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ABSTRACT

In a previous paper we investigated the performance of several classification methods

for cDNA-microarrays. Via simulations various experimental settings could be explored

without having to conduct expensive microarray studies. For the selection of genes on which

classification was based, one particular method was applied. Gene selection is however a very

important aspect of classification. We would like to extend the previous study by considering

several gene selection methods. Furthermore, the stability of the methods with respect to

distributional assumptions is examined by also considering data simulated from a symmetric

and asymmetric Laplace distribution in addition to normally distributed microarray data.

1. INTRODUCTION

Microarrays allow the monitoring of expression levels of thousands to tens of thousands

of genes simultaneously in a given cell type. One of the uses of microarray data is to

generate gene expression profiles which can discriminate between different known cell types

or conditions. An important question is what method is most suitable for this purpose?

Van Sanden et al. (2007) compared the performance of several classification methods

using simulated microarray data. The study supplements prior investigations that were

based on the use of real-life data (Dudoit et al. 2002, Lee et al. 2005, and Statnikov et

al. 2005). The latter capture the complexity of microarray measurements more adequately

but simulated data are not limited to settings for which data are available. Furthermore, in

simulations the true classification, as well as the set of truly differentially expressed genes,

is known. Thus the misclassification rate can be accurately determined.

In this paper we extend the Van Sanden et al. (2007) study in two directions. First of

all, the study was limited to one gene selection method prior to performing classification.

Lee et al. (2005) found that the choice of the gene selection method has much effect on

the performance of the classification procedures. They considered four gene selection tech-

niques combined with a number of classification methods, and applied them to seven real-life

datasets. In the present paper we incorporated 14 well-known selection methods into the

simulation study to investigate their influence on 11 classification procedures under several
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controlled scenarios. There are still other gene selection (linear models (Smyth, 2004), the

TnoM score (Ben-Dor et al., 2000), random forest based approach (e.g. Diaz-Uriarte and

Alvarez de Andres, 2006)) and classification methods (LogitBoost (Dettling and Bhlmann,

2003), BagBoosting (Dettling, 2004), Regular Discriminant Analysis (e.g. Guo et al., 2007))

that have been recently proposed. However, to keep the study feasible, we decided not in-

clude them in the simulations. We also did not consider dimension reduction methods (like

MAVE (Antoniadis et al., 2003) or PLS (Nguyen and Rocke, 2002; Boulesteix and Strimmer,

2007)). Secondly, in the Van Sanden et al. (2007) study the normal distribution has been

used as the underlying distribution in the simulation procedure. It has been shown (Purdom

and Holmes, 2005), however, that microarrays do not always follow the normal distribu-

tion. Thus, we considered the symmetric Laplace distribution as a long-tailed alternative.

Moreover, we also used the asymmetric Laplace distribution.

To simulate the data a linear mixed effects simulation model that mimics a microarray

context was used. The parameters of the model were chosen based on an analysis of a real-life

experiment. For the analysis of this experiment, as well as for the simulation of the data,

SAS 9.1 was used. The simulated data were analysed using R.

The paper is organized as follows. In Section 2 we shortly describe the investigated gene

selection and class prediction methods. Section 3 contains details of our simulation study.

Results are described in Section 4. A short discussion and conclusions are presented in

Sections 5 and 6, respectively.

2. METHODS

In this section we give a brief description the gene selection and classification methods

considered in the study. In most cases existing R functions were used for the implementation

of the different methods. In what follows the necessary packages, as well as the parameter

settings of the particular functions, are indicated.

2.1 GENE SELECTION

A typical microarray experiment involves many genes of which usually only a few are
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differentially expressed. Therefore, one may want to select and base the classification on a

subset of, say p, genes, majority of which would hopefully differentiate between the compared

classes of samples. An important issue is how to select the genes? In the simulation study

we assessed the use of several methods for this purpose.

Classical test statistics

We considered a basic parametric test statistic, the t-test (Ttest) and a basic non-

parametric test statistic, the Wilcoxon Rank Sum test (Wilc). R-functions stat.t2 from

the sma package and wilcox.test from stats are used for this purpose.

Significance analysis of microarrays (SAM)

SAM is a method for analysing microarray experiments and detecting significant genes.

It was proposed by Tusher et al. (2001). A score (modified t-statistic) is assigned to each

gene based on change in gene expression relative to the standard deviation augmented by a

small positive constant. This constant ensures that the variance of the score is independent

of gene expression. Its value is chosen to minimize the coefficient of variation of the test

statistic. The modified t-statistic for the case of two unpaired classes was calculated by the

samr function from the samr package.

Prediction analysis for microarrays (PAM)

PAM fits a nearest shrunken centroid classifier to microarray data. The method, also

referred to as soft-thresholding, was introduced by Tibshirani et al. (2002). It provides a list

of significant genes whose expression best characterizes each class. The functions pamr.train

and pamr.listgenes from the pamr package contain the implementation of the method.

Extreme-value distribution based gene selection (Extval)

Li et al. (2004) introduced gene selection based on comparison of the maximum likeli-

hood of a logistic regression model applied to the original data and permutation datasets.

To avoid using computational intensive procedures they propose to take advantage of the

extreme-value distribution for the log likelihood ratios. From there follows a ranking of the

genes which can be used to select a predefined number of genes. Li et al. (2004) also sug-
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gest two criteria to determine the number of genes to be selected from the list, one based

on the expected values (E-criterion) and one based on p-values (P-criterion). They were

both included in our simulation study. The gene selection method and both criteria were

implemented in R.

Other test statistics

There are a number of other statistics used for ranking and selection of genes. We

considered a couple of well-known methods. Each time the p genes with the largest statistic

were selected and used for classification. The BW ratio is the ratio of the between-treatment

sum of squares and the within-treatment sum of squares (Dudoit et al. 2002). In a two group

setting the BW-ratio reduces to the same statistic as the t-test. The prediction strength (PS)

(Xiong et al. 2001) of a certain gene is defined as the ratio of the difference in mean log

expression level between the two groups and the sum of the variances of the two classes. The

between-class scatter score (BC-score) belongs to the class of correlation scores (Chai and

Domenicioni 2004). Most of these scores are designed to handle multi class problems and

reduce to one of the above statistics when applied to a two class problem. The BC-score

is obtained by dividing the weighted squared difference of the class mean from the overall

mean by the sum of the variances of the two classes. All the above mentioned test statistics

were implemented in R.

Statistical impurity measures

In contrast to determining a test statistic, we can attempt to find a gene-specific threshold

in the expression range. If a measured value for a particular gene is larger (resp. smaller)

than this threshold, the sample is assigned to for instance class one (resp. two). Statistical

impurity measures quantify the effectiveness of this method. There are several ways this can

be done, leading to multiple impurity measures: twoing rule (Twoingr), information gain

(Infgain), Gini index (Gini), max minority (Maxmin), sum minority (Summin), and sum of

variances (Sumvar). A full description of them can be found in Murthy et al. (1994) and Su

et al. (2003). The methods were implemented in R.
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Empirical cumulative distribution function (ECDF)

The following method was introduced as a pre-screening technique by Boulesteix et al.

(2003). Genes are selected based on how well the Empirical Cumulative Distribution Func-

tion (ECDF) of the two classes are separated. One chooses values α and β and retains genes

for which there exist a point where the ECDF is less than α for one class and more than β

for the other, or more than 1 − α for one class and less than 1 − β for the other. Initially,

α is set at 0.1 and β at 0.5. The value for α (resp. β) is increased (resp. decreased) to be

able to select the desired number of genes. After the proper values of alpha and beta are

found and the genes are selected, we can determine for each of those genes the interval of

maximum width satisfying the above mentioned conditions. The width of the intervals can

then be used to order the genes.

2.2 CLASS PREDICTION

We focused on the simplest case of discrimination between two different groups of samples.

The class prediction procedures investigated in our study included tree methods, classical

discrimination analysis techniques, and machine learning methods. For a more detailed

description of the methods we refer to Van Sanden et al. (2007).

Classification trees

A classification tree is a binary recursive partitioning method developed by Breiman et

al. (1984). It is implemented as the function dorpart, which is part of the IBCLab4 package

available at: http://bioinf.wehi.edu.au/marray/ibc2004/Rpackages/IBCLab4.html.

Aggregated classifiers combine tree classifiers to improve the accuracy of the class pre-

diction. One such method is called bagging (Breiman 1996). It is based on taking bootstrap

replicates (in our case 100) from the training dataset, constructing a tree for each of them

and determining classification by majority vote. The method is implemented by the function

ipredbagg.factor from the ipred package.

Boosting, proposed by Schapire and Freund (1999) is another form of aggregating clas-

sifiers. A series of classification trees is produced for the training dataset, each time with
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different weights assigned to the samples. The idea is to give samples misclassified in the

previous step more weight in the current one. The final outcome is a weighted majority vote

of all created trees. The gbm function from the gbm package was first applied to the data

in order to create 100 trees in the manner described above. When applying the function,

Bernoulli distribution, a shrinkage parameter of 0.001 and the fraction of randomly selected

observations for building a tree of 0.5 were used. The gbm.more function was used to create

1000 additional trees.

Random forests (Breiman, 2001) are constructed by independently drawing subsets of

samples (with replacement) and genes (without replacement) from the training dataset.

Classification is determined by majority vote. The method is implemented as the function

randomForest from the randomForest package. The size of the samples that were drawn

was set equal to the total number of samples. This is the default value in R. For the genes

it is determined by a function specified in the help file of randomForest. The method was

applied with the number of trees equal to 500 and 1000.

k nearest neighbors (kNN)

kNN (Ripley, 1996) is an intuitive method that classifies unlabeled samples to most

frequent class label among the k closest samples (using the Euclidean distance measure)

from the training set. The method is implemented as the function knn in the package

class. knn.cv was used to determine the value of k.

Discriminant analysis

Linear discriminant analysis (LDA), a classical discriminant method, estimates linear dis-

criminant functions for decision boundaries based on assumptions of Gaussian distribution

and equal covariance matrices for the grouped data. Variants of the method assume equal

(diagonal linear discriminant analysis, DLDA) or unequal (diagonal quadratic discriminant

analysis, DQDA) diagonal covariance matrices for the considered classes. LDA is imple-

mented as the function lda in the MASS package, while stat.diag.da from the sma package was

used for DLDA and DQDA.
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Support vector machines (SVM)

Support vector machines, first introduced by Cortes and Vapnik (1995) in the machine

learning theory are used to solve two-group classification problems. The method is imple-

mented as the SVM function in the package e1071. In the study we included the linear,

polynomial and radial kernel. The regularization parameter was set equal to one. The other

parameters were set at the default value of the R-function.

3. SIMULATION STUDY

We assumed the setting of an experiment using two-channel cDNA microarrays in a

common reference design. In the experiment, two classes of samples (a treatment and a

control group, say) were compared to the same reference group. No difference between

expression levels for the control and reference groups was assumed. On the other hand, a

subset of genes was assumed to be differentially expressed in the treatment group as compared

to the reference group. Treatment and control samples were labeled with the same dye, while

the reference samples were labeled with the other dye. The log ratios of the two channels

(Control/Reference and Treatment/Reference) were used for classification purposes.

For every setting of interest 100 simulation datasets were created, each containing 160

arrays: 60 were used as a training dataset and the other 100 formed a test dataset. One

half of the arrays in each set always contained the treatment sample, while the other half

was for the control group. On each array we simulated 2000 genes, what corresponds to

the number of genes on arrays used in the real-life experiment we were using as a basis for

the simulation study (Van Bredaet al. 2005). A linear mixed effects model was utilized to

simulate observations subject to various systematic and random effects usually present in real

microarray experiments (Kerr, Martine and Churchill 2000), (Wolfinger emphet al. 2001).

An observation Yijg, assumed to be the mean signal intensity for array i (i = 1, . . . , 100),

dye j (j = 1, 2) and gene g (g = 1, . . . , 2000), was generated by the following model:

log2(Yijg) = µ + Ai + Gg + AGig + DGjg + TGg + εijg, (1)

where µ is the overall mean, Ai stands for the overall array effect, Gg for the gene effect
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and AGig for their interaction. DGjg and TGg represent, respectively, the gene specific dye

and treatment effects, while εijg is a random error. Some of these effects are fixed, while

others are random and were drawn from a normal distribution. The details are displayed

in Table 1. The chosen values were based on the estimated parameters of a ANOVA-model

fitted to a real-life cDNA microarray dataset (Van Breda et al. 2005). The gene effects (Gg,

DGjg, TGg and σ2

g) for a specific gene were kept constant across datasets. We were thereby

simulating the repetition of an experiment each time involving the same set of genes.

TABLE 1

FIGURE 1

Figure 1 shows histograms of the log intensity values for two arrays chosen from the

real-life dataset. As can be seen from these graphs, for one of them the normal distribution

may be a reasonable approximation. For the other a slightly asymmetric distribution with

a long tail on the right side might be more appropriate.

Figure 1 also presents a normal QQ-plot of the log transformed gene-specific variances

of the error terms εijg obtained from the ANOVA-model fitted to the real-life dataset. In

this particular case a log normal distribution seems to be a very good approximation for

the distribution of the gene specific variance of εijg. Consequently, it has been used in the

simulation model.

In model (1) the gene specific dye effect is represented by the difference in the means

of the normal distributions for DGjg. Simulated arrays with even numbers contain control

and reference group samples. Arrays with odd numbers contain treatment and reference

samples. The latter arrays contain 20 genes that are differentially expressed. We considered

two scenarios with respect to the treatment effect. In the first one, for all 20 genes a constant

treatment effect of 0.5 on the log scale was assumed. In the second one, we assumed 4 groups

of 5 genes with treatment effects equal to, respectively, 0.125, 0.250, 0.375 and 0.5 on the

log scale.
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Heterogeneity was incorporated into model (1) by allowing the random error term εijg to

have a gene-specific variance, selected randomly from a log-normal distribution (see Table 1),

as observed in the real life-dataset (see Figure 1).

Laplace distribution

For the real-life dataset, which is the basis of the simulation model, the normality as-

sumption for the error terms εijg holds reasonably well. Often the distribution of microarray

data has longer tails than the normal or is somewhat asymmetric. One of the examples

in Figure 1 demonstrates these features to some extent. We wish to examine the effect of

such a deviation on the performance of the selection and classification methods. Purdom

and Holmes (2005) propose the use of the asymmetric Laplace distribution for microarray

data. It is more peaked compared to the normal distribution. We included in the study data

simulated from the symmetric and asymmetric Laplace distribution. This was achieved by

replacing the normal distribution, as described in Table 1, by L(0, σg) for the symmetric or

AL(0, κ, σg) for the asymmetric Laplace distribution. The density function of AL(θ, κ, σ) is

given by

f(x) =

√
2

σ

κ

1 + κ2







exp(−
√

2κ

σ
|x − θ|) x ≥ θ

exp(−
√

2

σκ
|x − θ|) x < θ

(2)

while that of the symmetric Laplace distribution is obtained when κ is put equal to 1.

The gene specific scale parameter (σg) is the same as for the case with the normal dis-

tribution (see Table 1). For the skewness parameter κ we chose values of 0.5 (skewed to the

left) and 1.2 (skewed to the right). They are similar or a bit more extreme than estimates

found by Purdom and Holmes (2005) for several microarrays from published microarray ex-

periments. Their estimates range from 0.792 to 1.174. To make sure we can study the effect

of skewness on the selection and classification methods we made the asymmetry to the left

a little bit more severe.

4. RESULTS

In this section we present the results of the various selection and classification methods

in different settings, starting with data simulated from the normal distribution and with a
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constant treatment effect. Further on, we investigate changes to the results when considering

other distributions or varying treatment effects.

4.1 NORMALLY DISTRIBUTED DATA WITH A CONSTANT TREATMENT EFFECT

First, a comparison of the performance of the gene selection methods is made. It can be

evaluated in two ways: by the number of genes selected that are actually differentially ex-

pressed or by the misclassification rate when combining the selection methods with different

classification procedures. This rate is calculated based on the number of misclassified arrays

divided by total number of arrays (100) in the test dataset.

The gene selection methods were applied to the simulated training datasets to obtain

subsets of genes of varying sizes (p=2, 5, 10, 20, 40, 200). Table 2 shows the median

numbers of the truly differentially expressed genes among the p=10 selected genes. Though

many methods result in similar numbers, some patterns can be observed. Certain impurity

measures, especially Maxmin, do not perform as well as some of the other methods. ECDF

seems by far the least desirable method. Furthermore, there is no obvious winner, though

SAM appears to perform slightly better than all other methods.

TABLE 2

In a next step we evaluate the gene selection methods when combined with different

classification procedures. For demonstration purposes the results for p=10 and 200 (Figure 2)

were chosen. The figure contains box plots of the misclassification rates, computed over the

100 simulated datasets. First of all a comparison between the results for p=10 and 200

reveals the importance of proper gene selection. When a lot of noise (genes that are not

differentially expressed) is present, the performance of most classification methods (except

for tree methods) weakens. This conclusion is supported by Van Sanden et al. (2007).

Furthermore, no gene selection method is clearly outperforming all the others.

FIGURE 2

For the classification trees all gene selection methods are performing similarly, except

for SAM, BC-score and ECDF. ECDF leads in general to poor results. The other two fail
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mainly when a relatively low number of genes is selected. The choice of the best gene selection

method seems to depend on the classification method used and the number of selected genes.

When the value of p becomes larger, the difference between the methods fades.

The results for kNN are similar. SAM, BC-score and ECDF are not recommendable.

There is however more variation between the other methods, also for large values of p. The

best methods appear to be Wilc, PS, PAM, Ttest (=BW) and Extval.

For the different forms of discriminant analysis and SVM the best methods are also Wilc,

PS, PAM, Ttest (=BW) and Extval, while Maxmin, SAM, BC-score and ECDF perform

rather poorly. However, in contrary to the tree methods and kNN, ECDF improves on

several methods when p is quite large (p ≥ 200), while the performance of Extval weakens.

Next to gene selection, we can also re-examine the performance of the classification

methods, particularly for the optimal selection procedures (Figures 3). In the previous

paper (Van Sanden et al., 2007) we only considered one SVM method based on a linear

kernel. In the current study two other kernels are considered, the polynomial and radial. It

appears that polynomial SVM gives the poorest results of the three. Radial SVM mostly

outperforms linear SVM, except when a large number of genes is used for classification. The

difference between radial and linear SVM fades or even reverts when p increases to 2000

(data not shown). The bad performance of polynomial SVM becomes then even more clear.

FIGURE 3

In general radial SVM does not outperform some of the other classification methods.

Considering all gene selection procedures, DLDA is one of the best methods. Random Forrest

is not doing so bad either, especially when the number of genes is large (p ≥ 200, data not

shown). In that particular setting it is outperforming all other methods. Furthermore LDA,

DQDA and radial SVM work reasonably well.

4.2 OTHER SETTINGS

The performance of the selection and classification methods was also investigated for data

with a proportionally increased treatment effect, and with other distributional assumptions
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for the error term εijg. Table 2 displays the mean percentage of truly differentially expressed

genes for all settings. The comparison between different selection methods appears quite

similar under the different assumptions. There is however some variability over the settings

with different distributional assumptions.

The size of the log ratios of the two channels depends, besides on the dye and on the

treatment effect, on the difference between the error terms of the model that generates the

ratios (equation 1). When this difference has the sign opposite of the treatment effect,

it will make it more difficult or even impossible to pick up the treatment effect. Table 3

contains some basic properties (variance and kurtosis) of fX−Y (z). When X, Y ∼ L(0, σ)

or AL(0, 1.2, σ), fX−Y (z) has a similar variance but a higher kurtosis than when X, Y

∼ N(0, σ2). Therefore the distribution in question is more peaked with the same spread. It

has more weight near zero and in the tails. However, the probability of getting a value in the

tails is quite small, and values close to zero have less chance of diminishing the treatment

effect to the point where it is not detected anymore. This explains why error terms with a

symmetric or right skewed asymmetric Laplace distribution allow for a better detection of

the significant genes than when they follow the normal distribution. The opposite is true

when X, Y ∼ AL(0, 0.5, σ): fX−Y (z) is more peaked than when X, Y ∼ N(0, σ2), but also

has a lot more variability. The chance of getting values in the tails of this distribution is not

so small in this case. It thus explains why fewer of the significant genes were picked up.

TABLE 3

Figure 4 displays median misclassification rates for certain combinations of gene selection

and classification methods under different settings. The shift between the curves represent-

ing a certain setting is directly related to the variability over the different settings seen in

Table 2 and discussed above. Only small differences are noticeable when comparing profiles

of different settings. However, in general the results are not substantially or consistently

affected by proportionally increasing the treatment effect, or by simulating data from the

symmetric or asymmetric Laplace distribution. Similar results were found for the other

combinations of gene selection en classification methods (data not shown).
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FIGURE 4

4.3 E- AND P-CRITERIA

Figure 5 displays the misclassification rates for various classification methods combined

with all considered gene selection methods, including the E- and P-criteria. For the methods

that do not determine the optimal number of genes (p) to select, several values of p were

considered. The E-criterion generally outperforms the P-criterion, except for some classifi-

cation methods where both give almost the same result. The E-criterion also works quite

well compared to other selection methods. It leads to the lowest median misclassification

rate, except when combined with a tree method. In that case its performance is still very

close to that of the best choice of gene selection method and value of p.

FIGURE 5

5. DISCUSSION

Given the complexity of microarray data, one probably should not expect that a single

gene selection or classification method will always outperform all the others. It is therefore

paramount to investigate relative merits of different procedures to see in which settings which

methods might be expected to work reasonably well.

Lai et al. (2005) compared a number of univariate and multivariate gene selection al-

gorithms across several cancer diagnostic problems. They did not detect any significant

improvement when employing multivariate gene selection techniques. They argue that this

finding could be due to very limited sample size. However, in our previous study (Van

Sanden et al., 2007) we simulated correlation between certain genes. We also did not find

this to have an effect on the performance of the classification methods. With these findings

in mind and to keep the size of the study manageable, we decided not to include multivariate

methods at this time. It is a topic for further research.

Simulations allow to overcome limitations related to the use of real-life data. For in-

stance, we were able to investigate the performance of the gene selection and classification
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methods in many controlled settings. Also, using real-life data we can only obtain a point

estimator for the misclassification rate of a certain classification method. To get an estimate

of the variance, re-sampling techniques would be necessary. With simulated data we directly

obtain the distribution of the misclassification rate, with the precision depending on the

number of simulated datasets. Additionally, the true classification, as well as the set of truly

differentially expressed genes, are known. Hence we can evaluate the performance of the gene

selection methods directly and study the link between the performance of the classification

method and the number of genes used for it that are truly differentially expressed. On the

other hand, an important issue is whether the simulated data adequately capture the com-

plexity of microarray measurements. The real-life data used as a basis for our simulations

could be approximated by data simulated from a linear mixed model. In general, this may

not be the case. To deal with this issue, we considered the use of non-normal distributions,

the symmetric and asymmetric Laplace distribution.

Another issue is related to the computational complexity of such a study. Simulating the

data and performing all the classification procedures on them is time consuming. Extending

the simulations by including more methods or simulating data for more genes, more datasets

or more settings is therefore not trivial. For this reason, in our study we chose for a limited,

yet relevant from a practical point of view (as documented by Van Breda (2005)), setting. In

particular, the study was designed for cDNA microarrays. Although it is difficult to predict to

what extent the conclusions can be generalized to oligonucleotide arrays, both platforms have

common features that we expect to influence the gene selection and classification methods

in a similar way. For instance, in both cases a large number of genes is available for building

a classifier and a lot of them are uninformative. It is therefore expected that the conclusions

regarding the influence of the number of chosen genes might apply to oligonucleotide arrays

as well.

6. CONCLUSIONS

Though there are differences between the gene selection methods, there is not a single

one which surpasses all others. Wilc, PS, PAM, Ttest (=BW) and Extval lead to quite good
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results. The E-criterion is also worth noting. It works well most of the time and does not

require predefining the number of genes to select. On the other hand Maxmin, SAM and

BC-score are not performing as well as some of the other methods. ECDF is found to be

the least interesting. The ECDF method was proposed to look for genes that might jointly

discriminate between classes. For this reason, it allows for a larger overlap between the

classes, than other gene selection procedures. Its poorer performance seen in our simulations

is therefore expected and understandable.

When comparing the effect of different gene selection methods, it is not just a matter

looking at how many truly differentially expressed genes a certain method is able of detect-

ing. The method that leads to the largest percentage of truly differentially expressed genes

(SAM) is not the method leading to the lowest misclassification rate. It seems important

which particular genes (differentially expressed or noise) are included in the subset on which

classification is based.

The best choice of the classification method does not appear to depend strongly on the

gene selection procedure. In general DLDA and Random Forest give the lowest misclassifi-

cation rates. DLDA is performing slightly better than Random Forest, except when a large

number of genes is used. Radial SVM is clearly the best machine learning method. It is

however in most cases not good enough to compete with DLDA.

In our simulations introduction of longer tailed or asymmetric distributions for the mi-

croarray data or specification of a proportionally increased, instead of a constant, treatment

effect did not substantially affect the comparison between the different gene selection and

classification methods.
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Table 1: Simulation model parameters

Parameter Value/Distribution Parameter Value/Distribution

µ = 9 TGg = 0.5 × I(g ≤ 20, i = odd, j = 1)

Ai ∼ N(0.5, 0.1) DGjg ∼ N{1 × I(j = 1), 0.2}
Gg ∼ N(0, 5) εijg ∼ N(0; σ2

g)

AGig ∼ N(0, 0.5) log(σ2

g) ∼ N(−2, 0.5)

Table 2: Median number of truly differentially expressed genes among a subset of size p=10

selected by different methods. (C=constant and P=prop. increased treatment effect)
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N(0, σ2) C 9 9 10 9 9 9 4 9 9 8 7 9 9 9

N(0, σ2) P 7 7 7 6 7 6 2 6 6 5 4 6 6 7

L(0, σ) C 10 10 10 10 10 10 7 10 10 10 10 10 10 10

AL(0, 0.5, σ) C 9 9 9 9 9 9 3 8 8 8 7 8 8 9

AL(0, 1.2, σ) C 10 10 10 10 10 10 5.5 10 10 10 10 10 10 10

Table 3: Variance and kurtosis of fX−Y (z).

X, Y ∼ Variance Kurtosis

N(0, σ2) 2σ2 0

L(0, σ) 2σ2 1.5

AL(0, 0.5, σ) 4.26σ2 2.67

AL(0, 1.2, σ) 2.14σ2 1.68
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Figure 2: Box plots for the misclassification rates (vertical axis) of various classification

methods using p=10 (resp. p=200) genes selected by different selection methods (horizontal

axis). [1: Ttest, 2: Wilc, 3: SAM, 4: PAM, 5: PS, 6: BC-score, 7: ECDF, 8: Infgain, 9:

Twoingr, 10: Summin, 11: Maxmin, 12: Gini, 13: Sumvar, 14: Extval]
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Figure 1: Histograms with normal density curve of the log transformed mean signal mea-

surements for two arrays of the real-life cDNA microarray dataset and normal QQ-plot of the

log transformed gene-specific variances of the error terms obtained from the ANOVA-model

fitted to the real-life cDNA microarray dataset.
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Setting: normally distributed data with a constant treatment effect, p=10

Figure 3: Box plots for the misclassification rates (vertical axis) of various classification

methods (horizontal axis) using p=10 genes selected by different selection methods. [1:

Tree, 2: Tree (Bagging), 3: Tree(Boosting), 4: Random Forest, 5: kNN, 6: LDA, 7: DLDA,

8: DQDA:, 9: Linear SVM, 10: Polynomial SVM, 11: Radial SVM]
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Figure 4: Misclassification rates for certain combinations of gene selection and classification

methods. Setting 1 and 2: normally distributed data with constant (resp. proportionally

increased) treatment effect; setting 3, 4 and 5: symmetric (resp. asymmetric with skewness

parameter κ=0.5 and κ=1.2) Laplace distributed data. Left: DLDA [1: Ttest, 2: Wilc, 3:

SAM, 4: PAM, 5: PS, 6: BC-score, 7: ECDF, 8: Infgain, 9: Twoingr, 10: Summin, 11:

Maxmin, 12: Gini, 13: Sumvar, 14: Extval]; Right: Ttest [1: Tree, 2: Tree (Bagging), 3:

Tree(Boosting), 4: Random Forest, 5: kNN, 6: LDA, 7: DLDA, 8: DQDA:, 9: Linear SVM,

10: Polynomial SVM, 11: Radial SVM];

Figure 5: Misclassification rates of various classification methods (horizontal axis). For

every classification method,he dots represent Ttest, Wilc, SAM, PAM, PS, BC-score, ECDF,

Infgain, Twoingr, Summin, Maxmin, Gini, Sumvar and Extval and for values of p=2, 5, 10,

20, 40, 200 and 2000. Stars correspond to the E-criteria and squares to the P-criteria. [1:

Tree, 2: Tree (Bagging), 3: Tree(Boosting), 4: Random Forest, 5: kNN, 6: LDA, 7: DLDA,

8: DQDA:, 9: Linear SVM, 10: Polynomial SVM, 11: Radial SVM]
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