

cn(x, hn) =

xn
∫

0

1

hn
K

(

x − z

hn

)

dz. (6)
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Here x0 = 0 and K is a known probability density function (kernel).

For the conditional distribution function Hx(t), we take a Stone type estimator (Stone (1977)) given by

Hxh(t) =
n

∑

i=1

wni(x, hn)I(Zi ≤ t).

A similar estimator is taken for the exponent γx and is given by

γxh =

n
∑

i=1

wni(x, hn)I(δi = 1).

Hence we find an estimator for the conditional distribution function Fx(t) by

F̄xh(t) = ϕ[−1]
x

(

γxhϕx(H̄xh(t))
)

.

Note that the estimator F̄xh(t) has a simpler structure than the copula-graphic estimator of Braekers

and Veraverbeke (2005) for the more general model under dependent censoring. Furthermore we see

that in our estimator the estimator for γx only depends on the δi while the estimator for Hx(t) only

depends on the Zi. This result follows from assumption (3), which is equivalent to the assumption that

Zx and δx are conditionally independent.

If we take ϕx(t) = − log(t), we see that this estimator equals the estimator of Veraverbeke and Cadarso

Suárez (2000) as we expected.

3 Regularity conditions

For the design points x1, . . . , xn we write ∆n = min
1≤i≤n

(xi − xi−1) and ∆̄n = max
1≤i≤n

(xi − xi−1). The

notations ‖K‖∞ = sup
u∈IR

K(u), ‖K‖2
2 =

+∞
∫

−∞

K2(u)du, µK
1 =

+∞
∫

−∞

uK(u)du, µK
2 =

+∞
∫

−∞

u2K(u)du will be

used for the kernel K.

We use the following assumptions on the design and on the kernel.

(C1) xn → 1, ∆̄n = O(n−1), ∆̄n − ∆n = o(n−1).

(C2) K is a probability density function with finite support [−M,M ] for some M > 0, µK
1 = 0 and K

Lipschitz of order 1.

The assumption (C1) expresses that the chosen design points are asymptotically equidistant points,

selected uniformly over the whole interval [0, 1]. This implies that, for cn(x, hn) defined in (6), cn(x, hn) =

1 for n sufficiently large. Therefore we may take cn(x, hn) = 1 in all proofs of the asymptotic results.

If L is any distribution, then TL denotes the right endpoint of its support (TL = inf{t : L(t) = L(+∞)}).
We note that THx

= TFx
= TGx

. To obtain our results, we need some smoothness conditions. For a

fixed 0 < T < TFx
,
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(C3) Ḟx(t) = ∂
∂xFx(t), F̈x(t) = ∂2

∂x2 Fx(t) exist and are continuous in (x, t) ∈ [0, 1] × [0, T ]

(C4) β̇x = ∂
∂xβx, β̈x = ∂2

∂x2 βx exist and are continuous in x ∈ [0, 1]

The generator ϕx(v) of the Archimedean copula needs to satisfy the following properties.

(C5) ϕ′
x(v) = ∂

∂v ϕx(v) and ϕ′′
x(v) = ∂2

∂v2 ϕx(v) are Lipschitz in the x-direction with a bounded Lipschitz

constant, and ϕ′′′
x (v) = ∂3

∂v3 ϕx(v) ≤ 0 exists and is continuous in (x, v) ∈ [0, 1]×]0, 1].

These assumptions and the fact that ϕx is a generator for an Archimedean copula, give that ϕ′
x(v) is

monotone increasing with ϕ′
x(v) < 0 and ϕ′′

x(v) is monotone decreasing with ϕ′′
x(v) ≥ 0.

4 Exponential Bound and Strong Consistency

In the first theorem we establish conditions under which Fxh(t) is a strongly consistent estimator for

Fx(t) and we also obtain the rate of this convergence. These results follow from an exponential inequality

result. We postpone the proofs of these results to the Appendix.

Theorem 1. Assume (C1) - (C5), hn → 0, T < TFx
,

(a) For ε > 0, n sufficiently large and

η1 ≥ 2(‖γ̇x‖∞∆̄n + ‖γ̈x‖∞µK
2 h2

n),

η2 ≥ max
(√

6‖K‖2(nhn)−1/2, 2(‖Ḣx‖∞∆̄n + ‖Ḧx‖∞µK
2 h2

n)
)

we have

P

(

sup
0≤t≤T

|Fxh(t) − Fx(t)| > ε

)

≤ 4e−C1η2
1nhn + d0η2nhne−d1nhnη2

2/4

where C1, d0, d1 are constants and η1, η2 satisfy η1 = ε
2M1(γx−η1)

and η2 = ε
2M2(H̄x(T )−η2)

with

M1(z) = max
0≤y≤1

−ϕx(y)

ϕ′

x(ϕ−1
x (zϕx(y)))

and M2(z) = max
0≤y≤1

yϕ′

x(z)

ϕ′

x(ϕ−1
x (zϕx(y)))

.

(b) If
nh5

n

log n = O(1), then, as n → +∞,

sup
0≤t≤T

|Fxh(t) − Fx(t)| = O
(

(nhn)−1/2(log n)1/2
)

a.s.

5 Almost sure representation

As in the work of Veraverbeke and Cadarso Suárez (2000) for the conditional Koziol-Green estimator

and in Braekers and Veraverbeke (2005) for the copula-graphic estimator, we derive in this section an

almost sure representation for the estimator Fxh(t). In this result we rewrite this estimator as a weighted

sum plus a remainder term. This representation forms a basic tool in finding further asymptotic results.

For the proof of Theorem 2 we again refer to the Appendix.
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Theorem 2. Assume (C1) - (C5), hn → 0, log n
nhn

→ 0,
nh5

n

log n = O(1), T < TFx
. Then, for t < TFx

,

Fxh(t) − Fx(t) =

n
∑

i=1

wni(x, hn)gtx(Zi, δi) + Rn(x, t)

where

gtx(Zi, δi) = −ϕx(H̄x(t))

ϕ′
x(F̄x(t))

(I(δi = 1) − γx) +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

(I(Zi ≤ t) − Hx(t))

and as n → +∞,

sup
0≤t≤T

|Rn(x, t)| = O((nhn)−1 log n) a.s.

6 Asymptotic normality

In Theorem 3, we show the asymptotic normality of (nhn)1/2(Fxh(t) − Fx(t)). Due to the asymptotic

representation in Theorem 2, we only have to use the main term to find the bias and variance expressions

of this result. The proof of Theorem 3 is given in the Appendix.

Theorem 3. Assume (C1) - (C5), T < THx
,

(a) if nh5
n → 0 and (nhn)−1/2 log n → 0, then for t ≤ T , as n → ∞,

(nhn)1/2(Fxh(t) − Fx(t)) → N(0, s2
x(t))

(b) If hn = Cn−1/5 for some C > 0, then for t ≤ T , as n → ∞,

(nhn)1/2(Fxh(t) − Fx(t)) → N(bx(t), s2
x(t))

where

btx =
1

2
µK

2 C5/2

{−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

γ̈x +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

Ḧx(t)

}

s2
x(t) = ||K||22

{

(

ϕx(H̄x(t))

ϕ′
x(F̄x(t))

)2

γx(1 − γx) +

(

γxϕ′
x(H̄x(t))

ϕ′
x(F̄x(t))

)2

Hx(t)(1 − Hx(t))

}

.

7 Example: Survival of Atlantic Halibut

We apply in this section the conditional Koziol-Green estimator on a practical data set about survival of

Atlantic halibut, studied by Neilson, Waiwood and Smith (1989). An important issue was the survival

time of the fish after it was caught and handled as in the commercial fishery. For this purpose they

had installed special holding tanks on the research vessel in which they placed the fish. Each fish was

followed until it died. However some fish, mainly large fish, were removed after 48 hours to make space

for other experimental animals. So the time until death was censored by the time that the animal had

spent in the holding tank. Also the fish that were alive at the end of the experiment, were treated as

censored observations. The researchers recorded several covariates among which we focus on the fork
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length of the fish. In previous analyses of the data set, a significant effect of fork length on survival

time had been found. In Figure 1 we show a scatter plot of the survival time versus the fork length of

each animal, where we use + for uncensored observations and O for censored observations. The main

causes of death for the fish were the stress of the new environment and infections caused by sick fishes

in the tank. Therefore we believe that the survival time Yx of a fish depends on the time that this fish

has spent in the holding tank Cx, where the time in the holding tank has a negative influence on the

survival time.

30 35 40 45 50 55

0
20

0
40

0
60

0
80

0
10

00
12

00

Length

Su
rv

iva
l

Figure 1: Atlantic halibut data set: Survival times (in hours) versus fork length (in cm). Fish died in

the holding tanks: +, fish removed from the holding tanks or alive at the end of the study: O.

For these data, we construct a conditional Koziol-Green estimate for different choices of ϕx at fork

lengths 32 cm and 53 cm, representing typical small fishes and typical large fishes. The four choices

of the function ϕx that we will consider here, will lead each time to a different association for the

dependence structure between the survival time and the time spent in the holding tank. The first choice

is the independent copula (ϕx(t) = − log(t)). This is the (possibly wrong) choice used in previous

analyses of the data. In the other choices of ϕx we express that the time spent in the holding tank

has a negative influence on the survival time. Nelsen (1999) formally defined this as discordance. For

the second choice of ϕx we take the Fréchet-Hoeffding lower bound (ϕx(t) = 1 − t), which is the most

extreme discordance that can be considered. In the next choices we allow the generator function ϕx to

depends on the fork length x. Our third choice is the Frank family 1 copula given by

ϕx(t) = − log

(

e(x−20)t − 1

ex−20 − 1

)

and the fourth choice is the Frank family 2 copula given by

ϕx(t) = − log

(

e(60−x)t − 1

e60−x − 1

)

.

The Frank family 1 copula gives a stronger discordant association for larger fishes than for small fishes,

while for the Frank family 2 copula, there is a stronger discordant association for small fishes.
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Figure 2: Copula-graphic (left column) and Koziol-Green (right column) estimates for the conditional

survival function at lengths 32 cm and 53 cm with bandwidth 20. Independence (solid line), Fréchet -

Hoeffding lower bound (dashed line), Frank family 1 (longdashed line) and Frank family 2 (dotted line).

In Figure 2, we show in the right column the Koziol-Green estimates for the conditional survival function

F̄x(t) at fork lengths of 32 cm and 53 cm for bandwidth 20. In the left column we give the copula-graphic

estimates of Braekers and Veraverbeke (2005) for this conditional survival function under a general model.

By comparing both estimates we can verify whether the Koziol-Green sub-model is satisfied. In each of

the four plots, we construct the copula-graphic estimator for the four choices of ϕx. We use in this data

set the Gasser-Müller weights with a biquadratic kernel given by K(z) = (15/16)(1− z2)2I(|z| ≤ 1). As

we saw in Figure 1, the covariate fork length of a fish is measured crudely on a scale of whole centimeters

so that the observations form vertical lines on this plot. It is therefore possible to treat this covariate

as fixed. It is also easy to see that our results for the copula-graphic estimator remain valid in the

interval [25, 60] for the covariate x, instead of the standard interval [0, 1]. The choice of the bandwidth

is selected here for illustration purpose only. We also calculated estimates under other bandwidths but

the results did not change. It is possible to set up a bandwidth selection criterium using, for example,

the asymptotic mean squared error expression, but this would lead us into a field of research that we do

not enter at this moment.

We note in Figure 2 that the different estimates for the conditional survival function lie close together in

each of the four plots and lie even almost on top of each other in the plots of the first row. This means

that the choice of the generator function ϕx does not have a great influence on the survival time of small

fishes. In the plots at the fork length of 53 cm we see that both the copula-graphic and the Koziol-

Green estimates can be divided in two groups. The Fréchet-Hoeffding lower bound copula and the Frank

family 1 copula give estimates that lie almost on top of each other but that are clearly different from

the estimates of the independent copula and the Frank family 2 copula which form the second group.

By this division in two groups, we see that this data set reacts differently to two different situations.
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The choices of ϕx in the first group have in common that they assume a large discordant association

between survival time and time spent in the holding tank for larger fishes. In the second group, the

choices of ϕx assume practically no discordant association for larger fishes. This influences the estimates

for the survival function. With a ϕx from the first group, the estimated survival function for larger fish

is higher than with a ϕx from the second group (in particular the ϕx that describes independence). This

means that when we ignore stress in the fish caused by the catch, the handling and the living conditions

in the holding tank, we underestimate the true survival time for larger fishes. To finish this section, we

compare the estimates for the Koziol-Green sub-model with the estimates for the general copula-graphic

model of Braekers and Veraverbeke (2005). We note that there is not much difference between the plots

in the two columns. Therefore we know that the Koziol-Green assumption is satisfied in this data set

and the Koziol-Green sub-model gives a better insight into the data.

Appendix: Proofs

Proof of Theorem 1: (a) To establish strong consistency of the estimator Fxh(t), we first use the

bivariate mean value theorem.

Fxh(t) − Fx(t) = F̄x(t) − F̄xh(t)

= − ϕx(ε2(t))

ϕ′
x(ϕ−1

x (ε1ϕx(ε2(t))))
(γxh − γx) +

ε1ϕ
′
x(ε2(t))

ϕ′
x(ϕ−1

x (ε1ϕx(ε2(t))))
(Hxh(t) − Hx(t))

with ε1 between γxh and γx, and ε2(t) between H̄xh(t) and H̄x(t).

Hence for all ε > 0, η1 > 0, η2 > 0,

P

(

sup
0≤t≤T

|Fxh(t) − Fx(t)| > ε

)

≤ P
(

M1(ε1)|γxh − γx| >
ε

2

)

+ P

(

sup
0≤t≤T

M2(ε2(t)) sup
0≤t≤T

|Hxh(t) − Hx(t)| >
ε

2

)

≤ P
(

M1(ε1)|γxh − γx| >
ε

2
, |γxh − γx| ≤ η1

)

+ P (|γxh − γx| > η1) + P

(

sup
0≤t≤T

|Hxh(t) − Hx(t)| > η2

)

+ P

(

sup
0≤t≤T

M2(ε2(t)) sup
0≤t≤T

|Hxh(t) − Hx(t)| >
ε

2
, sup
0≤t≤T

|Hxh(t) − Hx(t)| ≤ η2

)

If we assume that 0 < η1 < γx and 0 < η2 < H̄x(T ), by Lemma 1 below, this expression is bounded by

P

(

|γxh − γx| >
ε

2M1(γx − η1)

)

+ P (|γxh − γx| > η1) + P

(

sup
0≤t≤T

|Hxh(t) − Hx(t)| > η2

)

+ P

(

sup
0≤t≤T

|Hxh(t) − Hx(t)| >
ε

2M2(H̄x(T ) − η2)

)

.

Choosing η1 and η2 such that η1 = ε
2M1(γx−η1)

and η2 = ε
2M2(H̄x(T )−η2)

, we have that

P

(

sup
0≤t≤T

|Fxh(t) − Fx(t)| > ε

)

≤ 2P (|γxh − γx| > η1) + 2P

(

sup
0≤t≤T

|Hxh(t) − Hx(t)| > η2

)

. (7)

For the second probability on the right hand side of (7), we have the bound

P

(

sup
0≤t≤T

|Hxh(t) − Hx(t)| > η2

)

≤ 1

2
d0η2nhne−d1nhnη2

2/4
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where d0 and d1 are constants. This result is given by Van Keilegom and Veraverbeke (1997) under the

condition that

η2 ≥ max
(√

6‖K‖2(nhn)−1/2, 2‖Ḣx‖∞∆̄n + 2µK
2 ‖Ḧ‖∞h2

n

)

.

From Veraverbeke and Cadarso Suárez (2000), we find a similar result for the first probability of (7),

P (|γxh − γx| > η1) ≤ 2e−C1η2
1nhn

with C1 an absolute constant and under the condition that η1 ≥ 2(‖γ̇x‖∞∆̄n + ‖γ̈x‖∞µK
2 h2

n).

Combining these results gives the exponential bound for Fxh(t).

(b) From Lemma 2 below, we find, for small ε > 0, a new upper bound

P

(

sup
0≤t≤T

|Fxh(t) − Fx(t)| > ε

)

≤ 4e
−

C1ε2nhn

4(M1(γx)+1)2 + d0
ε

2
nhne

−
d1nhn

4
ε2

4(M2(H̄x(T ))+1)2

If we take εn = C2(nhn)−1/2(log n)1/2, we note that εn is small for large n and by the Borel-Cantelli

Lemma we find the result.

Lemma 1. We have, for z ∈ ]0, 1[, that

M1(z) = max
0≤y≤1

−ϕx(y)

ϕ′
x(ϕ−1

x (zϕx(y)))
and M2(z) = max

0≤y≤1

yϕ′
x(z)

ϕ′
x(ϕ−1

x (yϕx(z)))

are non-increasing functions of z.

Proof: Due to the assumptions on ϕx(t) and ϕ′
x(t), we see that, for every y, z ∈ ]0, 1[

−ϕx(y)

ϕ′
x(ϕ−1

x (zϕx(y)))
and

yϕ′
x(z)

ϕ′
x(ϕ−1

x (yϕx(z)))

are well-defined. Furthermore we can show that, for every z ∈ ]0, 1[, 0 ≤ lim
y→0

−ϕx(y)

ϕ′

x(ϕ−1
x (zϕx(y)))

≤ 1,

lim
y→1

−ϕx(y)

ϕ′

x(ϕ−1
x (zϕx(y)))

= 0, 0 ≤ lim
y→0

yϕ′

x(z)

ϕ′

x(ϕ−1
x (yϕx(z)))

< +∞, lim
y→1

yϕ′

x(z)

ϕ′

x(ϕ−1
x (yϕx(z)))

= 1 such that M1(z) and

M2(z) are well-defined. To prove that these functions are non-increasing, we fix for the moment a value

of y ∈ [0, 1]. For z1, z2 ∈ ]0, 1[ with z1 < z2, we find that

−ϕx(y)

ϕ′
x(ϕ−1

x (z1ϕx(y)))
≥ −ϕx(y)

ϕ′
x(ϕ−1

x (z2ϕx(y)))
and

yϕ′
x(z1)

ϕ′
x(ϕ−1

x (yϕx(z1)))
≥ yϕ′

x(z2)

ϕ′
x(ϕ−1

x (yϕx(z2)))

if we rewrite the second inequality as a constraint optimization problem. Hence M1(z2) ≤ M1(z1) and

M2(z2) ≤ M2(z1).

Lemma 2. If ε is sufficiently small, we find that

ε

2(M1(γx) + 1)
≤ min(η1, γx) ≤ min(η∗

1 , γx)

ε

2(M2(H̄x(T )) + 1)
≤ min(η2, H̄x(T )) ≤ min(η∗

2 , H̄x(T ))

where η1, η∗
1 , η2, η∗

2 > 0 is, respectively, a root of η1 = ε
2M1(γx−η1)

, M1(γx − η∗
1) = M1(γx) + 1,

η2 = ε
2M2(H̄x(T )−η2)

and M2(H̄x(T ) − η∗
2) = M2(H̄x(T )) + 1.
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Proof: We only prove the results for η1. For η2 we work similarly.

From Lemma 1, we know that M1(γx − η1) is a non-decreasing function of η1 on the interval [0, γx].

Therefore there either exists a value η∗
1 in this interval such that M1(γx − η∗

1) = M1(γx) + 1 or we have

that M1(γx − η1) < M1(γx) + 1, ∀ η1 ∈ [0, γx]. Hence M1(γx − η1) ≤ M1(γx) + 1, ∀ η1 ≤ min(η∗
1 , γx).

Define ε∗ := 2(M1(γx) + 1)min(η∗
1 , γx). We note that for ε < ε∗,

ε

2(M1(γx) + 1)
<

ε∗

2(M1(γx) + 1)
= min(η∗

1 , γx).

Furthermore we see that if η∗
1 exists, η∗

1M1(γx − η∗
1) = (M1(γx) + 1)η∗

1 = ε∗

2 else γxM1(0) < (M1(γx) +

1)γx = ε∗

2 . Since the function η1M1(γx − η1) is an increasing function of η1 on the interval [0, γx], this

means that for ε < ε∗, the root η1 of

η1 =
ε

2M1(γx − η1)
⇔ η1M1(γx − η1) =

ε

2

is smaller than η∗
1 . If η1M1(γx − η1) < ε

2 , ∀ η1 ∈ [0, γx], we take η1 = γx. So min(η1, γx) ≤ min(η∗
1 , γx).

If η1 exists, we have that

ε

2(M1(γx) + 1)
M1

(

γx − ε

2(M1(γx) + 1)

)

≤ ε(M1(γx) + 1)

2(M1(γx) + 1)
=

ε

2
= η1M1(γx − η1),

such that ε
2(M1(γx)+1) ≤ η1. If η1 does not exists, we see that

ε

2(M1(γx) + 1)
≤ ε∗

2(M1(γx) + 1)
= γx.

Hence
ε

2(M1(γx) + 1)
≤ min(η1, γx).

Proof of Theorem 2: To find an asymptotic representation of Fxh(t), we use a second order Taylor

expansion.

Fxh(t) − Fx(t) = ϕ−1
x

(

γxϕx(H̄x(t))
)

− ϕ−1
x

(

γxhϕx(H̄xh(t))
)

= − 1

ϕ′
x(F̄x(t))

{

γxhϕx(H̄xh(t)) − γxϕx(H̄x(t))
}

+
ϕ′′

x(ϕ−1
x (ε(t)))

2ϕ′
x(ϕ−1

x (ε(t)))3

{

γxhϕx(H̄xh(t)) − γxϕx(H̄x(t))
}2

with ε(t) between γxhϕx(H̄xh(t)) and γxϕx(H̄x(t)).

After adding and subtracting some terms, and applying a second order Taylor expansion to the second

term, we get

= − 1

ϕ′
x(F̄x(t))

{

ϕx(H̄x(t))(γxh − γx) + γx(ϕx(H̄xh(t)) − ϕx(H̄x(t)))
}

− (ϕx(H̄xh(t)) − ϕx(H̄x(t)))(γxh − γx)

ϕ′
x(F̄x(t))

+
ϕ′′

x(ϕ−1
x (ε(t)))

2ϕ′
x(ϕ−1

x (ε(t)))3

{

γxhϕx(H̄xh(t)) − γxϕx(H̄x(t))
}2

= −ϕx(H̄x(t))

ϕ′
x(F̄x(t))

(γxh − γx) +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

(Hxh(t) − Hx(t)) + Rn1(t) + Rn2(t) + Rn3(t)

=
n

∑

i=1

wni(x, hn)gtx(Zi, δi) + Rn1(t) + Rn2(t) + Rn3(t)
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with Rn1(t) = −γxϕ′′

x (η(t))

2ϕ′

x(F̄x(t))
(Hxh(t) − Hx(t))2, Rn2(t) = − (ϕx(H̄xh(t))−ϕx(H̄x(t)))(γxh−γx)

ϕ′

x(F̄x(t))
,

Rn3(t) =
ϕ′′

x (ϕ−1
x (ε(t)))

2ϕ′

x(ϕ−1
x (ε(t)))3

{

γxhϕx(H̄xh(t)) − γxϕx(H̄x(t))
}2

where η(t) lies between H̄xh(t) and H̄x(t). In

the remaining part of this proof we show the rate of convergence for each of the remainder terms. For

Rn1(t), we find

sup
0<t≤T

|Rn1(t)| ≤ ϕ′′
x(η(T )) sup

0<t≤T
(Hxh(t) − Hx(t))2.

While for Rn2(t), we use a first order Taylor expansion and have

sup
0<t≤T

|Rn2(t)| ≤ ϕ′
x(ν(T )) sup

0<t≤T
|Hxh(t) − Hx(t)|.|γxh − γx|

where ν(t) lies between H̄xh(t) and H̄x(t). After adding and subtracting some terms, and also using a

first order Taylor expansion, we find for Rn3(t),

Rn3(t) =
ϕ′′

x(ϕ−1
x (ε(t)))

2ϕ′
x(ϕ−1

x (ε(t)))3

{

ϕx(H̄xh(t))2(γxh − γx)2 + γ2
xϕ′

x(ξ(t))2(Hxh(t) − Hx(t))2

− 2γxϕx(H̄xh(t))ϕ′
x(ξ(t))(γxh − γx)(Hxh(t) − Hx(t))

}

with ξ(t) between H̄xh(t) and H̄x(t). Since Hx(T ) < 1 and Hxh(T ) → Hx(T ) a.s. (Lemma A2,

Van Keilegom and Veraverbeke (1997)), we may suppose that T < THxh
. Furthermore we have that

sup
0<t≤T

|Hxh(t)−Hx(t)| → 0 a.s. and γxh → γx a.s. (Lemma A4, Van Keilegom and Veraverbeke (1997),

Lemma A1, Braekers and Veraverbeke (2005)). Hence, we have that sup
0<t≤T

|Rn1(t)|, sup
0<t≤T

|Rn2(t)| and

sup
0<t≤T

|Rn3(t)| are all O((nhn)−1 log n) a.s.

Proof of Theorem 3: To prove asymptotic normality, we first calculate the bias and variance expres-

sions. Due to Theorem 2 we only need to consider the main term in the asymptotic representation.

After a straightforward calculation (see e.g. Aerts, Janssen and Veraverbeke (1994)), we find

n
∑

i=1

wni(x, hn)E[gtx(Zi, δi)] =
n

∑

i=1

wni(x, hn)

{

−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

(γxi
− γx) +

γxϕ′
x(H̄x(t))

ϕ′
x(F̄x(t))

(Hxi
(t) − Hx(t))

}

=
1

2
µK

2 h2
n

{

−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

γ̈x +
γxϕ′

x(H̄x(t))

ϕ′
x(F̄x(t))

Ḧx(t)

}

+ o(h2
n) + O(n−1)

n
∑

i=1

w2
ni(x, hn)Var(gtx(Zi, δi))

=

n
∑

i=1

w2
ni(x, hn)

{

ϕx(H̄x(t))2

ϕ′
x(F̄x(t))2

γxi
(1 − γxi

) +

(

γxϕ′
x(H̄x(t))

ϕ′
x(F̄x(t))

)2

Hxi
(t)(1 − Hxi

(t))

}

=
‖K‖2

2

nhn

{

ϕx(H̄x(t))2

ϕ′
x(F̄x(t))2

γx(1 − γx) +

(

γxϕ′
x(H̄x(t))

ϕ′
x(F̄x(t))

)2

Hx(t)(1 − Hx(t))

}

+ o((nhn)−1)

The asymptotic normality result for the estimator can now be obtained by checking Liapunov’s condition

for (nhn)1/2
n
∑

i=1

wni(x, hn) (gtx(Zi, δi) − E[gtx(Zi, δi)]). The (b)-part of Theorem 3 deals with the optimal

bandwidth hn = Cn−1/5 for some C > 0, which minimizes the mean squared error.
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