
éêçãçíçê=W

=

báåÇîÉêÜ~åÇÉäáåÖ=îççêÖÉÇê~ÖÉå=íçí=ÜÉí=ÄÉâçãÉå=î~å=ÇÉ=Öê~~Ç=
j~ëíÉê=áå=ÇÉ=áåÑçêã~íáÅ~=Ç~í~Ä~ëÉë

^=ëíìÇó=çÑ=èì~åíáí~íáîÉ=~åÇ=èì~äáí~íáîÉ=ãÉíÜçÇë=Ñçê=
íê~àÉÅíçêáÉë

mêçÑK=ÇêK=_~êí=hrfgmbop

gÉääÉ=s~å=eççÑ

A study of Quantitative and
qualitative methods for trajectories

Jelle Van Hoof

Promotor:
Prof. dr. Bart Kuijpers

Begeleiders:
Bart Moelans Walied Othman

Thesis voorgedragen tot het behalen van de graad
van master in de informatica.

Universiteit Hasselt - transnationale Universiteit Limburg

Academiejaar 2006–2007

Abstract

In this work, we discuss two qualitative and two quantitative methods for
similarity search for trajectories in R2 × T. The two qualitative methods
that are discussed are the Double–Cross and the Twisted–Cross and the
quantitative methods are the Fréchet Distance and the Hausdorff Distance.

Distance measures are very important in computer science, since they are,
for example, used for similarity search, query by example and clustering.

Before we start with this study, we will first take a look at the objects we
like to compare: trajectories in R2×T. We will define and discuss them and
give a definition and an algorithm to generalize these trajectories.

Then we will give an explanation on how these different methods work, their
differences and their similarities and their use in similarity search.

The focus in this work, however, will be on the Fréchet–based Distance for
trajectories: a new distance measure, inspired by the Fréchet Distance. We
will give an algorithm for this new distance measure and we will prove that
it stops and that it has an optimal running time.

In the end, we will use the algorithm for the Fréchet–based Distance to
calculate similarities between different trajectories and we will use it for
clustering. All these tests are performed with our own program, designed
to test these algorithms, named Algorithmtester. We will see that the algo-
rithm returns excellent results with very little computational time needed.

i

Acknowledgements

A work like this one, is not one that just pops into existence. It requires
a lot of time, a lot of work and a lot of support. When any of these three
ingredients is missing, it is very difficult to complete a decent work.

I will not go into detail about the time or the work, but I would like to thank
those people who has helped me with the creation of this work, whether it
be by just believing in me or guiding me and helping me to avoid many of
the pitfalls that exist.

In the first group, I like to thank my parents, in the first place for giving
me the opportunity to study. Without them I would never have been able
to start this work in the first place. I would also like to thank my girlfriend,
for being there when I needed her.

Second, I like to thank the people in the last group: Prof. dr. Bart Kuijpers,
Bart Moelans and Walied Othman, who helped me, supported me, aided
me, agreed and disagreed with me and gave me a chance to work on the
interesting subject of this thesis.

I like to end with thanking all those people, not mentioned here, who helped
with little things and who gave me little tips and such. Your input, how
small it may have been, was surely appreciated.

ii

Dutch summary
Nederlandse samenvatting

Inleiding

GSM. PDA. GPS. De tijd staat niet stil en elke dag komen er meer en meer
van deze toestellen in omloop, maar niet alleen het aantal toestellen stijgt,
ook de hoeveelheid data gegenereed door deze toestellen neemt continu toe.

Deze data kan gebruikt worden om nieuwe kennis te vinden, kennis met een
economische of sociale impact. Maar om deze kennis te vinden in de enorme
massa rauwe data, hebben we technieken nodig, technieken die rekening
houden met de privacy van de bron van de data.

Het Europese GeoPKDD project [geo] – Geographic Privacy-aware Knowl-
edge Discovery and Delivery – is een project dat zich als doel heeft gesteld
om dergelijke methodes te vinden die zoveel mogelijk kennis kunnen halen
uit verzamelde data waarbij de privacy van de bron van deze data ten alle
tijde gerespecteerd wordt. Hierbij wordt gebruik gemaakt van datamining
technieken zoals similarity search.

Deze technieken worden in dit project aangewend in het GIS – Geographic
Information Science – domein, maar ze kunnen net zo goed in andere
domeinen toegepast worden. Voorbeelden van het gebruik van deze tech-
nieken in andere domeinen, kan men terugvinden in Hoofdstuk 1 en meer-
bepaald in Figuur 1.1 en Figuur 1.2.

In dit werk concentreren we ons op similarity search zoals het gebruikt wordt
in het vermelde project. Meer specifiek, nemen we een kijkje naar twee grote
groepen van methodes: kwalitatieve en kwantitatieve methodes.

iii

iv

Op de verschillen tussen deze twee groepen van methodes komen we later
terug, maar beide methodes maken gebruik van een bepaalde notie van afs-
tand: een afstandsmaat. Afstandsmaten zijn niet alleen belangrijk en nuttig
voor similarity search, maar worden o.a. ook gebruikt om bij clustering en
query by example.

De focus in dit werk ligt op deze afstandsmaten en het maakt het daarom
ook perfect mogelijk om dit werk te bekijken vanuit een andere invalshoek
dan louter en alleen similarity search.

Trajecten

Voor we deze methodes kunnen gebruiken, moeten we eerst het type data
definiëren waarop we deze willen toepassen. In deze thesis werken we met
trajecten. Een traject is een polylijn waarbij elke vertex voorzien is van een
tijdstip.

Dit tijdstip kan eender welke vorm aannemen, maar we kunnen elk tijd-
stip steeds mappen naar een waarde in R. Een precieze definitie kan men
terugvinden in hoofstuk 2, Definitie 1.

Het generalizatie principe en kwalitatieve methodes

Het generalizatie principe

Indien we met deze trajecten willen werken en similarity search toepassen op
deze trajecten, zijn er enkele problemen die kunnen optreden die we gelukkig
vrij makkelijk kunnen oplossen met een generalizatie.

• Bepaalde afstandsfuncties toegepast op de kwalitatieve voorstelling
van trajecten aan de hand van een Double–Cross of een Twisted–Cross,
vereisen dat de te vergelijken trajecten evenveel vertices hebben.

• Generalizeren normaliseert de trajecten.

• Het voorgestelde concept maakt het mogelijk om onze technieken ook
op trajecten met curves toe te passen, zoals getoond in Figuur 3.1.

• Het lost de problemen op die kunnen opduiken bij een Boundary–
Based benadering, gëıllustreerd in Figuur 3.2.

Een precieze definitie kan gevonden worden in Sectie 3.1 en het algoritme in
Listing 3.1. Het principe was voorgesteld in [VDKD05], maar de code zoals
die in dit werk staat komt uit [KM06].

v

In [KM06], was het bewijs gegeven dat dit algoritme stopt op eender welke
input, maar het bewijs bevatte een fout. We hebben deze fout uit het
bewijs gehaald en het bewijs overeenkomstig aangepast. Details staan in
Sectie 3.1.2.

Kwalitatieve methodes

Kwalitatieve methodes [VDKD05, KMV06, KM06] voor similarity search
zijn nog erg jong in vergelijking met kwantitative methodes [AG95, HKR93]
en het aantal publicaties hierover is nog vrij klein. We beperken ons in dit
werk dan ook tot een kortere inleiding in dit principe.

Kwalitatieve methodes maken geen gebruik van de absolute posities van
de te vergelijken objecten, maar van de onderlinge relatieve posities van
de segmenten van een object. Dit zorgt er o.a. voor dat deze technieken
ongevoelig zijn voor transformaties zoals translaties, rotaties en schaling
[KM06].

Een nadeel van deze techniek is dat het bijna onmogelijk is om, gegeven
een kwalitatieve representatie van een traject, het originele traject terug te
vinden. Maar dit kan ook als een voordeel gezien worden, omdat dit meer
bescherming biedt voor de privacy van de oorspronkelijke data.

De twee methodes die in dit werk besproken worden zijn de Double–Cross
Methode, besproken in Sectie 3.2.1 en de Twisted–Cross Methode, bespro-
ken in Sectie 3.2.2, beide methodes stellen een traject voor als een matrix,
waarbij elke cel een code bevat die de relatieve positie tussen twee vertices
in dit traject voorstelt.

Het verschil tussen de twee methodes zit voornamelijk in de manier waarop
de codes gevonden worden. Hoewel beide methodes een matrix opleveren, is
het onzin om een matrix bekomen door de ene methode te vergelijken met
een matrix van de andere methode.

Kwantitatieve methodes

Kwantitatieve methodes voor similarity search, maken gebruik van gekende
lengtematen om zo de afstand, oftewel het verschil tussen twee objecten uit
te drukken.

In dit werk bespreken we twee van de meer bekender methodes: Hausdorff
afstand in Sectie 4.1 en Fréchet afstand in Sectie 4.2. Maar het zwaartepunt
van dit werk ligt op een nieuw gevonden afstandsmaat, gebaseerd op de
Fréchet afstand: de Fréchet–based afstand voor trajecten.

vi

De Hausdorff afstand [Bla] is een kwantitatieve afstandsmaat waar al heel
wat onderzoek naar verricht is in het domein van similarity search. Deze
afstandsmaat wordt gebruikt vanwege zijn snelheid en de goede resultaten
die deze oplevert in de meeste gevallen.

De definitie kan teruggevonden worden in Sectie 4.1.1, Definitie 7. Deze af-
standsmaat is een metriek voor elke gesloten ruimte [Hen99] en een pseudo–
metriek voor elke niet–gesloten ruimte. Dit laatste wordt aangetoond in
Figuur 4.1.

Gebaseerd op Definitie 7, hebben we een algoritme gevonden dat de assym-
metrische Hausdorff afstand berekent voor onze trajecten in R2 × T. Dit
algoritme kan teruggevonden worden in Listing 4.1. Dieper zijn we in dit
werk niet ingegaan op de afstandsmaat, door de uitwerking van de uiterst
interessante Fréchet–based afstand.

Deze Fréchet–based afstand is gebaseerd op het principe de gekende Fréchet
afstand [God98] waarvan de definitie staat in Sectie 4.2.1, Definitie 9. Een
eenvoudigere omschrijving van deze afstandsmaat wordt meestal als volgt
gegeven: neem een man en zijn hond die aan het wandelen zijn. Beiden vol-
gen een eigen route en de Fréchet afstand zoekt de kortst mogelijke halsband
die nodig is tussen de man en zijn hond tijdens deze wandeling.

In de praktijk zoekt deze afstandsmaat naar een ideale tijdsparametrisatie
om deze afstand te vinden, maar dit is een zeer tijdrovende operatie [AG95,
AHK+06]. Onze trajecten zijn al voorzien van een tijdswaarde: elke vertex
bevat immers een tijdstip.

Als we deze bestaande tijdswaardes zouden gebruiken om onze kortste leiband
te vinden, dan kunnen we veel tijd besparen doordat we geen tijdsparametriza-
tie hoeven te zoeken. Hoewel deze bestaande tijdsfunctie niet de ideale is,
levert ze wel uitstekende testresultaten op, wat we later zullen bespreken,
in Hoofdstuk 5.

Deze nieuwe afstandsmaat wordt voorgesteld in Sectie 4.2.2, waar we meteen
een algoritme terugvinden in Listing 4.2. Dit algoritme werkt uiterst snel: de
complexiteit van dit algoritme is in de orde van O(n+m), wat veel sneller is
dan het klassieke, algemene algoritme voor de Fréchet afstand [AG95]. Het
is zelfs geweten dat, voor objecten in een ruimte met een dimensie van 4 of
groter, dit een NP-hard probleem is [God98].

vii

De bewijzen dat ons nieuwe algoritme stopt, zijn complexiteit en het opti-
maal zijn van deze complexiteit, staan in detail in Sectie 4.2.5. We zijn ook
nagegaan of deze nieuwe afstandsmaat ook een metriek is, maar hoewel de
niet-negativiteit, scheidingseigenschap gelden, geldt symmetrie alleen indien
de twee trajecten een gelijk aantal vertices hebben en geldt driehoeksongeli-
jkheid niet. Bewijzen hiervan staan gedetailleerd uitgelegd in Sectie 4.2.7.

Similarity search

Similarity search is de zoektocht naar gelijkaardigheid. Dit kan, bijvoor-
beeld, het zoeken zijn naar twee objecten of figuren die erg hard op elkaar
lijken of het zoeken naar bepaalde patronen in complexe figuren. De mogeli-
jkheden zijn legio en similarity search ken dan ook toepassingen in verschil-
lende domeinen, van de medische wereld [Kel06, NCV+03] tot het domein
van GIS [geo, BPSW05].

Wij beperken ons tot similarity search zoals het gebruikt wordt binnen het
GeoPKDD project: om te zoeken naar trajecten die erg op elkaar gelijken
en om clusters van interessante trajecten te vinden.

Similarity search met kwalitatieve methodes

Kwalitatieve methodes komen in dit werk alleen als illustratie naar voren en
zijn niet in detail besproken. Ook in dit stuk van het werk wordt er niet te
diep op ingegaan, maar geven we slechts een beschrijving van het principe.

Zowel met de Double–Cross methode als met de Twisted–Cross methode,
wordt er van elk traject een matrix aangemaakt, waarbij elke cel de relatieve
positie tussen twee vertices van dit traject bevat. Met behulp van deze
matrices, kan men dan een graad van gelijkaardigheid tussen twee trajecten
bepalen. Meer details en de precieze formule kan men in Sectie 5.1 vinden.

Similarity search met de Hausdorff afstand

De Hausdorff afstand wordt meestal gebruikt om te zoeken naar speci-
fieke figuren binnen een complex patroon [HKR93], bijvoorbeeld naar kleine
cirkels in een grotere afbeelding.

Hiervoor is het toegestaan om de te vergelijken figuren te roteren of schalen
om de afstand te minimaliseren. Formeel kan men zeggen dat similarity
search met deze afstandsmaat op de volgende manier gebeurt: Bepaal een
translatie, rotatie of schaling of een combinatie, die de Hausdorff afstand
tussen de te vergelijken objecten minimaliseert [HKR93].

viii

Indien de dan gevonden afstand kleiner is dan een gegeven drempelwaarde,
worden de objecten als gelijkaardig beschouwd. In Figuur 5.2 vinden we een
voorbeeld van een succesvol gebruik van de Hausdorff afstand. Helaas houdt
deze afstand geen rekening met de oriëntatie van de objecten en indien we
naar Figuur 5.1 kijken, zien we twee figuren die een kleine Hausdorff afstand
hebben, hoewel ze verre van gelijkaardig zijn.

Om dit probleem te vermijden, wordt er vaak gebruik gemaakt van de
Fréchet afstand.

Similarity search met de Fréchet afstand

Similarity search met de Fréchet afstand is erg gelijkend op deze met de
Hausdorff afstand. In het algemeen wordt similarity search met deze afs-
tandsmaat beschouwd als een beslissingsprobleem: is de afstand tussen twee
objecten kleiner dan een gegeven drempelwaarde of niet? [AKW01]

Helaas is het algoritme om de Fréchet afstand te bereken niet bruikbaar
in de praktijk [AG95] en wordt er meestal gebruik gemaakt van algoritmes
of definities, die specifiek zijn aangepast aan het domein van het probleem
[AHK+06].

Similarity search met de Fréchet–based afstand

Om onze nieuwe afstandsmaat te testen volgen we het het idee dat gebruikt
wordt voor alle Fréchet gebaseerde afstandsmaten: we zoeken of de afstand
tussen twee objecten kleiner is dan een gegeven drempelwaarde.

Onze eerste test bestond uit het clusteren van een verzameling trajecten.
Deze trajecten zijn gevisualiseerd in Figuur 5.3. De testresulaten zijn erg
afhankelijk van het gebruikte systeem, dus willen we er even op wijzen dat
alle testen zijn gebeurd met een systeem met een Intel c© Centrino c© Duo 1.86
GHz processor en 2GB RAM met Microsoft WindowsTMXP Professional als
besturingssysteem.

Als testprogramma wordt er gebruik gemaakt van Algorithmtester, een pro-
gramma dat we speciaal voor deze testen ontworpen en gëımplementeerd
hebben met als clusteralgoritme een k–means algoritme [HK01]. Meer de-
tails over dit programma staan in Appendix B.2.

Resultaten van het clusteren kunnen teruggevonden worden in de Figuren
5.4 en 5.5. Het is duidelijk te zien dat het algoritme de verwachte clusters
ook terugvindt en dat dit uiterst snel gebeurd: respectievelijk in gemiddeld
375ms voor 5 clusters en 406.5ms voor 6 clusters.

ix

Om meer rechtstreeks de gelijkaardigheid tussen twee trajecten te bepalen,
hebben we code toegevoegd om te zoeken naar een goede combinatie van
translaties, rotaties en schaling zodat de figuren zo goed mogelijk passen.
De exacte werking van dit algoritme staat, met illustratie, in Sectie 5.4.3.

Onze code is niet de “ideale” oplossing, maar wel een erg snelle oplossing.
Het vinden van de “ideale” translatie is immers geen sinecure: in [AKW01]
wordt een techniek voorgesteld om deze te vinden, maar deze houdt geen
rekening met de mogelijkheid van rotaties of schaling.

De complexiteit van dit voorstel is O
(
(mn)3(m+ n)2

)
, terwijl ons voorstel

slechts een enkele translatie en rotatie nodig heeft. Het grootste nadeel
is dat onze eigen methode niet de perfecte transformaties gebruikt, zoals
aangetoond in Figuur 5.8, maar het resultaat is goed genoeg voor onze
doeleinden en door de grote snelheid heeft het zeker een uitstekend praktisch
nut.

Toekomstig onderzoek

Hoewel we reeds verschillende vragen over de Fréchet–based afstand beant-
woord hebben, blijven er veel vragen onbeantwoord. Welke methode is de
beste? Wanneer is welke methode de beste en waarom? Is er een verband
tussen de methodes? Deze en nog andere vragen blijven voorlopig onbeant-
woord. Zoals we kunnen zien in Figuur 6.1, vermoeden we dat er een verband
bestaat tussen onze nieuwe afstandsmaat en de kwalitatie methodes. Een
specifiek onderzoek van dit vermoeden, ligt echter buiten dit werk.

Contents

1 Introduction 1

2 Trajectories 8
2.1 Definition . 9
2.2 Set of timestamps T . 9
2.3 Distance metrics . 10

3 The generalization principle and qualitative methods 12
3.1 Generalization principle . 13

3.1.1 Definition . 13
3.1.2 Algorithm generalize trajectory 14

3.2 Qualitative methods . 16
3.2.1 The Double–Cross method 17
3.2.2 The Twisted–Cross method 20

4 Quantitative methods 23
4.1 Hausdorff Distance . 23

4.1.1 General Definition . 23
4.1.2 Algorithm Hausdorff Distance for trajectories 25
4.1.3 Definition Hausdorff Distance for trajectories 27
4.1.4 A note on Hausdorff Distance in this work 28

4.2 Fréchet Distance . 28
4.2.1 General definition . 28
4.2.2 Algorithm for Fréchet–based Distance 29
4.2.3 Note on 2- and 3-dimensional distance 33
4.2.4 Note on curved trajectories 35
4.2.5 Properties of the algorithm 35
4.2.6 Definition of the Fréchet–based Distance 36
4.2.7 Properties of the Fréchet–based Distance 37

5 Similarity Search 41
5.1 Similarity search with the Double–Cross 41
5.2 Similarity search using the Hausdorff Distance 42
5.3 Similarity search using the Fréchet Distance 44

x

Contents xi

5.4 Similarity search with the Fréchet–based Distance 44
5.4.1 Testsoftware . 44
5.4.2 Testresults for clustering 45
5.4.3 Testresults with special trajectories 49

6 Conclusions 52
6.1 General conclusions . 52
6.2 Further research . 53

A Double–Cross codes 58

B Used tools 59
B.1 Simple Shape Tool . 59
B.2 Algorithmtester . 60

Chapter 1

Introduction

Every day, more and more data pertinent to moving objects, is collected
from mobile phones, GPS–devices and other location–aware devices. This
increasing collection of data contains enormous amounts of knowledge, both
in space and time. Knowledge that can be used to find new applications
with economical and social impact. Of course, we need techniques to find
useful knowledge in this massive amount of raw data.

One important problem with the study of these datasets, is privacy. Extract-
ing knowledge from this raw data, must be done with privacy–preserving
methods and the European GeoPKDD project – Geographic Privacy-aware
Knowledge Discovery and Delivery [geo] – concentrates on finding useful
knowledge, with respect to the privacy of the providers of this data by using
datamining techniques, like similarity search, to find interesting patterns.

The GeoPKDD project uses the mentioned techniques to find interesting
information in the domain of Geographic Information Science (GIS). But
similarity search or the distance measures and techniques used for similarity
search, can also be used for other applications in the GIS domain, like map
matching [BPSW05], clustering [HK01] or query-by-sketch [KMV06].

Even in domains completely different from GIS, such as medical science, can
we find these techniques where they are used, for example, to find anoma-
lies in an ECG [Kel06] or to find cancercells in human tissue [KYM+05,
NCV+03]. Examples can be found in Figure 1.1 and Figure 1.2.

When used with an ECG, the pattern recorded by the machine is compared
with a database with known problems. By matching the recorded pattern
with patterns in a database, it can be easier and faster to diagnose a patient
correctly.

1

Chapter 1. Introduction 2

Figure 1.1: Example of similarity search for an ECG [Kel06].

In Figure 1.2, an application for finding cancercells in human tissue is used.
The RNA data is extracted from the tissue and clustered accordingly. Then
the found profile is matched, using similarity search techniques, against
cancerprofiles to find cancer in the tissue. Since this is all done at the
RNA level, it is possible to find a starting cancer much sooner by using this
technique.

Figure 1.2: Hierarchical clustering of RNA expression profiles [NCV+03].

Chapter 1. Introduction 3

In this work, we take a look at similarity search as it is used with the
GeoPKDD project. Even more specific, we take a look at two general meth-
ods of similarity search: quantitative methods and qualitative methods. Since
we concentrate on geographical data with a time dimension, we will work
with methods for trajectories and, more specifically, trajectories only con-
taining straight edges, of which an example can be seen in Figure 1.3(b).

(a) A trajectory with curved edges (b) A trajectory with only straight
edges

Figure 1.3: Example trajectories.

Although we do not consider curved trajectories, like the one in Figure 1.3(a),
it is not impossible to use our methods with curved ones. Every curved tra-
jectory can be approximated by using a piecewise linear function. This
approximation only contains straight edges and thus it can be used with the
techniques that we will propose in this work.

Another thing we might consider is that a trajectory in the real world can
look like Figure 1.3(a), but its digital representation might contain only
straight edges. Consider a man walking along the trajectory in Figure 1.3(a),
carrying a GPS device to record his movement.

Assume the device records it’s position at certain time intervals and that
the corresponding geographical points are a, b, c and d. Since there is no
information known about the route between these points, they are often
considered to be the shortest path between two recorded points and thus a
trajectory with only straight edges is created.

For easier computation and because it solves some problems that might arise
with qualitative methods, we generalize all trajectories with a generalization
principle, discussed in Section 3.1. This principle does not only solve the
mentioned problems with qualitative methods, it can also be used to find a
very good piecewise linear approximation of curved trajectories, as can be
seen in Figure 3.1.

Chapter 1. Introduction 4

But what is such a trajectory? A trajectory can be seen as a path on a
map: a route going from one geographical place (the startvertex) to another
(the endvertex). Following this path takes time and at certain moments in
time, we will mark our current position (a vertex along the trajectory). Or
at certain positions we mark the time. An example of a map with such a
trajectory can be found in Figure 1.4.

Figure 1.4: A simple illustration of a map with a trajectory projected onto it.

This example should give an excellent idea what trajectories are. A formal
definition can be found in Section 2.1.

Remember the two principles mentioned before: quantitative methods and
qualitative methods. In the past, research mostly focussed on quantitative
methods, where similarity is calculated by using a distance measure and the
smaller the distance between two objects, the more equal they are. Or the
problem is solved as a decision problem: is the distance between two objects
smaller than a given threshold [AG95], then they are considered similar.

Qualitative methods are different: if we take a look at the qualitative meth-
ods studied in Section 3.2, the Double–Cross principle [VDKD05, KMV06]
and the Twisted–Cross principle [KM06], we see that qualitative methods
return a percentile degree of similarity. Note that the second method is
based on the first one. These methods are studied in Section 3.2.1 and
Section 3.2.2.

Chapter 1. Introduction 5

These principles find a matrix representation of a trajectory, by calculating
the relative positions of each segment in the trajectory to the others. A
Double–Cross Matrix (DCM) can be found in Table 3.2 and in Table 3.1 we
will find a Twisted–Cross Matrix (TCM). When we have a matrix represen-
tation of two trajectories, we can compare these matrices to determine their
similarity, according to their similar entries. Of course, comparing a DCM
with TCM makes no sense.

Now back to the quantitative methods. Two well-known and much used dis-
tance measures for quantitative methods are the Hausdorff Distance [HKR93,
AHSW03] and the Fréchet Distance [AHK+06, God98, AG95, AKW01].
These are not the only two possibilities, but most other distance measures
are used for specific domains or problems, like Dynamic Time Warping
[Kel06].

The Hausdorff Distance is mostly used to find specific figures or patterns,
e.g. circles, in a complex figure [HKR93]. It is a fast distance measure with
good results, but it doesn’t work with some special cases, as we will see later
in this work.

Improvement is always possible and we have designed an algorithm for our
trajectories that calculates the Hausdorff Distance between these two trajec-
tories in asymptotic time O (m · n), with m and n the number of vertices in
each trajectory, while the general algorithm for the Hausdorff Distance in R2

needs O ((m+ n) log (m · n)) [AHSW03]. The full algorithm in pseudocode
can be found in Listing 4.1.

Why is our algorithm that much faster? This is because we work with
trajectories only containing straight edges and because we work with finite
datasets. We know where every trajectory starts and ends and we know the
total amount of vertices in each trajectory.

The Fréchet Distance is used for the same purpose as the Hausdorff Distance
and gives us more precise results and does not suffer from the problems the
Hausdorff Distance suffers, as we will see later in Chapter 5. And it has
the same asymptotic time complexity as the Hausdorff Distance, but with
enormous constants.

In fact, because of these enormous constants, the general algorithm for the
Fréchet Distance is not applicable in practize [AG95]. Finding an algorithm
for any metric space with dimension n ≥ 4 is a NP–hard problem [God98].

Because of these problems, the Fréchet Distance itself is not really used in
practical solutions, but a distance derived from the Fréchet Distance is used
instead, like the Discrete Fréchet Distance [AHK+06], for example.

Chapter 1. Introduction 6

The Discrete Fréchet Distance calculates the Fréchet Distance between two
polylines, but instead of using the entire polylines, only the vertices are used.
With other words, the Fréchet Distance is calculated between two sets of
points in space.

In this work, we followed the Fréchet idea and a great deal of time and
work has been put in finding a new algorithm, designed for trajectories,
based on the Fréchet Distance: Fréchet–based Distance for trajectories. The
algorithm can be found in pseudocode in Section 4.2.2 and more specifically
in Listing 4.2.

This new distance measure became the main focus of this work, because of
it’s excellent complexity and runtime, O (m+ n), of which the proof can be
found in Section 4.2.5. We found that it works very well with clustering and
other techniques for similarity search. The exact results of such tests can
be found in Section 5.4.

We have been mentioning similarity search in the past pages, but how is
it defined exactly? Similarity - in general - can be defined as some degree
of symmetry or resemblance between two or more concepts or objects. For
any kind of object in a metric space and for trajectories we can define many
different kinds of similarity. Whatever detailed definition of similarity one
uses, some kind of degree of similarity is always used as we will see in more
detail in Chapter 5.

Figure 1.5: Illustration of different notions of similarity. Note that the circles are
purely for easier understanding of the picture.

The exact definition of similarity greatly differs between research. If we take
a look at research using quantitative methods, we see that Huttenlocher et al.
[HKR93] consider objects similar when they are the same, after translation,
rotation and/or scaling. A small square and a greater square, are considered
similar.

While Alt et al. [AKW01] are a bit stricter: objects are only considered
similar, when they are the same after translating, but they do not consider
rotation or scaling.

Chapter 1. Introduction 7

If we take a look at Figure 1.5, for these two notions of similarity, we see
that Huttenlocher would consider all three lines very similar, while Alt would
consider line A en line C to be more equal than line A en line B or line B
and line C.

If we would use a very strict notion of similarity, where two object can only
be similar if they are exactly the same, without any transformations. Then
line A in Figure 1.5 would be considered more similar to line B than to line
C. This last notion of similarity is not really used in reality: it serves here
as an example.

Chapter 2

Trajectories

In the previous chapter, we gave an informal definition of a trajectory as a
route on a map, with markings at certain points. Logically, a point on such
a trajectory contains two coordinates for the position of the specific point
and a timestamp, a position in time. But these simple point and timevalue,
give us a lot of information.

Recall the trajectory in Figure 1.4. What do we know of a person walking
along this trajectory?

• The position of the person at a given time.

• The direction of his movement.

• The average speed at which he is walking.

• Some of the accelerations along the trajectory.

• The travelled distance.

• The time needed to walk the entire trajectory.

• Start– and endtimes.

This list illustrates the fact that by just adding a single time value for every
vertex in a trajectory, the amount of information that can be derived from
the trajectory increases greatly. And this makes trajectories very interesting
objects to research.

This time value and the extra information it holds, made us take a look
at the Fréchet Distance, which uses timeparametrizations to find a distance
between two curves and it is this time value that gave us the idea for our
new distance measure, discussed in Section 4.2.

After the informal definition mentioned before, let us now give a more formal
and precise definition of these useful trajectories.

8

Chapter 2. Trajectories 9

2.1 Definition

Let R denote the set of real numbers, R2 the real plane and T a set of
timestamps.

Definition 1 (Trajectory). A trajectory T ⊂ R2 × T is a piecewise linear
curve that is given by its vertices ordered by the timestamp ∈ T, i.e. T =
〈(x0, y0, t0) , (x1, y1, t1) ... (xn, yn, tn)〉 where ∀ i ∈ [0, n] : ti < ti+1

Let T = 〈(x0, y0, t0) , (x1, y1, t1) ... (xn, yn, tn)〉 be a trajectory. The vertices
(x0, y0, t0) and (xn, yn, tn) are respectively the start and end vertex of T .

We denote the line segment between (xi, yi, ti) and (xi+1, yi+1, ti+1) by Li (T),
its length by ` (Li (T)) and its time duration by td (Li (T))

We call ` (T) := ` (L0 (T)) + ` (L1 (T)) + ...+ ` (Ln−1 (T)) the length of T.

If T is clear from the context, we will omit (T) from the above notations.

The semantics of the trajectory T = 〈(x0, y0, t0) , (x1, y1, t1) ... (xn, yn, tn)〉
is the subset of R2 × T consisting of all line segments between consecutive
vertices of T, and we write:
sem (T) :=

⋃
1≤i<n

Li (T)

Often, when confusion is not possible we will just talk about T when we mean
sem(T).

2.2 Set of timestamps T

As T is defined as “a set of timestamps” as seen in Section 2.1, we can actu-
ally use anything to represent these timestamps as long as we use something
that has an order defined on it. Most of the time, we will just use R for our
timestamps, but there will always be an order on the used values: after all,
we cannot go back in time.

In the remainder of this work, all timestamps will be represented with el-
ements of R. If any other notion for the timestamps would be used, it is
possible to map every value used in that notion to a value in R.

One well-known, but very important definition remains: that of a metric.
This work contains different distance measures for trajectories and if we like
to use and compare them, it is interesting to know if the measure in question
is a metric or not. The reason why can be found in the next section.

Chapter 2. Trajectories 10

2.3 Distance metrics

Metrics [Wei] and pseudometrics [Bar] are well known in modern geometry.
We will first define the term metric and then use this definition to define
the term pseudometric.

Definition 2 (Metric). A metric is a nonnegative function g(x, y) describing
the distance between different points for a given set that satisfies following
conditions:

1. Triangle inequality: g (x, y) ≤ g (x, z) + g (z, y)

2. Symmetry: g (x, y) = g (y, x)

3. Identity: g (x, y) = 0⇔ x = y

4. Non–negativity: g (x, y) ≥ 0

Definition 3 (Pseudometric). A pseudometric is a metric that allows the
distance between two different points to be zero.

Knowing of a distance measure is a metric is very interesting, because simi-
larity search with quantitative methods, as we will see in Chapter 5, is done
by measuring the distance between two objects and considering two objects
more equal as their distance decreases. Two objects with a distance ’0’ are
considered the same.

This is not possible without non–negativity and identity, after all, when
two objects are the same but their distance is greater than ’0’, they would
be considered not equal or even, if the distance is large enough, dissimilar
[God98, HKR93, AHSW03].

The triangle inequality and symmetry are also interesting properties. If the
symmetry doesn’t hold, this means that it is possible for one object to be
very simmilar to another object that is very dissimilar to the first.

Distance measures like this are sometimes used, e.g. asymmetric Hausdorff
Distance, as described in Definition 7. This problem is then solved by com-
puting both distances and using the smaller one, as can be seen in the same
Definition 7.

The triangle inequality can be used to find bounds for uncalculated dis-
tances, by using calculated distances and thus it can speed up calculations
[BFM+96b]. Sometime similarity methods are based on the triangle inequal-
ity [BFM+96a] and only a metric can be used with these techniques.

Chapter 2. Trajectories 11

With some knowledge of trajectories in R2×T and an idea what metrics and
pseudometrics are, we can now study some interesting distance measures for
these trajectories: qualitative and quantitative methods.

We will first discuss the generalization principle and the qualitative methods
this principle was originally designed for in Chapter 3: the Double–Cross
and the Twisted–Cross.

Chapter 4 will start with the Hausdorff Distance in Section 4.1, which will
not be discussed in great detail, but what will serve as an introduction before
we move on to Fréchet Distance in Section 4.2, based on which we found a
new distance measure for trajectories: the Fréchet–based Distance, as given
in Section 4.2.2.

Chapter 3

The generalization principle
and qualitative methods

If we like to study these trajectories defined in the previous chapter and,
more specifically, if we like to calculate some kind of similarity between
different trajectories, some problems might arise, that can be solved with a
generalization.

• Some distance functions used with the qualitative Double–cross or
Twisted–cross representations of trajectories, require that both tra-
jectories to be compared have the same number of vertices. Examples
of such distance functions can be found among matrix–based distances.
Generalizing the trajectories can solve this problem.

• This concept makes it possible to represent a curve with a polyline
only containing straight edges, this can speed up calculations or can
make it possible to use methods that only work with such polylines.
An example of this can be found in Figure 3.1.

• Since qualitative methods work with relative positions, as we will see
in Section 3.2, the two figures in Figure 3.2 would be considered the
same. But when we first generalize these two trajectories with the
method described in Section 3.1, this problem does not occur.

12

Chapter 3. The generalization principle and qualitative methods 13

Figure 3.1: The curved line T is approximated by T 4 and T 8. It is clear that the
higher the n in T 2n

, the better the approximation.

Figure 3.2: A problem with a boundary–based approach [VDKD05].

3.1 Generalization principle

Now we have given a summary of the advantages of the principle, let’s
continue with the formal definition of the generalization principle [VDKD05].

3.1.1 Definition

Definition 4 (Generalized trajectory).
Let T = 〈(x0, y0, t0) , (x1, y1, t1) ... (xn, yn, tn)〉 be a trajectory. We define the
generalized trajectory of T, denoted T 2, T 4, T 8, ... , T 2n

, ... as follows.
T 2n

= 〈(u0, v0, w0) , (u1, v1, w1) ... (u2n , v2n , w2n)〉with (ui, vi, wi) the unique
point on sem(T) where wi = t0 + i

2n · (tn − t0).

This generalization concept can be used for polylines containing only straight
edges as well as for polylines also containing curved edges, because the dis-
tance along a curved line can be measured [VDKD05].

Of course, this is not the only existing generalization, but it is the one that
will be used in this work, so will just call it generalized trajectory, instead
of using any specific name.

Chapter 3. The generalization principle and qualitative methods 14

3.1.2 Algorithm generalize trajectory

The algorithm to calculate a generalized trajectory is fairly simple and
straightforward. It is given in pseudocode in Listing 3.1 and can be found
in [KM06]. The concept of this specific generalization was proposed in
[VDKD05].

Listing 3.1: Algorithm generalize trajectory

1 Function g e n e r a l i z e t r a j e c t o r y
2 Input : t r a j e c t o r y T; th r e sho ld 0 < ε ≤ 1
3
4 Set : n := 1
5 compute T 2 ;
6
7 while |`

(
T 2n)− ` (T) | ≥ ε

8 n := n + 1
9 compute T 2n

from T 2n−1
and T ;

10 end ;
11
12 return T 2n

;
13
14 end f unc t i on ;

Although the algorithm was given in [KM06], the proof that the algorithm
would stop on any input contained an error: case 1(b) of the proof, illus-
trated in Figure 3.3, was not included. We corrected this proof so we would
be able to use this principle in the remainder of this work.

Proposition 1. The algorithm generalize trajectory in Listing 3.1
terminates on any input T and 0 < ε ≤ 1.

Proof. To prove this property, it suffices to show that for any trajectory T
and any 0 < ε ≤ 1, there exists an n ≥ 1. Such that

∣∣`(T)− `(T 2n
)
∣∣ < ε.

We prove this by showing that lim
n→∞

`
(
T 2n)

= ` (T).

If we construct T 2n+1
from T 2n

and T there are two possible cases:
Case (1): if each vertex of T 2n+1

is also an element of sem(T 2n
), then there

are two subcases: (a) sem(T 2n
) = sem(T) or (b) sem(T 2n

) 6= sem(T). 1

1If we take a look at an example of a trajectory where this case arises in Figure 3.3,
we can clearly see that, sem(T 4) and sem(T 8) are equal, but neither one of them is equal
to sem(T). As we can see on the picture, this is because we have unhandled vertices. If

sem(T 2n

) = sem(T 2n+1
) 6= sem(T), it will always be because there is some part of T that

is not (yet) generalized.

Chapter 3. The generalization principle and qualitative methods 15

Case 1 (a): If we construct T 2n+1
from T 2n

and T and sem
(
T 2n)

and
sem (T) are equal, then they contain the same vertices and the same line-
segments between these vertices (See Definition 1). Thus we can conclude
that `

(
T 2n)

= `
(
T 2n+1

)
= ` (T), the stopcondition is satisfied and the

algorithm will stop.

Case 1 (b): sem
(
T 2n) 6= sem(T). ⇒ ∃ m > n : T 2m

has at least one vertex
w : w /∈ sem

(
T 2n)

. Because every T 2n+1
is constructed from T 2n

, we know

that `
(
T 2n+1

)
≤ `

(
T 2n)

. Of course, ∀ n ≥ 1 : `
(
T 2n) ≤ ` (T). If we now

use the triangle inequality, we can conclude that `(T 2n
) < `(T 2m

) ≤ `(T).

Case (2): there is at least one vertex v of T 2n+1
that is not an element of

sem(T 2n
). We can use the same deduction as (1b): because of the triangle

inequality and by construction, we know that `(T 2n
) < `(T 2n+1

) ≤ `(T).
And thus we can conclude that ∀ m ∈ R with m > n : T 2m

wil converge
towards T .

Or in other words: there is at least one vertex of sem(T 2n+1
) that is not an

element of sem(T 2n
). This means that `(T 2n

) < `(T 2n+1
) and, by construc-

tion, we know that `(T 2n+1
) is always smaller or equals than `(T). And thus

we can conclude that ∀ m ∈ R with m > n : T 2m
wil converge towards T .

From (1) and (2) we can deduce that lim
n→∞

`(T 2n
) = `(T) and therefore there

exists a n ≥ 1 such that
∣∣`(T)− `(T 2n

)
∣∣ < ε

We remark that there are some cases where sem (T) and sem
(
T 2n)

, will
never be exactly the same [KMV06], no matter the value for n. But even-
tually we will approximate the original trajectory T close enough.

An example can be found in Figure 3.4, where every step in the generaliza-
tion process will create a T 2n

that gets closer to points a and b, but will
never actually reach them because 6 ∃ x : x/2 = 1/3. The algorithm will
however, reach a point where a n is found, such that |`

(
T 2n) − ` (T) | ≥ ε

[KMV06].

In the beginning of this chapter, we gave a few reasons why the generalization
principle is important. Two of these reasons where because some qualitative
methods for similarity search for trajectories have some special requirements.
Since the generalization principle has originally been developed to tackle
these problems, we will give a short introduction on qualitative methods.

Chapter 3. The generalization principle and qualitative methods 16

Figure 3.3: Illustration of case 1 (b) of the proof. The numbers on the figure
are the length of the nearest segment. As can be seen, sem(T 4) =
sem(T 8) 6= sem(T), but sem(T 16) = sem(T).

Qualitative methods for similarity search [VDKD05, KMV06, KM06] are
rather new in comparison to quantitative methods [God98, HKR93] and
there are not many publications yet. We will give here a short introduction
to two of these methods: the Double–Cross method and the Twisted–Cross
method.

3.2 Qualitative methods

If we take a look at qualitative methods in general, we will see that they
do not use the exact position of vertices or the length of trajectories or
segments: all calculations are based on the relative position of one segment
to another.

This gives a greater importance to the general shape and orientation of the
trajectory rather than the exact position and the coordinates involved. An
advantage of this, is that we can use these methods to compare trajectories
no matter their position, rotation or even scale.

A disadvantage is that it is nearly impossible to redraw a shape from it’s
qualitative representation, but this still needs more research. For the Eu-
ropean GeoPKDD project, this can also be seen as an advantage: if it is
very difficult to redraw a trajectory, then it is also nearly impossible to find
the original trajectory and the person where the data comes from. In other
words: it increases the privacy.

Chapter 3. The generalization principle and qualitative methods 17

Figure 3.4: Illustrations of a trajectory T , drawn in full lines, T 2 in dashed lines
and T 4 in dashed-dotted lines. The length of each side of T is 1.

In this section, we will not give an algorithm for the Double–Cross or the
Twisted–Cross, but we will explain the principles behind it and give exam-
ples to illustrate how the results of these methods are calculated.

3.2.1 The Double–Cross method

The Double–Cross principle [VDKD05, KMV06] is a way of qualitatively
representing two vectors with a tuple that expresses the orientation of both
of them with respect to eachother. Or in other words, we represent two
vertices with a representation that expresses the relative position of the two
vertices.

For each two vectors
→
u and

→
v in the trajectory, we calculate a code that is

a representation of their position, denoted DC
(→
u,
→
v
)

. All these codes are
put into a table and can be interpreted.

How does it work? The main principle is actually quite simple: for each two
line segments in a trajectory, we take the two tailpoints of both segments
as reference points and place a double cross, like the one in Figure 3.5(a)
on the segments. Note that the two vertical lines are perpendicular to the
horizontal one.

The points on the figure with coordinates (xi, yi) and (xj , yj) are the ref-
erence points. When the cross is in place, we assign a code (a four–tuple)
to the pair of segments, depending on their direction. A full list of all the
codes can be found in Appendix A.

Chapter 3. The generalization principle and qualitative methods 18

We will now give a formal definition of the Double–Cross. For the definition,
we will refer to the vector between (xi, yi) and (xj , yj) as

→
u as shown on Fig-

ure 3.5(b). In the definition, we will calculate DC
(
→
`i,
→
`j

)
. This definition

is taken from [KMV06].

Definition 5 (Double–Cross). For
→
`i=
→
`j, we define, for reasons of conti-

nuity, DC
(
→
`i,
→
`j

)
= (C1 C2 C3 C4) = (0 0 0 0). For

→
`i 6=
→
`j, we define the

4–tuple DC
(
→
`i,
→
`j

)
= (C1 C2 C3 C4) as follows:

C1 = − iff (xi+1, yi+1) lies on the same side of PLi
as (xj , yj) and (xi+1, yi+1) /∈ PLi

C1 = 0 iff (xi+1, yi+1) ∈ PLi
C1 = + iff else
C2 = − iff (xi+1, yi+1) lies on the same side of PLj

as (xj , yj) and (xi+1, yi+1) /∈ PLj
C2 = 0 iff (xi+1, yi+1) ∈ PLj
C2 = + iff else
C3 = − iff (xj+1, yj+1) lies on the left of

→
u

as (xi, yi) and (xj+1, yj+1) /∈ RL3

C3 = 0 iff (xj+1, yj+1) ∈ RL
C3 = + iff else
C4 = − iff (xj+1, yj+1) lies on the right of

→
u

C4 = 0 iff (xj+1, yj+1) ∈ RL
C4 = + iff else

Let’s continue with an example to make things more clear. Consider the
trajectory in Figure 3.5(b). After applying the Double–Cross method, we
found Table 3.1(a) with the results. This table is called the Double–Cross
Matrix. These results can easily be verified with the cross in Figure 3.5(a)
and the codes in Appendix A.

As proposed in [VDKD05], this table can be easily simplified: the code for
the pairing a line with itself is always 0000 and if DC

(→
u,
→
v
)

= (a b c d)

than DC
(→
v ,
→
u
)

= (b a d c).

We no longer need to fill the entire table: calculating the upper part of it
will give us all the information we need. This leads to a smaller matrix and
less runtime for calculating the codes. The reduced matrix of Table 3.1(a)
can be found in Table 3.1(b).

Chapter 3. The generalization principle and qualitative methods 19

(a) Visualization of the Double–Cross [KMV06].

(b) Example trajectory.

Figure 3.5: Illustrations for the Double–Cross method.

Table 3.1: Double–Cross codes for the trajectory in Figure 3.5(b).

(a) Shape Matrix

AB BC CD
AB 0000 −+ 0− −+−−
BC +−−0 0000 −+ 0−
CD +−−− +−−0 0000

(b) Reduced Shape Matrix

BC CD
AB −+ 0− −+−−
BC −+ 0−

An important problem with the Double-Cross – and with the Twisted–Cross
– is that it does not use the timestamp in the trajectories and that it’s very
difficult to draw a trajectory from a given Shape Matrix.

But this last one is also an advantage: not being able to redraw a trajec-
tory, gives us higher security: since multiple trajectories can have the same
matrix, it is nearly impossible to find the “real” corresponding trajectory.
This improves security and increases the privacy of the source of the data.

Both methods assume that the time is a continuous function or it considers
the time to be qualitatively included by the generalization principle, seen in
Section 3.1.

Chapter 3. The generalization principle and qualitative methods 20

The real strength of this principle lies in similarity search, which is discussed
in Chapter 5, with the specific details in Section 5.1, where we will compare
this method with our new quantitative method.

We will now take a look at an even more experimental qualitative method:
the Twisted–Cross.

3.2.2 The Twisted–Cross method

Figure 3.6: Visualization of the Twisted–Cross [KM06].

The Twisted–Cross is derived from the Double–Cross [KM06]. Research on
this method is still very new and little has been published on this formalism.
Due to these circumstances, we will only give a short introduction to this
method.

Just like the Double–Cross, the Twisted–Cross computes a matrix for a
trajectory by assigning a code (a four–tuple) to every pairing of two vertices
→
u and

→
v in the trajectory, denoted TC

(→
u,
→
v
)

. But, as the name suggests,
it uses a different kind of cross. An illustration of this cross can be found in
Figure 3.6. The two reference points are again (xi−1, yi−1) and (xj−1, yj−1).

We will now give the formal definition of the Twisted–Cross, taken from
[KM06] and afterwards we will give an example to illustrate the working of
the method. The exact construction of the cross can be found in Figure 3.6,
but for the definition we will be referencing to the vectors on Figure 3.7.
For the definition, we will refer to the vector from (xi, yi) to (xj , yj) as

→
u as

shown on Figure 3.7.

Chapter 3. The generalization principle and qualitative methods 21

Figure 3.7: Illustration for the definition [KM06].

Definition 6 (Twisted–Cross). For
→
`i=
→
`j, we define, for reasons of con-

tinuity, TC
(
→
`i,
→
`j

)
= (C1 C2 C3 C4) = (0 0 0 0). For

→
`i 6=
→
`j, we define the

4–tuple TC
(
→
`i,
→
`j

)
= (C1 C2 C3 C4) as follows:

C1 = − iff (xi+1, yi+1) lies on the same side of RL1

as (xj , yj) and (xi+1, yi+1) /∈ RL1

C1 = 0 iff (xi+1, yi+1) ∈ RL1

C1 = + iff else
C2 = − iff (xi+1, yi+1) lies on the same side of RL2

as (xj , yj) and (xi+1, yi+1) /∈ RL2

C2 = 0 iff (xi+1, yi+1) ∈ RL2

C2 = + iff else
C3 = − iff (xj+1, yj+1) lies on the same side of RL3

as (xi, yi) and (xj+1, yj+1) /∈ RL3

C3 = 0 iff (xj+1, yj+1) ∈ RL3

C3 = + iff else
C4 = − iff (xj+1, yj+1) lies on the same side of RL4

as (xi, yi) and (xj+1, yj+1) /∈ RL4

C4 = 0 iff (xj+1, yj+1) ∈ RL4

C4 = + iff else

By placing this cross over a trajectory, one can easily see how it works and
codes can be found very easily by hand. If a vertex should be exactly on one
of the lines of one of the two crosses, the corresponding value in de 4–tuple
will be 0.

When all values are calculated, we get a matrix representing the trajectory,
called the Twisted–Cross Matrix. A small example of the Twisted–Cross
can be found in Table 3.2(a).

Chapter 3. The generalization principle and qualitative methods 22

Just like with the Double–Cross, this matrix can be reduced to a smaller
matrix with the following rule, proposed in the same work that contained
the definition: If TC

(→
u,
→
v
)

= (a b c d) than TC
(→
v ,
→
u
)

= (c d a b). The
reduces matrix of Table 3.2(a) can be found in Table 3.2(b).

Table 3.2: Twisted–Cross matrix for the trajectory in Figure 3.5(b).

(a) Twisted–Cross Matrix

AB BC CD
AB 0000 00−+ −−−+
BC −+ 00 0000 00−+
CD −+−− +− 00 0000

(b) Reduced Twisted–Cross Matrix

BC CD
AB 00−+ −−−+
BC 00−+

Although qualitative methods are studied in this work, much work remains.
The focus of this work lies on the new Fréchet–based Distance and thus
these qualitative methods are not studied in great detail. Now we have a
notion on these methods and the relationship between these methods and
the generalization principle, can we continue with the second principle used
in similarity search: quantitative methods.

Chapter 4

Quantitative methods

As mentioned in Chapter 1, quantitative methods for similarity search, re-
turn a real number, that can be interpreted as a degree of dissimilarity or
distance between two objects. To compute this number, a distance measure
is used. In this chapter we will discuss two widely used distance measures
for this kind of similarity search: Hausdorff Distance and Fréchet Distance.

For quantitative methods, the emphasis will be on the Fréchet Distance and
– more specifically – a new distance measure based on the Fréchet Distance.

4.1 Hausdorff Distance

The Hausdorff Distance [Bla] is used to measure the distance between two
non-empty sets. More specific, we can – and will – use this metric to measure
the distance between two trajectories in Euclidean space.

4.1.1 General Definition

The Hausdorff Distance was discovered by Felix Hausdorff (◦ 1868 – † 1942),
a german mathematician who became famous for his work on topological and
metric spaces and set theory. The Hausdorff Distance was published in 1914
in his book “Grundzüge der Mengenlehre”, which builds on work by Fréchet
and others.

We will now continue with the general definition for the Hausdorff Distance.
Afterwards, we will complete our study of the Hausdorff Distance with a
definition for the Hausdorff Distance for trajectories.

23

Chapter 4. Quantitative methods 24

Definition 7 (Hausdorff Distance). Let X be a metric space and δX its
metric. Given a point x ∈ X and a non empty set A ⊆ X, let us first define
the distance of x to A by δh (x,A) := inf

a∈A
δX (x, a).

Then the Hausdorff Distance between A and B is defined for any
non empty sets A,B ⊆ X as δH (A,B) := max (δasym (A,B) , δasym (B,A)),
where δasym (A,B) := sup

a∈A
δH (a,B) denotes the so called asymmetric Haus-

dorff Distance from A to B.

Although asymmetric Hausdorff Distance is used in Definition 7, the Haus-
dorff Distance itself is symmetric and thus also called the symmetric Haus-
dorff Distance.

We notice that the Hausdorff Distance is a metric [Hen99]: δH (A,B) =
δH (B,A), δH (A,A) = 0, δH (A,B) ≤ δH (A,C)+δH (C,B) and δH (A,B) =
0 ⇒ A = B for a closed and bounded space. For a non-closed space, the
Hausdorff Distance is a pseudometric.

To prove that the distance between two different objects is not always greater
than 0 for a non-closed space, we just need to find a single example. If we
take a look at Figure 4.1, we see that Figure 4.1(a) is an open disk in R2

and Figure 4.1(b) is a closed disk in R2. Both disks have the same radius.

(a) An open disk A in R2 (b) A closed disk B in R2

Figure 4.1: Illustration that the Hausdorff Distance is not a metric for non–closed
spaces.

If we translate both disks to have the same centers, then their Hausdorff
Distance will be equal to 0, although both disks are not the same. Thus
δH (A,B) = 0 but A 6= B.

In the following explanation, we will use trajectories as an example, but
they can be replaced by any two non-empty sets in any metric space.

Chapter 4. Quantitative methods 25

An algorithm for the Hausdorff Distance will first calculate the distance
between the startvertex of A and every vertex of B, the smallest of these
distances will be remembered: this is the Hausdorff Distance between the
startvertex and trajectory B. This will be repeated for every vertex in A and
in the end we will take the biggest distance of all the remembered distances:
this is the Hausdorff Distance between trajectory A and trajectory B.

This is a general definition for the Hausdorff Distance. If we can define a
notion of distance (e.g. Euclidean Distance in R2), we can easily adapt this
definition for trajectories in R2×T. As we have noted earlier in Section 2.2,
we use R for T (with a few limitations as seen in Section 2.2). We can
then use the standard distance (Euclidean distance) in R3 to calculate the
Hausdorff Distance for trajectories.

Now we will use this idea to give an algorithm for Hausdorff for trajectories
and afterwards we will give a definition for trajectories in R2 × T.

4.1.2 Algorithm Hausdorff Distance for trajectories

This algorithm, proposed here in Listing 4.1, calculates the asymmetric
Hausdorff Distance from one trajectory to another. To get the symmet-
ric distance, the algorithm needs to run twice, once for each trajectory, and
the maximum distance of the two runs will be the symmetric distance.

Because the focus in this work lies on the Fréchet–based Distance, we have
not searched for a better algorithm for the Hausdorff Distance for trajec-
tories. For the same reason, there has been no intensive testing of the
algorithm.

The algorithm uses a simple datastructure to store the trajectories. This
datastructure contains a list of vertices and appropriate functions. The ones
needed for the algorithm in Listing 4.1, are listed here.

• getStartVertex() Returns the first vertex of the trajectory.

• getEndVertex() Returns the last vertex of the trajectory.

• getNextVertex() Returns the next vertex of the trajectory, the first
vertex following the last vertex of the trajectory that has been re-
quested. If there are no more vertices in the trajectory, this function
returns a null-value.

Chapter 4. Quantitative methods 26

A few other functions are also necessarily for the algorithm:

• getTime() Returns the value of the timestamp of the vertex.

• add(double num) Add num to a set of values

• maximum() Returns the maximum value in a set.

• EuclideanDistance(Vertex v1, v2) Returns the Euclidean Distance in
R3 between vertices v1 and v2.

Listing 4.1: Algorithm Hausdorff Distance for trajectories

1 Function H a u s d o r f f d i s t a n c e f o r t r a j e c t o r i e s
2
3 Input : t r a j e c t o r i e s T,U ⊂ R2 × T
4
5 Set vt = T. getStar tVer tex () ;
6 Set vu = U. getStar tVertex () ;
7 Set measured = ∅ ;
8
9 while (vt 6= T. getEndVertex ())

10 {
11 Set distance = +∞ ;
12
13 while (vu 6= U. getEndVertex ())
14 {
15 s e t d = Eucl ideanDistance (vt ,vu) ;
16
17 i f (d < d i s t anc e)
18 d i s t anc e = d ;
19
20 vu = U. getNextVertex () ;
21 }end ;
22
23 measured . add (d i s t ance) ;
24
25 vt = T. getNextVertex () ;
26
27 }end ;
28
29 return measured . maximum () ;

Chapter 4. Quantitative methods 27

Our algorithm in Listing 4.1 is very simple and straightforward: for every
vertex of one trajectory, find the closest vertex of the other trajectory and
remember their distance. Store all these found distances and in the end,
return the maximum of the set of found distances.

As noted earlier, this algorithm computes the asymmetric Hausdorff Dis-
tance between two trajectories T and U . If we take a look at Figure 4.2, we
can see the distance from T to U, calculated by the algorithm, represented
by the gray line labelled “A” and the distance from U to T labelled “B”.

Figure 4.2: Assymetric Hausdorff Distance

Although the Hausdorff Distance and thus also the algorithm, does not have
a special way of dealing with a timefactor in the trajectory, we use the 3D
definition of the Euclidean distance is this algorithm. We remember that we
mapped the timestamp in every vertex to a value in R and by calculating
the distance with the 3–dimensional distance, we make sure not to forget an
entire dimension of information.

4.1.3 Definition Hausdorff Distance for trajectories

Definition 8 (Hausdorff Distance for trajectories). Let A, B be trajectories
in R2 × T and D the Euclidean distance used in R3.

δH (A,B) := max {DH (A,B) , DH (B,A)}

with DH (A,B) := sup
a∈A

(
inf
b∈B

(D (a, b))
)

is the Hausdorff Distance from A to B in R2 × T.

Since distance measure D in the definiton is a metric, the Hausdorff Distance
for trajectories in R2 × T is also a metric [Hen99].

Chapter 4. Quantitative methods 28

4.1.4 A note on Hausdorff Distance in this work

Hausdorff Distance is a widely known and used [Hen99, HKR93, AHSW03]
distance metric for similarity search. As has been told in the beginning
of this chapter, some basic research on this topic has been done for this
work, but the focus for this work will be on Fréchet Distance and not on
Hausdorff Distance. Thus, although the basic concepts of similarity search
with Hausdorff Distance can be found in Section 5.2, they are far from
complete.

4.2 Fréchet Distance

The Fréchet Distance was proposed by Maurice Fréchet (◦ 1878 – † 1973), a
French mathematician, in his doctoral dissertation: “Sur quelques points du
calcul fonctionnel”. He made major contributions to the topology of point
sets and defined and founded the theory of abstract spaces.

The Fréchet Distance [God98] is, like the Hausdorff Distance, used as a mea-
surement of the distance between two non-empty sets. The main difference
between the two, is that the Fréchet Distance is designed to find a time
parametrization for any object in a specified metric space.

The use of this parametrization, is to make sure that the direction of the tra-
jectory is brought into account. But if a time parametrization already exists,
we might be able to speed calculations up, if it is an usable parametrization.
More about this idea can be found in Section 4.2.2.

To find a definition for the Fréchet Distance for trajectories in R2 × T,
we start with a general definition and we will deduce a more appropriate
definition for trajectories.

4.2.1 General definition

Definition 9 (Fréchet Distance). Let (X, δX) be a fixed metric space and
d ∈ N a fixed constant. This will be the dimension of the geometric objects
we consider. The abbreviation σ : A ∼→ B stands for the fact that σ : A→ B
is an orientation preserving homeomorphism. For two objects f : A → X
and g : B → X the Fréchet Distance is defined by

δF (A,B) := inf
σ:A

∼→B

(
sup
x∈A

(δX (f (x) , g (σ (x))))
)

or +∞ if no such σ exists.

Chapter 4. Quantitative methods 29

This distance is usually [God98, Ewi85, AHK+06] explained with a man who
is walking his dog. Each of them walks on their respective curves and they
can each control there own speed, but they cannot go back. The Fréchet
Distance of these two curves is the minimal length of a leash necessary for
the dog and his handler to move from the starting points of the two curves
to their respective endpoints.

More mathematically, this distance searches for a time parametrization that
minimizes the distance between two non-empty sets in a metric space.

In this entire work, we will only consider trajectories in R2×T. The trajec-
tories already have time values and we could try to find a definition for the
Fréchet Distance for trajectories that uses this timestamp. Using a version
of the Fréchet Distance without these values would would ignore an entire
dimension of information: after all, we know where the man and his dog
are at a given time. The value of this timedimension has been illustrated in
Section 2.

Using this timestamp could possible make it easier to compute the Fréchet
Distance between two trajectories. Although an algorithm that calculates
this distance in O(nm log(nm)) time, with n the number of vertices of one
trajectory and m the number of vertices of the other, is known, it is not a
feasible algorithm since it involves enormous constants.

“It should be mentioned here that Algorithm 3, although it has
low asymptotic complexity, is not really applicable in prac-
tice. In fact, Cole’s parametric searching technique makes use
of the Ajtai-Komlos-Szemeredi (AKS) sorting network wich in-
volves enormous constants.”[AG95]

Note that, because we used a quote to illustrate this important problem
with the Fréchet Distance, it contains a reference to an “Algorithm 3” that
cannot be found in this work.

This is the main reason why sometimes the less correct Hausdorff Distance
is used: it’s is easier to implement and even if we use the algorithms with
the same asymptotic runtime O(nm log(nm)), the Hausdorff Distance will
be calculated a lot faster, because the constants are a lot smaller [HKR93],
as we will see in Section 5.2 and Section 5.3.

4.2.2 Algorithm for Fréchet–based Distance

As said before, by adding a time parametrization to a trajectory, we bring
the direction of the trajectory into account. But if such a time parametriza-
tion already exists, we might be able to speed calculations up, if it is an
usable parametrization, because we do not need to calculate one.

Chapter 4. Quantitative methods 30

We have developed our own algorithm, inspired by the original principle of
the Fréchet Distance to find a distance measure for trajectories that is useful
in similarity search and that has a better runtime than the general Fréchet
definition, as we will see in Section 4.2.5.

We will use this algorithm to find a suitable definition for this new distance
measure for trajectories in R2 × T. The algorithm is given in pseudocode.

We will use the same datastructure for trajectories as used in Section 4.1.2,
with an extra functionality.

• getVertexBefore(Vertex v) Given a vertex v, this returns the last
vertex of the trajectory before v.

The extra functions are also the same as the ones described in Section 4.1.2,
plus one extra function.

• shortestDistance(Vertex v, Vertex u) Returns the shortest Euclidean
distance between vertex v and the segment (getV ertexBefore(u), u)
(Details of this function can be found in Listing 4.3).

Note that we don’t need the two functions for a set of numbers:
add(double num) and maximum().

Listing 4.2: Algorithm Fréchet–based Distance

1 Function Freche t ba s ed d i s t ance
2 Input : t r a j e c t o r i e s T,U ∈ R2 × T
3
4 Set d i s t anc e = 0 ;
5 Set vt = T. getStar tVer tex () ;
6 Set vu = U. getStar tVertex () ;
7
8 while vt 6= T. getEndVertex () | | vu 6= U. getEndVertex ()
9 {

10 i f (vt . getTime () == vu . getTime ())
11 {
12 a idDis tance = Eucl ideanDistance (vt , vu) ;
13
14 vt = T. getNextVertex () ;
15 vu = U. getNextVertex () ;
16 }
17 else i f (vu . getTime () < vt . getTime ())
18 {
19 a idDis tance =
20 s h o r t e s t D i s t a n c e (vu , vt) ;
21

Chapter 4. Quantitative methods 31

22 i f (vu == U. getEndVertex ())
23 vt = T. getNextVertex () ;
24 else
25 vu = U. getNextVertex () ;
26 }
27 else
28 {
29 a idDis tance =
30 s h o r t e s t D i s t a n c e (vt , vu) ;
31
32 i f (vt == T. getEndVertex ())
33 vu = U. getNextVertex () ;
34 else
35 vt = T. getNextVertex () ;
36 }
37
38 i f (a idDis tance > d i s t anc e)
39 d i s t anc e = aidDis tance ;
40
41 }end ;
42
43 return d i s t anc e ;
44
45 end function ;

The algorithm uses the timestamps of the vertices to calculate a distance
measure, instead of searching for the optimal parametrization.

To make a study of this algorithm possible, we need more detailed expla-
nations of the functions used in this algorithm. All the functions returning
vertices - getNextVertex(), getVertexBefore(), getStartVertex(), getEndVer-
tex() - can be implemented very efficiently depending on the used data
structure. For our tests, we have used a data structure based on a vector,
which already contains many of these functions.

The function getTime() is trivial. This leaves us with one last function to
explain: shortestDistance(Vertex, Vertex). To explain this function, we will
first give the algorithm in pseudocode and explain it afterwards.

Chapter 4. Quantitative methods 32

Listing 4.3: Function shortestDistance

1 Function s h o r t e s t d i s t a n c e
2 Input : Vertex u , Vertex v
3
4 Set w = getV ertexBefore(v) ;

5 Set distance =
|(w − v)× (v − u)|

|v − w|
;

6
7 Set dis v = (u.EuclideanDistance(v))2 − (distance)2 ;
8 Set dis w = (u.EuclideanDistance(w))2 − (distance)2 ;
9

10 Set sqRoot =
√
dis v +

√
dis w ;

11
12 Set compDis = v.EuclideanDistance(w) ;
13
14 i f (sqRoot 6= compDis)
15 {
16 distance = u.EuclideanDistance(v) ;
17 Set aidDistance = u.EuclideanDistance(w) ;
18
19 i f (aidDistance < distance)
20 distance = aidDistance ;
21 }
22
23 return d i s t anc e ;
24
25 end function ;

The algorithm shortestDistance in Listing 4.3, first calculates the distance
between vertex u and the segment between vertices v and w (Line 5). Of
course this is the distance from u to the straight line determined by v and
w, not the distance from u to the segment between w and v. But we can
use this distance to find the real shortest distance from u to the segment
between w and v.

We will explain how we find this distance using Figure 4.3. First, let m be
the intersection of the line wv and mu the perpendicular line through u on
wv. Let d(a, b) be the Euclidean distance in R3 from a to b with a, b ∈ R3.
We already calculated d(u,m) = distance and d(u, v) and d(u,w) can be
easily computed.

Chapter 4. Quantitative methods 33

(a) m lies between w and v

(b) m does not lie between w and v

Figure 4.3: Illustrations of the shortestDistance algorithm

With these newly calculated distance and the Pythagorean Theorem, we can
calculate d(w,m) and d(v,m). If we take the sum of these two and compare
it with d(v, w), we can check if u lies between these two vertices (as can be
seen on Figure 4.3(a)) or not (as can be seen on Figure 4.3(b)). If it does, the
shortest distance equals the distance from u to m on the line determined by
v and w. If it doesn’t, the shortest distance is d(u, v) or d(u,w), depending
on which one is closer to u.

4.2.3 Note on 2- and 3-dimensional distance

In the algorithm and in the proofs afterwards, we will use the Euclidean
Distance in R3 and not the 2–dimensional variant. We can use either of
them, but depending on the choice, we are looking for a different kind of
similarity between the trajectories.

Chapter 4. Quantitative methods 34

The 3–dimensional representation of a trajectory is an interpretation, to
be able to visualize and work with the timevalue in each vertex. If we
would like to compare the general shape of two trajectories, a 2–dimensional
approach would be better, because the 3–dimensional adds the timevalues
as an extra spatial dimension to our 2–dimensional trajectory. Depending
on the choosen idea, we place a stronger or less strong emphasis on the
timevalues for similarity search.

For example, take a look at the following two trajectories:
T = 〈(1, 2, 1) , (3, 4, 6) , (6, 7, 7)〉 and U = 〈(1, 2, 5) , (3, 4, 6) , (6, 7, 7)〉. These
two trajectories are equal, except for their timevalues. We can see that U
travels along exactly the same path as T , but much faster. This example is
plotted in 2D and 3D in Figure 4.4.

(a) 2D plot of the example (b) 3D plot of the example

Figure 4.4: Illustration of the use of 2D and 3D distance

In general: if two vertices exist with the same timestamp, they will have
a distance 0 because they are completely the same. If we have a vertex
from one trajectory with a timestamp that has no corresponding vertex
with the same timestamp from the other trajectory, we would search for the
shortest 2–dimenstional distance between that vertex and a line containng
that vertex, which is obviously 0.

With these details of the algorithm for the Fréchet–based Distance, we can
and will prove that it stops on any input. Afterwards, we will have a closer
look at the complexity of the algorithm.

Chapter 4. Quantitative methods 35

4.2.4 Note on curved trajectories

This algorithm is designed to work with trajectories in R2×T only containing
straight edges. If we allow curved edges, the results will be useless. Remem-
ber that we already adressed this problem in Section 2.1. The generalization
principle can easily solve this problem, as shown in Figure 3.1.

The problems and possibilities of curved trajectories in R2 × T, will not be
discussed in this work, but we wanted to point this problem out, so it can
be examined in future work.

4.2.5 Properties of the algorithm

Proposition 2. The algorithm in Listing 4.2 terminates on any input T
and U .

Proof. To prove this proposition, we must prove that vt 6= T.getEndVertex()
&& vu 6= U.getEndVertex() will eventually evaluate to false for every T,U ∈
R2 × T

It is easy to see that in every run, the algorithm gets the next vertex from
either T or U or both. If the final vertex of one of the trajectories is reached,
the algorithm will continue with fetching the vertices of the other trajectory
until the endvertices of both trajectories are reached. Since both trajectories
consist of a finite amount of vertices, vt and vu will always converge to the
corresponding endvertex of their respective trajectories and the algorithm
will stop.

Proposition 3. The algorithm in Listing 4.2 has time complexity O (n+m)
with n and m the number of vertices in T and U , respectively.

Proof. The algorithm contains no recursion and only a single loop. If we
take a look at all the functions used in this loop, we see that all of them can
be calculated in constant time, thus with complexity: O(1). The loop itself
will run at most n+m times, with n the number of vertices of trajectory T
and m the number of vertices of trajectory U .

Since k is a constant, the dominant factor is O (n+m) and this is the time
complexity of the algorithm.

Although we have proven that the algorithm stops and we know it’s time
complexity, a very important remains unanswered: is the algorithm optimal?
We need to check and prove that no faster algorithm exists.

Chapter 4. Quantitative methods 36

Proposition 4. The algorithm for the Fréchet–based Distance given in List-
ing 4.2 has optimal time complexity.

Proof. To find the correct distance, we need to handle each vertex of each
trajectory at least once. If we have n vertices in the first trajectory and m
vertices in the second trajectory, we get a worst case complexity of O(n+m),
when, for example, all the vertices of the first trajectory have a smaller
timestamp than any vertex in the second trajectory.

4.2.6 Definition of the Fréchet–based Distance

After we examined the algorithm in Listing 4.2, we can now give a definition
for this new distance measure.

Definition 10 (Fréchet–based Distance). ∀T, U ⊂ R2×T : δϕb
(T,U), the

Fréchet–based Distance between T and U is defined as:

δϕb
(T,U) = max

{
max
t ∈ T

(Dϕ (t, U)) ,max
u ∈ U

(Dϕ (u, T))
}

with:

Dϕ (t, U) = D (t, u) for u ∈ U with D the Euclidean Distance in R3 if u
and t have the same timevalue.

otherwise:

Dϕ (t, U) = DS (t, u1u2) with u1 the vertex in U with the largest timestamp
smaller than the timestamp of t, u2 the vertex in U with the smallest times-
tamp greater than the timestamp of t and DS (a,AB) the distance between
point a and line segment AB in R3.

otherwise:

Dϕ (t, U) = D (t, u) for u ∈ U with D the Euclidean Distance in R3 with u
having the timevalue closest to the timevalue of t.

Note that we use the Euclidean Distance in R3 in our definition. If we
remember Section 4.2.3, we see that we can replace this by the Euclidean
Distance in R2, depending on our notion of similarity.

Although both definitions of the Euclidean Distance are metrics with the
same properties, it does not matter for the proofs of Proposition 5, Propo-
sition 6 and Proposition 7. For both metrics, the proof remains the same.

Chapter 4. Quantitative methods 37

4.2.7 Properties of the Fréchet–based Distance

Proposition 5. δϕb
(T,U) = δϕb

(U, T) or the Fréchet–based Distance for
trajectories in R2 × T is symmetric.

Proof. Trivial, following directly from the definition.

Proposition 6. δϕb
(T, T) = 0 or the Fréchet–based Distance between a

trajectory and itself is 0 (Identity).

Proof. Let S ⊂ R2 × T. Run the algorithm for Fréchetbased Distance
with T = S and U = S. Since T = S = U : the startvertices of T and U
are the same and the algorithm begins in the first if-test and vt = vu ⇒
EuclideanDistance(vt, vu) = 0.

We then take the next vertex of T and U , wich are also the same and thus
also are at Euclidean distance 0. This repeats itself for every vertex in T and
U . In the end, the algorithm outputs the greatest of the found distances,
but since they are all 0 this will also be 0 and thus δϕb

(T,U) = 0.

Proposition 7. If T and U have the same number of vertices, then δϕb
(T,U) =

0⇒ T = U or if two trajectories have a Fréchet–based Distance 0, they are
the same (non–negativity).

Proof. Let T, U ⊂ R2×T and δϕb
(T,U) = 0 Since δϕb

(T,U) = 0, we have
two possibilities:

1. ∀ vt ∈ T, ∃ vu ∈ U : vt.getT ime() = vu.getT ime() ∧ D(vt, vu) =
0⇒ T = U

2. ∃ vt ∈ T, ∃ vu1 , vu2 ∈ U : vu1 and vu2 are consecutive vertices
∧vu1 .getT ime() < vt.getT ime() ∧ vt.getT ime() < vu2 .getT ime() ∧
shortestDistance(vt, vu2) = 0. This means that vt lies between vu1

and vu2 and on the line between these two vertices and thus: vt ∈ U .

Since we work with generalized trajectories, as seen in Chapter 3, we can
always make sure that two trajectories have the same number of vertices.

An example of the reason why we need trajectories with the same number
of vertices, can be found in Figure 4.5. As we can see in this example, both
trajectories have a different amount of vertices, but they do take up the
same amount of time and space in R2 × T.

So, although both trajectories are not exactly the same mathematically
speaking, they are equal in time and space, thus they can be considered
similar and the distance measure can be used for similarity search, as we
will see in Chapter 5.

Chapter 4. Quantitative methods 38

Figure 4.5: Example why the same number of vertices is needed for the non–
negativity property. Both trajectories are translated for better illus-
tration.

Proposition 8. δϕb
(T,U) = 0⇒ sem (T) = sem (U)

Proof. Let T, U ⊂ R2 × T, Dϕ as defined in Definition 4.2.6, nt ∈ N the
number of vertices of T and nu ∈ N the number of vertices of U with nt > nu
and δϕb

(T,U) = 0. We will now prove Proposition 8:

δϕb
(T,U) = 0⇒ sem (T) = sem (U)

Since nt > nu : ∃ t ∈ T : t /∈ U , but because δϕb
(T,U) = 0, we know that

Dϕ (t, U) = 0 and we can conclude that there exists a segment S ∈ sem (U)
which contains t and S = sem (t1, t, t2) with t1 the vertex directly preceding
t and t2 the vertex directly following t.

We can use the same idea for every t ∈ T : t /∈ U and thus we can conclude
that: sem (T) = sem (U).

Only one condition is missing to conclude that the Fréchet–based Distance
for trajectories in R2×T is a metric: the triangle inequality. Unfortenately,
this condition does not hold for our new distance measure, if we use the
Euclidean Distance in R2, as can be seen in Figure 4.6. It is visually obvious
that δϕb

(B,C) ≥ δϕb
(B,A) + δϕb

(A,C).

Apparently, our new distance measure is not a metric if we allow the use
of the Euclidean Distance in R2, but one could think that, if we add some
restrictions on the trajectories, it is a metric. If we take a closer look at the
problem, illustrated in Figure 4.6, we notice that the problem arises because
of the timestamp. How can we solve this problem?

Chapter 4. Quantitative methods 39

Figure 4.6: Example that the triangle inequality doesn’t hold for the Fréchet–
based Distance, usind the distance in R2. The grey lines are the
found distances between the trajectories.

Translating the trajectories in time, does not solve the problem. Even when
all the trajectories start at the same moment, the problem can still arise, as
shown in Figure 4.7

Figure 4.7: Example of a trajectory where the triangle inequality doesn’t hold
either, even with equal begintimes. The grey lines are the found
distances between the trajectories.

By using the timevalue to match vertices, we create some kind of distortion
in the spatial data, but maybe if we match the temporal data with a spatial
dimension, we might be able to avoid this distortion. Since already use
values from R for T, as seen in Section 2.2, we can map every t − value to
a spatial value.

But unfortunately, this idea also doesn’t work. Let’s take a look at follow-
ing trajectories A, B, C ⊂ R2 × T. A = 〈(0, 0, 0) , (10, 20, 3) (40, 20, 4)〉,
B = 〈(0, 0, 0) , (40, 20, 1) (70, 10, 7)〉, C = 〈(0, 0, 0) , (20, 30, 2) (80, 40, 3)〉.
We have mapped all the t-values to spatial values, so we can use the distance
in R3.

Note that all three trajectories start with the same vertex (0, 0, 0). This is
done to show that translating in any direction does not help to solve the
problem.

Chapter 4. Quantitative methods 40

Using the algorithm with the Euclidean Distance in R3, we find follow-
ing values: δϕb

(A,C) =
√

5300 ≈ 72, 80, δϕb
(A,B) =

√
1003 ≈ 31, 67,

δϕb
(B,C) =

√
1004 ≈ 31, 68. As we can see δϕb

(A,B) + δϕb
(B,C) <

δϕb
(A,C) and thus the triangle inequality also does not hold when we use

3–Dimensional Distance instead.

Chapter 5

Similarity Search

We already explained what similarity search is in Chapter 1. Now we will
take a look how it is done. We will start with a short note on similarity
search with qualitative methods and we will try to link results from these
methods with our results from the Fréchet–based Distance for trajectories.

Then, we will give a short explanation on similarity search with the Haus-
dorff and Fréchet Distance. Afterwards, we will see how we can use our new
Fréchet–based Distance for similarity search. We will run different tests with
this new measure and compair the results. For these tests, we have designed
a new program Algorithmtester. Details of the program can be found in
Section 5.4.1 and Appendix B.2.

5.1 Similarity search with the Double–Cross

For the qualitative methods, we will discuss similarity search with the Double–
Cross method. For the Twisted–Cross, the principle is the same, only the
calculation of the matrix differs.

If we use this method, we first calculate the Shape Matrix for every trajec-
tory we like to compair. If we want to use a matrix–based distance, we need
to make sure both matrices have the same dimension. This is not a problem
if we remember this while generalizing the trajectories with the generaliza-
tion principle seen in Section 3.1 and make sure both matrices have the same
dimension.

An advantage of this method is that it’s not influenced by scaling, rotation
and translation, so there is no need of first translating or rotating the two
objects we are going to compair to match as good as possible.

When we have the two matrices of the two figures, we need to use some
measure of distance between the two matrices. ∆H has been proposed in

41

Chapter 5. Similarity Search 42

[KMV06] and we will use the same method here.

Given two Double–Cross matrices M1 and M2, N×N matrices, construct for
both vectors γ (M1) , γ (M2) ∈ N65 that counts for each of the 65 realizable
codes, the number of times they occur in M1 and M2. With this, we can
use following formula:

∆H (M1,M2) =
1
2

65∑
i=0

|γ (M1) [i]− γ (M2) [i]|

∆H ∈ [0, 1] and this number is interpreted as a degree of dissimilarity. To
get a degree of similarity, we simple use 1 −∆H (M1,M2) and multiplying
this number with 100 gives us a percentile degree of similarity between two
trajectories.

5.2 Similarity search using the Hausdorff Distance

Hausdorff Distance is mostly used to find specific figures, e.g. circles, in a
complex figure. You take a basic startfigure, here a circle, and you calculate
the Hausdorff Distance between this circle and any part of the larger image.

Note that it is allowed to translate or rotate one of the figures as needed to
minimize the distance [HKR93]. In this case, we see similarity without the
positions of the objects, we are only checking how much the general shape
of two objects are alike.

Figure 5.1: Two trajectories with Hausdorff Distance δ, although they are far
from similar, they have a very little Hausdorff Distance [AG95].

Similarity search with this metric, is defined as followed: Given the Haus-
dorff Distance, determine a translation, scaling or rotation – or a combina-
tion of any of these – that minimizes the Hausdorff Distance between the
two objects [AHSW03].

If the resulting distance is zero or smaller than a given threshold, the two
figures are considered equal. If not, a smaller distance can be interpreted as

Chapter 5. Similarity Search 43

a greater similarity, but the following example in Figure 5.1 will show that
this is not necessarily the case.

The trajectories in Figure 5.1 are a excellent example why the Fréchet Dis-
tance is often used, despite it’s long runtime, as seen in Section 4.2.1.

Figure 5.2: Example of the use of Hausdorff Distance in similarity search. At the
top we see the image we are looking for, left a photograph, in the
middle a picture derived from the photograph and on the right the
drawn picture with a match [HKR93].

If we take a look at the definition of the Hausdorff Distance, seen in Sec-
tion 4.1.3, we can easily find the reason of this error: we look for the smallest
distance between two trajectories, with no regard to the orientation of the
trajectories. To find a solution for this problem, the Fréchet Distance, stud-
ied in Section 5.3 is often used instead of the Hausdorff Distance.

As mentioned before in Section 4.1.4, we will only take a look at this basic
concept of similarity search for the Hausdorff Metric. Other concepts of
similarity can be examined in a similar way.

Chapter 5. Similarity Search 44

We will end our examination of the Hausdorff Distance with an example,
found in Figure 5.2. The source here are three camera images that are
digitalized and the Hausdorff Distance is used for edge detection: to find a
television set on the picture. In this example, the Hausdorff Distance was
used succesfully.

5.3 Similarity search using the Fréchet Distance

Similarity search with the Fréchet Distance is very much like similarity
search with the Hausdorff Distance. In general, similarity search with this
distance measure is considered a decision problem: is the Fréchet Distance
between two objects smaller than a given threshold or not? [AKW01]

The idea behind similarity search, using the Fréchet Distance is quite simple:
first a translation is sought to make the two objects fit as good as possible.
After this, the Fréchet Distance between the two is computed and if it is
smaller than a given threshold, they are considered equal. This is called the
decision problem for the Fréchet Distance.

Sounds simple, but there is one large problem: the decision problem for the
Fréchet Distance is NP–Hard for any dimension n with n ≥ 4 [God98]. If
it is also NP–Complete, remains a question. However, it should be possibile
to find a specific algorithm for a specific metric space, as has been done in
[BBW06].

Similarity search with the Fréchet Distance heavily depends on these case
specific distance measures and on distance measures based on the Fréchet
Distance, like Discrete Fréchet Distance [AHK+06] or Fréchet–based Dis-
tance for trajectories, as seen in Section 4.2.6.

5.4 Similarity search with the Fréchet–based Dis-
tance

5.4.1 Testsoftware

For the tests in the following section, we have designed a new program named
Algorithmtester. This program accepts trajectories as input and can then be
used to visualise these, calculate the Fréchet–based Distance or Hausdorff
Distance between these trajectories or run a k–means clustering [HK01] on
this dataset, using a distance measure of your choice. It also measures the
time to perform a requested operation and all output can be saved to a file.
More details can be found in Appendix B.2

Chapter 5. Similarity Search 45

For every test, we have printed the time needed to perform the test, as mea-
sured by the tool, but the measured durations are only an indication since
runtime greatly depends on the system that is used and the circumstances of
the moment. The run time results we mention are with respect to a system
with an Intel c© Centrino c© Duo 1.86 GHz and 2GB RAM running Microsoft
WindowsTMXP Professional as operating system.

All graphics in the following part, are screenshots taken from the program
Algorithmtester.

5.4.2 Testresults for clustering

If we like to use the Fréchet–based Distance for trajectories for similarity
search, we need to test this distance measure. First we will use this dis-
tance measure with a k–means clustering algorithm and see how it works.
Afterwards we will have a look at how it handles specific trajectories, like
stepfunctions.

We are mostly interested in using this algorithm – and thus the new distance
measure – for similarity search, as can be seen in Chapter 1. First we
tried to see what results might come up if we used the distance measure
in a clustering algorithm to cluster trajectories. We started with a dataset
containing 250 trajectories, visualized in Figure 5.3. Note that colouring is
done for no other reason than easier recognition of the individual trajectories.

Figure 5.3: Visualisation of the clusterdata.

Chapter 5. Similarity Search 46

We used a classical implementation of a k–means clustering algorithm [HK01]
for this process. Since k–means clustering is a well–known and well–used
algorithm, no pseudocode is included in this work, but we will give a short
explanation on the exact implementation used in our tool.

Figure 5.4: Result of the k–means clustering algorithm for 5 clusters.

The user inputs the trajectories he wants to cluster and the number of
clusters k he wants to be calculated. Before the clustering algorithm starts,
the program first calculates all the Fréchet–based Distances between all
trajectories to save time and the need for recalculation.

Chapter 5. Similarity Search 47

The algorithm starts with assigning k random trajectories as clusterscen-
troids. Then for every trajectory, the algorithm will search for the centroid
closest to the specific trajectory, using the Fréchet–based Distance for tra-
jectories.

Every trajectory will then be classified in the cluster, corresponding to the
centroid it is closest to. The algorithm then recomputes the centroids: in
every cluster, it searches for the trajectory that has the shortest distance to
all the other trajectories in the cluster. And all trajectories are reassigned
to a cluster, using these new centroids. This process is repeated as long as
changes occur.

For a first test, we used the dataset mentioned before and shown in Figure 5.3
and asked the program to divide the data in 5 clusters. The result took an
average of 375ms to calculate and is shown in Figure 5.4. We can clearly
see 4 visible clusters and, if we take a closer look, see that the fifth cluster
are the trajectories that can be considered noise.

We then asked the program to divide the dataset in 6 clusters. The result
took an average of 406.5ms to calculate and is shown in Figure 5.4. We can
see the same 4 visible clusters in Figure 5.5 and notice that the “noise”–
cluster is divided in two.

On this testdata, the algorithm seems to return excellent results if we use
it to find clusters in a group of trajectories, with an excellent runtime lower
than half a second.

Chapter 5. Similarity Search 48

Figure 5.5: Result of the k–means clustering algorithm for 6 clusters.

Chapter 5. Similarity Search 49

5.4.3 Testresults with special trajectories

We have seen in Section 5.1 that similarity search using the Double–Cross
— or Twisted–Cross – is invariant under translation, rotation and scaling.
We will now run a small series of tests to see if this is also the case with our
new Fréchet–based Distance.

First take a look at Figure 5.6, a plot with three trajectories. They are
exactly the same, except that one of them is 1/10 and one is 1/5 the size
of the largest one. Note that the trajectories on the plot in Figure 5.6, are
translated for visualization purposes.

Figure 5.6: A trajectory and two smaller versions of the same trajectory at scale
1/10 and 1/5.

If we calculate the Fréchet–based Distance for these three trajectories and
we calculate the Fréchet–based Distance between each trajectory and the
line connecting it’s begin– and endvertex, we will see that each trajectory is
more similar to that line than to any of the other two trajectories.

Of course, your notion of similarity is very important here: does size matter
or not? If we want to find similarity no matter the scale of our objects,
than the Double–Cross has the advantage. We can add this functionality to
our algorithm by scaling our trajectories to make them match as good as
possible. In this case, we will see that after scaling, the three trajectories
are considered exactly the same.

Analogue concepts can be used for translating and rotating trajectories to
make them match as good as possible. But what is the perfect match? In
our code, we have choosen to bring the startvertices of trajectory A and B
together, shown in Figure 5.7(a), and than rotate one of the two trajectories,

Chapter 5. Similarity Search 50

(a) First the trajectories are trans-
lated to make the startvertices
match.

(b) Then they are rotated to bring
the endvertices as close to ea-
chother as possible.

Figure 5.7: Illustration of the used techniques to bring two trajectories together.

A, to make the endvertex of A lie on the straight line between the begin–
and endvertex of B, shown in Figure 5.7(b).

Our technique is very fast, since only two transformations are necessary: a
translation and a rotation. But this does not give us the ideal match. It
is very possible that two trajectories would have a smaller distance with
another transformation. This can be seen in Figure 5.8.

Figure 5.8(a) shows the two trajectories, A and B, that we would like to
match. Using our own proposition, we find the match shown in Figure 5.8(b).
But if we take a look at Figure 5.8(c), we see that this third image contains
a matching that gives us a smaller Fréchet–based Distance than the second
one.

Finding the ideal transformation to minimize the distance between two tra-
jectories or polylines is not an easy task. In [AKW01] a technique is proposed
to find this ideal transformation, but it only works in a fixed direction and
it only works with transformations (rotations and scaling is not possible).

The run time of this algorithm is O
(

(mn)3 (m+ n)2
)

, while our proposal
is a lot faster: we perform a single translation and – if necessary – a single
rotation. Essentially, our idea is less correct but much faster.

Chapter 5. Similarity Search 51

(a) Two trajectories we wish to match
as good as possible.

(b) The two trajectories matched
with our algorithm.

(c) A match that results in a smaller
Fréchet–based Distance between the
two trajectories.

Figure 5.8: Illustration of the main disadvantage of our proposed technique.

Chapter 6

Conclusions

Here we will end our study of qualitative and quantitative methods for
similarity search. Originally, there would have been a greater emphasis on
the differences and similarities between these two classes of methods, but
our newfound distance measure, the Fréchet–based Distance, appeared to
be very interesting and thus the focus of this thesis moved towards a study
of this new method.

I would like to complete my work with a reflection on our findings and a
look at the direction future research in this method might go to.

6.1 General conclusions

We have taken a look at the generalization principle and the qualitative
methods it was originally designed for. We have seen that it is a necessity
for the qualitative methods, but that it also can be used for our new distance
measure to compare curved trajectories and that is solves the problems that
might arise with a boundary based approach.

We have seen the Hausdorff Distance and the Fréchet Distance and we fol-
lowed the classical idea for the Fréchet Distance to find a new distance
measure for our own type of data: create a measure based on the Fréchet
idea especially designed for our datatype.

Although our proposed distance measure is not a metric, it does work very
well with clustering techniques and it is very fast. We have found times
smaller than half a second for clustering with excellent results.

An other advantage is that the new measure can be used for trajectories in
an space: since we use the Euclidean Distance. We can use this algorithm
for trajectories in R3 × T as well. An example of this kind of data could be
the route travelled by a helicopter.

52

Chapter 6. Conclusions 53

6.2 Further research

Not all secrets of the Fréchet–based Distance have been discovered and many
questions remain. The original intention of this work was to link qualitative
and quantitative distance measures. We already explained why the goal of
this work changed, but the original question is not less interesting because
of our findings, rather the opposite.

Since we now use exactly the same datatype – generalized trajectories – the
search for similarities might become easier and more interesting. Is there
a relation between the two techniques? Which one is better? When is it
better and why? This are a few examples of questions that can be answered
in the future.

We do have a feeling that there is a connection between the new Fréchet–
based Distance and the Twisted–Cross method. As we take a look at Fig-
ure 6.1, we see that all trajectories with a Fréchet–based Distance smaller
than 100 are in contained in the set of all the trajectories with Twisted–
Cross dissimilarity 30, with other words: if the Fréchet–based principle finds
it very similar, the Twisted–Cross does the same.

This needs to be researched in more detail, to check if this is a coincidence
or something that is true. If this always holds, the Twisted–Cross can be
used as a preprocessing step for the Fréchet–based distance.

Chapter 6. Conclusions 54

(a) Graphical representation of Twisted–Cross results

(b) Graphical representation of Fréchet–based results

Figure 6.1: Illustration of a relation between the Twisted–Cross and the Fŕ’echet–
based Distance

Bibliography

[AG95] Helmut Alt and Michael Godau. Computing the fréchet dis-
tance between two polygonal curves. Int. J. Comput. Geometry
Appl, 5:75–91, 1995.

[AHK+06] Boris Aronov, Sariel Har–Peled, Christian Knauer, Yusu Wang,
and Carola Wenk. Fréchet distance for curves, revisited. In
Yossi Azar and Thomas Erlebach, editors, ESA, volume 4168
of Lecture Notes in Computer Science, pages 52–63. Springer,
2006.

[AHSW03] Pankaj K. Agarwal, Sariel Har–Peled, Micha Sharir, and Yusu
Wang. Hausdorff distance under translation for points and
balls. In Symposium on Computational Geometry, pages 282–
291. ACM, 2003.

[AKW01] Helmut Alt, Christian Knauer, and Carola Wenk. Matching
polygonal curves with respect to the fréchet distance. In Afonso
Ferreira and Horst Reichel, editors, STACS, volume 2010 of
Lecture Notes in Computer Science, pages 63–74. Springer,
2001.

[Bar] Margherita Barile. Pseudometric. http://mathworld.
wolfram.com/Pseudometric.html (Last visited: 08–05–2007).

[BBW06] Kevin Buchin, Maike Buchin, and Carola Wenk. Computing the
fréchet distance between simple polygons in polynomial time.
In Nina Amenta and Otfried Cheong, editors, Symposium on
Computational Geometry, pages 80–87. ACM, 2006.

[BFM+96a] J. E. Barros, J. C. French, W. N. Martin, P. M. Kelly, and
T. M. Cannon. Using the triangle inequality to reduce the
number of comparisons required for similarity-based retrieval.
In I. K. Sethi and R. C. Jain, editors, Proc. SPIE Vol. 2670,
p. 392-403, Storage and Retrieval for Still Image and Video
Databases IV, Ishwar K. Sethi; Ramesh C. Jain; Eds., volume
2670 of Presented at the Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference, pages 392–403, March 1996.

55

http://mathworld.wolfram.com/Pseudometric.html
http://mathworld.wolfram.com/Pseudometric.html

Bibliography 56

[BFM+96b] Julio Barros, James French, Worthy Martin, Patrick Kelly, and
Mike Cannon. Using the triangle inequality to reduce the num-
ber of comparisons required for similarity-based retrieval, 1996.

[Bla] Paul E. Black. Hausdorff distance. http://www.nist.gov/
dads/HTML/hausdorffdst.html (Last visited: 08–05–2007).

[BPSW05] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola
Wenk. On map-matching vehicle tracking data. In Klemens
Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten,
Per-Åke Larson, and Beng Chin Ooi, editors, VLDB, pages
853–864. ACM, 2005.

[Ewi85] George M. Ewing. Calculus of variations with applications.
Dover Publications, 1985.

[geo] Geographic privacy–aware knowledge discovery and delivery.
http://www.geopkdd.eu/ (Last visited: 28–05–2007).

[God98] Michael Godau. On the complexity of measuring the similar-
ity between geometric objects in higher dimensions, chapter 3,
pages 19–20, 33–59. 1998.

[Hen99] Jeff Henrikson. Completeness and total boundedness of the
hausdorff metric. Massachusetts Institute of Technology Un-
dergraduate Journal, pages 70–72, 1999.

[HK01] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques, chapter 8, pages 349–351. Academic Press, 2001.

[HKR93] Daniel P. Huttenlocher, Gregory A. Klanderman, and William
Rucklidge. Comparing images using the hausdorff distance.
IEEE Trans. Pattern Anal. Mach. Intell, 15(9):850–863, 1993.

[Hoo06] Jelle Van Hoof. Masterstage - simple shapetool: verslag. Tech-
nical report, Hasselt University, 2006.

[Kel06] Tom Kellens. Database search van tijdreeksen, met toepassing
in de firma medtronic. Master’s thesis, Hasselt University, 2006.

[KM06] Bart Kuijpers and Bart Moelans. Similarity between trajecto-
ries by using a qualitative feature extraction approach. Tech-
nical report, Hasselt University, 2006.

[KMV06] Bart Kuijpers, Bart Moelans, and Nico Van de Weghe. Quali-
tative polyline similarity testing with applications to query-by-
sketch, indexing and classification. In Rolf A. de By and Silvia
Nittel, editors, GIS, pages 11–18. ACM, 2006.

http://www.nist.gov/dads/HTML/hausdorffdst.html
http://www.nist.gov/dads/HTML/hausdorffdst.html
http://www.geopkdd.eu/

Bibliography 57

[KYM+05] Kikuya Kato, Riu Yamashita, Ryo Matoba, Morito Monden,
Shinzaburo Noguchi, Toshihisa Takagi, and Kenta Nakai. Can-
cer gene expression database (CGED): a database for gene ex-
pression profiling with accompanying clinical information of
human cancer tissues. Nucleic Acids Research, 33(Database-
Issue):533–536, 2005.

[NCV+03] Melanie Nugoli, Paul Chuchana, Julie Vendrell, Beatrice
Orsetti, Lisa Ursule, Catherine Nguyen, Daniel Birnbaum, Em-
manuel Douzery, Pascale Cohen, and Charles Theillet. Genetic
variability in mcf-7 sublines: evidence of rapid genomic and rna
expression profile modifications. BMC Cancer, 3(1):13, 2003.

[VDKD05] Nico Van de Weghe, Guy De Tré, Bart Kuijpers, and Philippe
De Maeyer. The double-cross and the generalization concept as
a basis for representing and comparing shapes of polylines. In
OTM Workshops, volume 3762 of Lecture Notes in Computer
Science, pages 1087–1096. Springer, 2005.

[Wei] Eric W. Weisstein. Metric. http://mathworld.wolfram.com/
Metric.html (Last visited: 08–05–2007).

http://mathworld.wolfram.com/Metric.html
http://mathworld.wolfram.com/Metric.html

Appendix A

Double–Cross codes

Figure A.1: List of all possible codes for the Double–Cross. Note that only 65 of
these codes are possible in reality. [VDKD05]

58

Appendix B

Used tools

I have developed two tools have been used in this work: one that has been
developed during an internship at Hasselt University and one during the
creation of this work. The first one is called Simple Shape Tool (SST),
discussed in Section B.1 and the other one Algorithmtester, which can be
found in Section B.2.

B.1 Simple Shape Tool

Figure B.1: Screenshot of the Simple Shape Tool

59

Appendix B. Used tools 60

The Simple Shape Tool has been developed for researchproject R–0920, a
project from Hasselt University and Ghent University. A screenshot can be
found in Figure B.1.

The first idea behind the program was to create a very easy to use, platform
independant, tool for drawing polylines, polygons and trajectories, with the
possibility to draw these figures with fixed angles or fixed segmentlenghts.
The program is written in Java.

The second idea was to create a tool that could be used to test different
algorithms with a newly drawn figure. The program contains a small editor
to make it possible for the user to insert an algorithm in the program that
can be used.

For example, a user could write the algorithm for calculating the simple
cross codes and then immediatly use this algorithm to find the corresponding
codes for a figure. Inserted algorithms are saved in a special folder so they
can be reused. More details on this program can be found in [Hoo06].

B.2 Algorithmtester

Algorithmtester is a small program, written in Java, for vizualisation – plot-
ting – of trajectories in either 2D or 3D and for testing the different distance
measures encountered in this work. Screenshots can be found in Figure B.2
and Figure B.3.

Figure B.2 shows the very simple main interface of the program, the purpose
of the buttons and such is very obvious and thus not explained. Except for
the option “Equalise figures”: when a user checks this box, the program
will use translations, rotations or scaling to make every pair of trajectories
match as good as possible, before using the selected distance measure.

The program accepts files in the format used by the Simple Shape Tool as
inputtrajectories.

In Figure B.3, we see the resulting distance between each pair of trajectories,
after calculations. Since the Fréchet–based Distance is symmetric, we only
calculate the distances between every pair once. These distances can be
saved in a file with comma-separated values, which can be opened with any
popular program for spreadsheets. The time to calculate the values is also
given, for test purposes.

Appendix B. Used tools 61

Examples of the plots generated by the program can be found in Figure 5.3,
Figure 5.4 and Figure 5.5. To generate these plots, we have used a simple
opensource extension for Java: JMathPlot1.

In the end, some extra functionality was added: the possibility to cluster
a group of trajectories, using a distance measure available in the program.
For this option, we used a k–means algorithm, described in Section 5.4.2.

Figure B.2: Main interface of the program

Figure B.3: Resultwindow of the program

1http://jmathtools.sourceforge.net/

http://jmathtools.sourceforge.net/

Auteursrechterlijke overeenkomst
Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw

akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd te nemen om deze overeenkomst door te

nemen, de gevraagde informatie in te vullen (en de overeenkomst te ondertekenen en af te geven).

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

A study of quantitative and qualitative methods for trajectories

Richting: master in de informatica Jaar: 2007

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik

als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te

reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van

de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de

eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door

het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit

Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling

werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Ik ga akkoord,

Jelle Van Hoof

Datum: 21.08.2007

Lsarev_autr

	Van Hoof Jelle zwart.pdf
	1 Introduction
	2 Trajectories
	2.1 Definition
	2.2 Set of timestamps T
	2.3 Distance metrics

	3 The generalization principle and qualitative methods
	3.1 Generalization principle
	3.1.1 Definition
	3.1.2 Algorithm generalize trajectory

	3.2 Qualitative methods
	3.2.1 The Double--Cross method
	3.2.2 The Twisted--Cross method

	4 Quantitative methods
	4.1 Hausdorff Distance
	4.1.1 General Definition
	4.1.2 Algorithm Hausdorff Distance for trajectories
	4.1.3 Definition Hausdorff Distance for trajectories
	4.1.4 A note on Hausdorff Distance in this work

	4.2 Fréchet Distance
	4.2.1 General definition
	4.2.2 Algorithm for Fréchet--based Distance
	4.2.3 Note on 2- and 3-dimensional distance
	4.2.4 Note on curved trajectories
	4.2.5 Properties of the algorithm
	4.2.6 Definition of the Fréchet--based Distance
	4.2.7 Properties of the Fréchet--based Distance

	5 Similarity Search
	5.1 Similarity search with the Double--Cross
	5.2 Similarity search using the Hausdorff Distance
	5.3 Similarity search using the Fréchet Distance
	5.4 Similarity search with the Fréchet--based Distance
	5.4.1 Testsoftware
	5.4.2 Testresults for clustering
	5.4.3 Testresults with special trajectories

	6 Conclusions
	6.1 General conclusions
	6.2 Further research

	A Double--Cross codes
	B Used tools
	B.1 Simple Shape Tool
	B.2 Algorithmtester

