
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A tool supporting model based user interface design in 3D virtual environments

Non Peer-reviewed author version

DE BOECK, Joan; RAYMAEKERS, Chris & CONINX, Karin (2008) A tool supporting

model based user interface design in 3D virtual environments. In: Braz, J & Nune, NJ

& Pereira, JM (Ed.) GRAPP 2008: PROCEEDINGS OF THE THIRD

INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND

APPLICATIONS. p. 367-375..

Handle: http://hdl.handle.net/1942/8375



A Tool Supporting Model Based User Interface Design in 3D Virtual
Environments

Joan De Boeck, Chris Raymaekers, Karin Coninx
Hasselt University, Expertise Centre for Digital Media and Transnationale Universiteit Limburg

Wetenschapspark 2, BE-3590 Diepenbeek, Belgium
{joan.deboeck, chris.raymaekers, karin.coninx}@uhasselt.be

Keywords: Multimodal Interaction, Interaction Technique, Interactive Virtual Environment, Model-Based Design

Abstract: Although interactive virtual environments (IVE) have the capability to offer intuitive and easy to use interfaces,
their creation is often a long and expensive process, in which specialists play a key role. The VR-DeMo
approach investigates how the use of high-level specifications may help to overcome this problem: instead of
coding an IVE using a low level programming language, high-level models are used. As such a model-based
process combines a series of models containing a mixture of manual and automatic processes. The usefulness
of a model based process relies on available tool support. Supporting the VR-DeMo process, this paper
introduces CoGenIVE. This tool has been used in order to develop a series of demonstrators, all based on real-
life cases in different domains. From this experience, the VR-DeMo approach and more particular CoGenIVE
have proven to be useful to develop interactive virtual environments using high-level specifications.

1 Introduction

Interactive Virtual environments (IVE) are com-
puter applications that try to create the effect of a 3D
world in which a user can interact as easily and intu-
itively as possible, preferably using multiple senses
such as the hearing, the sight and touch. In con-
trast with standard desktop applications, however,
the development of such an environment is still a
very specialised, time-consuming and hence expen-
sive process in which specialists play a key role. First
of all, the creation of an IVE, including object behav-
iour and user interaction is often done in a low-level
programming language. Furthermore, the user’s ap-
preciation, when using multiple senses, is not yet fully
understood and difficult to predict. Prototype imple-
mentations and user experiments are hence more of-
ten than not the solution to assess a candidate solu-
tion, requiring each solution to be implemented, eval-
uated and possibly re-implemented.

The VR-DeMo project (Virtual Reality: Concep-
tual Descriptions and Models for the Realisation of
Virtual Environments, IWT 030248) aims to simplify
and shorten the development cycle by specifying part
of the application using high-level models instead of
implementing all aspects by means of programming
code. This Model Based User Interface Develop-

ment (MBUID) approach allows the developer to eas-
ily create, evaluate and adapt VE applications, with
a focus on the exploration of interaction techniques.
The entire VR-DeMo approach focusses both on the
high-level description of the virtual world (scene), as
well as the interaction. In this paper, we will only fo-
cus on the latter part. For the creation of the scene,
we refer the interested reader to [Bille et al., 2004]
and [Pellens et al., 2007].

Most existing model-based processes start with
some kind of task model, evolving to the final user
interface using an incremental approach. Typically,
an initial model is automatically transformed to the
next model using a given set of mapping rules and
algorithms, or by manual adaptation of the designer.
When applying this approach, known from form-
based user interfaces, directly into the domain of IVE,
it turns out that it lacks the ability to describe more
advanced and multimodal interaction. A MBUID
process that can be applied for the design of an IVE
application should therefore be able to describe the
UI widgets, as well as the interaction techniques for
direct manipulation supporting multimodal input and
output (such as speech, gestures and haptics).

MBUID, however, will only have additional value
over traditional user interface development when
powerful tool support is available. In this paper, we



describe the capabilities of a tool, called ‘CoGenIVE’,
and its assessment. In the next section we shortly de-
scribe the main steps in the VR-DeMo process. Sec-
tions 3 through 6 explain how CoGenIVE supports
this process. This tool is then assessed in section 7 by
describing some practical case studies. We end this
paper by comparing our approach to existing related
work and we subsequently formulate our conclusions
and future research directions.

2 The VR-DeMo Process

The design of an IVE application using the VR-
DeMo approach is a tool-supported process as de-
picted in figure 1. Before focussing on the tool-
support itself, we shortly explain the main steps in this
process. In the next sections, each step is explained in
detail, as well as how it is supported by CoGenIVE.

Figure 1: Schematic Overview of the VR-DeMo Process

The process may start from a task-model, describ-
ing the possible tasks and their mutual relations. This
may contain both tasks performed by the user as well
as by the system. From the task-model, a dialog
model is derived. As will be explained later in this
paper, the first step may be optional so that the de-
signer directly starts by creating a dialog model.

To provide the information for the user interaction,
the dialog model is annotated with a presentation
model, describing the UI widgets, and an interaction
description. The interconnection of the presentation
model and the interaction description with the dialog

model is a manual process, in which the designer has
to indicate which events correspond to a given task.

After annotating the dialog model, an application
prototype is built that can be executed immediately.
The prototype also contains the application code and
some metadata containing the contents of the mod-
els. If necessary, a programming specialist can tweak
the code. The last step can be considered as an it-
erative process, which means that the interaction de-
scription model, the presentation model, and the final
annotation of the dialog model, can be altered, while
all changes afterwards are preserved.

3 Dialog Model

Although the dialog model forms the center of the
CoGenIVE, the VR-DeMo approach leaves to free-
dom to import a task model. We have chosen not to
include a task model editor into CoGenIVE as good
editors already exist [Mori et al., 2002].

3.1 Defining the States

In CoGenIVE, the dialog model is represented as
a state chart, which can be created manually or by
importing a task model. Each state represents the
tasks that are currently enabled and hence can be
performed. For instance, when the user has chosen
to manipulate a given object (and thus is in a given
‘state’ of the application), he can only move or rotate
an object, and is for instance unable to create a new
object.

The dialog model can be created manually by drag-
ging the states on the canvas and assigning a name to
them. The tasks that are enabled for a particular state
are assigned as described in section 3.2. Alternatively,
the designer may start by creating a task model. For
this model, we have chosen to use the ConcurTask-
Tree (CTT) notation [Paternò, 2000], as this notation
provides the required flexibility and allows to make
use of temporal relationships between the different
tasks. For the creation of a CTT, we propose to use the
ConcurTaskTree environment (CTTE). CoGenIVE
can transform this model into a dialog model, using
the algorithm of Clerckx et al. [Clerckx et al., 2004a].
This transformation groups all tasks that can be exe-
cuted at a particular moment into an Enabled Task Set
(ETS) [Paternò, 2000]. These different ETSs corre-
spond to the states in the dialog model of CoGenIVE.

An example of a dialog model is shown in fig-
ure 2. Each rectangle represents a state, while the ar-
rows represent the state transitions. The assignment
of tasks and events with a state is explained in sec-
tion 3.2.



Figure 2: Designing the Dialog Model

3.2 Handling Input

Interactive Virtual Environments strongly rely on the
user input, which obviously means that we have to de-
fine how the user may interact with the system. The
next step hence is to define the events that will trig-
ger a task in the current state for execution. Events
are generated by event providers, which roughly cor-
respond to the user’s input sources, such as a tracker,
a speech recognition system (defined by a grammar),
a gesture recogniser, or a classic menu or dialog. The
event providers and their possible events are listed
in the bottom left pane called ‘Events’(figure 2), and
their aim is to trigger the tasks in the application.

As a first step in the process, we have to define at
least one input device as event provider, e.g. a tracker.
To add a device, we can choose the type of device
we want to connect, as different devices have differ-
ent properties (number of buttons, force feedback, de-
grees of freedom, . . . ). Based upon the selected de-
vice the relevant events will appear in the tree. Be-
cause we use VRPN [Taylor II et al., 2001] to make
abstraction of the concrete device, the setup can be
changed at will, later on.

The bottom right pane (‘Tasks’), contains a task
list. Tasks may be predefined by the system, they can
be custom-made for the project using a scripting lan-

guage or C++, or they may be an interaction descrip-
tion (as we will explain in section 5). The tasks are
finally associated to a state using the window pane
in the middle between the events and the tasks. By
selecting a state from the dialog model and then drag-
ging an event from the event list, and a task from the
task list into the same line we define that the particu-
lar event triggers the given task (obviously within the
current application state).

Before finishing the dialog model, the designer
may need to define a presentation model or interac-
tion description model, respectively to define user in-
terface elements such as menus, or complex user in-
teraction tasks, as will be explained explained in the
next sections.

4 Presentation Model

In many MBUID approaches, the pre-
sentation model describes in an abstract1
way how the user interface must look like.
From our previous work [Coninx et al., 1997]

1Abstract in this context means that the model does not
take into account features such as the exact placement of a
widget or how it exactly looks like on a given platform



[Raymaekers and Coninx, 2001], we have learned
that hybrid 2D/3D user interface elements, such as
2D menus or dialogs, positioned in 3D, are effective
in virtual environments. In order to avoid having
to hard-code these interaction elements, we have
created VRIXML, an XML-based User Interface
Description Language (UIDL), suited for 2D/3D
hybrid menus [Cuppens et al., 2004].

The current version of VRIXML has been ex-
tended in order to realise a cooperation between the
VRIXML presentation model and the interaction de-
scription model. For instance, VRIXML now sup-
ports more events, as well as the possibility to attach
simple scripts to those event. Those scripts are exe-
cuted immediately, without the need to handle them
in the underlying models. This is especially suitable
for simple actions within the dialog, such as the en-
abling or disabling of certain parts.

The design of the presentation model is integrated
in CoGenIVE by choosing a user interface (UI) ele-
ment from a list (as can be seen in the top right win-
dow pane of figure 2). The chosen menu or dialog can
then be edited by simple drag-and-drop, and filling
out the requested properties (figure 3). Typically, each
UI element and each item must have a name, defining
the final event that will be fired when activated. The
presentation model in CoGenIVE is designed using a
visualisation which abstracts from the appearance of
the elements in the final VE application. Indeed, de-
pendent on the rendering engine and/or the platform,
menus and dialogs may have a slightly different ap-
pearance.

Figure 3: Designing the Presentation Model

The presentation model is serialised as a set of
VRIXML files describing the user interface elements
and their events. The events generated by the user in-
terface are added to the event list (fig. 2). The name of
each UI element appears in the top right list (‘UI El-
ements’). Here it can be assigned to an Enabled Task
Set as a default UI element by simply dragging it to

the dialog model.
While our presentation model corresponds to pre-

sentation models in common MBUID approaches,
this is not sufficient to fully describe user interaction
in virtual environments. An enriched interaction de-
scription, as discussed in the next section, overcomes
this lack of expressive power.

5 Interaction Description

As most traditional MBUID approaches lack the
support for multimodal interaction, we have devel-
oped NiMMiT, Notation For MultiModal Interac-
tion Techniques. NiMMiT is developed to describe
interaction techniques at a much higher level than
by writing code. An interaction technique can be
seen a complex ensemble of multimodal informa-
tion that is merged and applied in order to exe-
cute a compound task which consists of several sub-
tasks. A good example may be ‘touching an ob-
ject to push it away’. NiMMiT is a graphical nota-
tion, inheriting the formalism of a state-chart in or-
der to describe the (multimodal) interaction within
the virtual environment. Furthermore, it also sup-
ports dataflow which is important in the user in-
teraction, as well. A more detailed description of
NiMMiT can be found in [Vanacken et al., 2006] and
[De Boeck et al., 2007b]. We shortly describe the
most important primitives of NiMMiT. An example
of a NiMMiT diagram can be seen in figure 4.

NiMMiT is basically a state chart, in which a state
(represented as a circle) represents the possible events
the user can provide and to which the application lis-
tens. Besides states, NiMMiT contains the following
structures:

• As described in section 3.2, an event is generated
by an action a user can perform, such as moving
a pointing device, speaking a command, clicking
a button, etc. When an event or a combination
of events has been occurred, the particular arrow
points to a task-chain (big rectangles) that is to be
executed.

• A task-chain is a linear succession of tasks that are
executed one after the other.

• A task (smaller rectangle in a task-chain) is set of
actions defined to ‘reach a goal’. A task may be
moving an object or calculating collision between
objects.

NiMMiT also supports data-flow between different
tasks. Labels (high level variables) are used to save
output from a task (output ports are depicted as small
squares at the bottom right of the task symbol), or to
provide input to a task (input ports are depicted at the
top-left of a task)



Figure 4: Designing the Interaction Model using the NiMMiT notation

Tasks are mostly predefined, such as selecting an
object, calculating collision, etc. so that the user can
easily pick them from a list. For specialised actions,
however, custom tasks can be written.

When a task-chain is finished, a state-transition oc-
curs (light arrow) bringing the interaction into a new
state, responding to another set of events.

In order to support an easy evaluation of
the designed diagrams, NiMMiT also defines
‘probes’,‘filters’ and ‘listeners’(not depicted in fig-
ure 4), primitives that support easy measuring of user
performance and evaluating a proposed interaction
technique [Coninx et al., 2006].

A NiMMiT diagram is created using the NiMMiT
Editor and stored in XML. The XML-file is loaded
by the NiMMiT engine and interpreted and executed
at run-time responding to the relevant events and exe-
cuting the desired tasks.

In order to describe an interaction technique us-
ing NiMMiT (figure 4) the editor allows to (re)use
the events defined by the event providers and UI el-
ements. The tasks in a NiMMiT diagram can be cho-
sen from the tasks list. Moreover, the editor performs

several checks and asserts that NiMMiT diagrams are
correct. For instance, the editor allows that a ‘con-
stant value’ can appear at several places in the dia-
gram while it’s value is automatically kept up to date.
In the same way labels automatically get a data type
dependent on the type of the output port they are con-
nected to, and connections of any type have other vi-
sual representations when they are not properly con-
nected.

6 Application Prototype

Finally, when the dialog model is annotated by
the presentation and interaction model and connection
has been made between events and tasks, the applica-
tion can be generated. The application is ready to be
run directly from within CoGenIVE, but as the result
of this step is also a Visual Studio Project file with
the code files (containing the instantiation of all tasks,
devices, and the code of the custom tasks), a program-
ming specialist can start tweaking the code within the
designated areas.



It may be stressed here that the final steps in
this process (creating the dialog model, presentation
model, interaction model, and possibly altering the
generated code) may be iterated on, which means that
changes in one model or in the hand-written code may
be preserved in case another model is adapted. This
makes the VR-DeMo approach especially suitable for
creating and evaluating prototypes.

In order to evaluate CoGenIVE, we created some
practical applications, as described in the next section.
These examples illustrate how several prototypes may
be proposed to a customer, in order to search for the
most satisfying solution in a particular case.

7 Practical use of CoGenIVE

Figure 5: The Virtual Cole Mine Museum

When designing several case studies, we experi-
enced CoGenIVE as an helpful tool, stimulating iter-
ative development and gradual fine-tuning of the in-
teraction.

A first application created with CoGenIVE, is a
demonstrator for a cole mine museum (fig 5). The
application offers a 3D virtual reproduction of the en-
tire cole mine site, allowing the user to freely explore
the site or follow a guided tour, at which the visitor is
guided, but still can look around, as he or she is mov-
ing their head. Extra information can be requested
upon some interesting buildings or items, and the ap-
plication also contains some animations, illustrating
for instance the coal flow in the mine. The application
also has a feature to show videos at certain places in
the scene, showing movies about the life in the mine,
as well as some QuickTime VR scenes giving a view
on the interior of the buildings.

As the project leader of the coal mine museum
came up with the idea, but did not exactly knew the
possibilities of a IVE in a museum environment, a first
prototype with the features of a first brainstorm was
built. The features included some basic navigation
and extra information menus when approaching cer-
tain objects. In a second iteration we came to the cur-

rent application prototype (including several anima-
tions, QuickTime VR, etc.) which now can be used to
show the possibilities of such an application to the ex-
ecutives. The time spent for the creation of the entire
application, excluding the scene, was about 10 person
days.

Figure 6: The 3D Teleconferencing Application

A similar approach was applicable for an applica-
tion prototype for a 3D teleconferencing application.
The project leader wanted to explore the possibilities
for a 3D interface supporting teleconferencing. Start-
ing point was to produce an attractive, but easy to
use interface, with some (but not concretely specified)
features such as participants who can start a presenta-
tion. A first prototype has been built and shown to
the project leader. In subsequent iterations, some fea-
tures were added, and others removed. In general this
resulted in an interface in which features could be ac-
tivated with the least amount of clicks possible.

The time required to come to the first version was
about 12 persons days, including the time for the in-
terfacing with the existing teleconferencing library2

To come to the final prototype, as shown in figure 6,
we required another 4 person days. These time cal-
culations include the modeling of the application, but
exclude the creation of the scene.

The examples above illustrate the possibility of
our tool-supported process to easily create applica-
tion prototypes at a reasonable time. We have also
used CoGenIVE in a context where user interaction
was less important, or at least less of a question. In
the latter application, a 3D driving simulator had to be
created. Although the accent in this project laid on the
simulation aspects, which had to be manually coded,
CoGenIVE played a key role in creating the applica-
tion and designing the overall application structure,
breaking-up the simulation process in several smaller
building blocks which all could be implemented by
‘custom tasks’, written in C++. In this kind of situa-
tions, the benefit of the tool is not only quickly gener-

2We interfaced with ANDROME’s Intellivic SDK
(www.intellivic.com), writing the interface code as ‘custom
tasks’ in our model based process.



ating an initial version. The tools also aids in flexible
extensions while keeping a structured design.

8 Related Work

MBUID has been largely investigated in
the context of standard form-based user inter-
faces [Vanderdonckt, 2005] Especially the need for
a flexible design in current state of the art user inter-
faces supporting multiple devices [Mori et al., 2004],
contextual adaptations, or distribution and migration
of UIs [Clerckx et al., 2004b] indicate the possibil-
ities of a MBUID approach. This topic, however,
is fairly new in the domain of interactive virtual
environments. In this section, we will shortly de-
scribe how the VR-DeMo process and CoGenIVE
are related to other work.

Although the need for an easier development
of a user interface in a virtual environment is
existent, not so much related research activities
can be found. Some toolkits, such as VR-
Juggler [Bierbaum et al., 2001] offer facilities to
a programmer in order to build a VE applica-
tion much faster. The applications, however still
have to written in programming code. Willans et
al. [Willans J.S. and S.P., 2000] propose a method-
ology that separates the process of designing ob-
ject behaviour from the process of building a vir-
tual world. They use existing techniques such as
flownets to describe the behaviour. Similarly, Tan-
riverdi describes how VRID (Virtual Reality Inter-
face Design) [Tanriverdi and Jacob, 2001] is used to
divide the development process in a high-level and
a low-level phase. The first phase helps designers
to conceptually design the interface without imple-
mentation specific terminology. The Low-level phase
helps to represent design specifications in an im-
plementation oriented terminology. Finally, a com-
mercial tool to easily develop virtual environments
is VirTools [Virtools inc, 2007]. It allows a user to
define the object behaviour and user interaction us-
ing a graphical notation. Although most approaches
have their contribution towards the facilitation of the
development cycle, most of them focus directly on
programming issues, rather than on the design and
analysis. This leaves a significant gap and sev-
eral open issues to apply MDUID in practice in an
IVE [De Boeck et al., 2006].

In its general application of form-based
user interfaces, several popular UIDLs exist
that can be used to describe the presentation
model. UIML (User Interface Markup Lan-
guage) [Abrams and Phanouriou, 1999] is a widely
used standard. It is an XML-based meta-language
that permits a declarative and device independent

description of a user interface. Because of its
generality, it is possible to use UIML in stead of
languages such as VoiceXML, or WML. But clearly,
UIML’s generality implies that its complexity is a
main drawback. UsiXML (User Interface Extensible
Markup Language) [Vanderdonckt et al., 2004] is a
description language that can be used to describe a
user interface at different levels (going from abstract
to concrete user interfaces). UsiXML already has
been applied in a variety of domains, recently includ-
ing VR [Gonzalez et al., 2006]. More information on
how VRIXML relates to other UIMLs can be found
in [Cuppens et al., 2004].

For the description of user interaction, mainly
two families of notations do exist: state-driven
notations and data-driven notations. For the
Interaction Description Model, we used NiM-
MiT, which inherits the formalisms of a state
chart [Harel, 1987], but adopting some principles
of dataflow as well. Popular State-driven nota-
tions are Petri-nets [Palanque and Bastide, 1994],
coloured petri-nets [Jensen, 1994] or
ICO [Navarre et al., 2005]. Data driven nota-
tions include InTML [Figueroa et al., 2002] or
UML activity diagrams [Ambler, 2004]. For
a more comprehensive overview of the related
work on this topic, we refer the interested reader
to [Vanacken et al., 2006], [De Boeck et al., 2007b]
and [De Boeck et al., 2007a].

9 Conclusions

In this paper we elaborated on a tool ’CoGenIVE’,
supporting the VR-DeMo process, a model based de-
sign process to create VE applications. We showed
how CoGenIVE supports the different steps in the
process, such as creating the dialog model, the pre-
sentation and the interaction model. The approach de-
scribed above facilitates the development of an IVE
in general, but especially creates an environment in
which alternative features within the 3D world can
be easily tried. This has been successfully applied in
some practical cases we described in this paper: the
virtual coal mine museum and the 3D video confer-
ence application. But CoGenIVE has also been ap-
plied in a context where ‘prototyping’ was much less
a requirement, creating a car simulator.

Based upon our experience we can conclude that,
once the VR-DeMo process is known, CoGenIVE of-
fers the designer a useful tool to create VE applica-
tions.



10 Acknowledgements

Part of the research at the Expertise Centre for Dig-
ital Media is funded by the ERDF (European Regional
Development Fund), the Flemish Government and
the Flemish Interdisciplinary institute for Broadband
Technology (IBBT). The VR-DeMo project (IWT
030248) is directly funded by the IWT, a Flemish sub-
sidy organization.

The authors also want to thank Erwin Cuppens,
Tom De Weyer, Tim Tutenel and Lode Vanacken for
their valuable contributions to CoGenIVE. We also
want to thank the partners of the VR-DeMo user com-
mittee involved in the practical demonstrator applica-
tions.

REFERENCES

[Abrams and Phanouriou, 1999] Abrams, M. and Phanou-
riou, C. (1999). Uiml: An xml language for build-
ing device-independent user interfaces. In XML ’99,
Philadelphia, USA.

[Ambler, 2004] Ambler, S. (2004). Object Primer, The Ag-
ile Model-Driven Development with UML 2.0. Cam-
bridge University Press.

[Bierbaum et al., 2001] Bierbaum, A., Just, C., Hartling,
P., Meinert, K., Baker, A., and Cruz-Neira, C. (2001).
VR juggler: A virtual platform for virtual reality appli-
cation development. In Proceedings of IEEE Virtual Re-
ality Conference 2001, Yokohama - Japan.

[Bille et al., 2004] Bille, W., Pellens, B., Kleinermann, F.,
and De Troyer, O. (2004). Intelligent modelling of vir-
tual worlds using domain ontologies. In Proceedings of
the Workshop of Intelligent Computing (WIC), held in
conjunction with the MICAI 2004 conference, pages 272
– 279, Mexico City, Mexico.

[Clerckx et al., 2004a] Clerckx, T., Luyten, K., and Con-
inx, K. (2004a). Dynamo-AID: A design process and a
runtime architecture for dynamic model-based user in-
terface development. In 9th IFIP Working Conf. on En-
gineering for Human-Computer Interaction jointly with
11th Int. Workshop on Design, Speci-fication, and Veri-
fication of Interactive Systems EHCI-DSVIS 2004, pages
77–95, Hamburg, Germany. Springer-Verlag.

[Clerckx et al., 2004b] Clerckx, T., Luyten, K., and Con-
inx, K. (2004b). Dynamo-AID: a design process
and a runtime architecture for dynamic model-based
user interface development. In Proceedings of EHCI-
DSVIS’04, pages 142–160, Tremsbüttle Castle, Ham-
burg, Germany.

[Coninx et al., 2006] Coninx, K., Cuppens, E., De Boeck,
J., and Raymaekers, C. (2006). Integrating support for
usability evaluation into high level interaction descrip-
tions with NiMMiT. In Proceedings of 13th Interna-
tional Workshop on Design, Specification and Verifica-
tion of Interactive Systems (DSVIS’06), volume 4385,
Dublin, Ireland.

[Coninx et al., 1997] Coninx, K., Van Reeth, F., and Fler-
ackers, E. (1997). A hybrid 2D/3D user interface for im-
mersive object modeling. In Proceedings of Computer
Graphics International ’97, pages 47–55, Hasselt and
Diepenbeek, BE.

[Cuppens et al., 2004] Cuppens, E., Raymaekers, C., and
Coninx, K. (2004). VRIXML: A user interface descrip-
tion language for virtual environments. In Developing
User Interfaces with XML: Advances on User Interface
Description Languages, pages 111–117, Gallipoli, Italy.

[De Boeck et al., 2006] De Boeck, J., Gonzalez Calleros,
J. M., Coninx, K., and Vanderdonckt, J. (2006). Open is-
sues for the development of 3d multimodal applications
from an MDE perspective. In MDDAUI workshop 2006,
Genova, Italy.

[De Boeck et al., 2007a] De Boeck, J., Raymaekers, C.,
and Coninx, K. (2007a). Comparing NiMMiT and data-
driven notations for describing multimodal interaction.
Proceedings of TAMODIA 2006, Lecture Notes in Com-
puter Science LNCS series, pages 217 – 229.

[De Boeck et al., 2007b] De Boeck, J., Vanacken, D., Ray-
maekers, C., and Coninx, K. (2007b). High-level mod-
eling of multimodal interaction techniques using nim-
mit. Journal of Virtual Reality and Broadcasting, 4(2).
urn:nbn:de:0009-6-11615.

[Figueroa et al., 2002] Figueroa, P., Green, M., and
Hoover, H. J. (2002). InTml: A description language for
VR applications. In Proceedings of Web3D’02, pages
53–58, Arizona, USA.

[Gonzalez et al., 2006] Gonzalez, J., Vanderdonckt, J., and
Arteaga, J. (2006). A Method for Developing 3D User
Interfaces of Information Systems, chapter 7, pages 85–
100. Proc. of 6th Int. Conf. on Computer-Aided De-
sign of User Interfaces CADUI2́006. Springer-Verlag,
Bucharest, Berlin.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual for-
malism for complex systems. In Science of Computer
Programming, volume 8, pages 321–274.

[Jensen, 1994] Jensen, K. (1994). An introduction to the
theoretical aspects of coloured petri nets. In W.-P. de
Roever, G. Rozenberg (eds.): A Decade of Concurrency,
Lecture Notes in Computer Science, volume 803, pages
230–272. Springer-Verlag.

[Mori et al., 2002] Mori, G., Paternò, F., and Santoro, C.
(2002). CTTE: support for developing and analyzing
task models for interactive system design. IEEE Trans-
actions on Software Engineering, 28(8):797–813.

[Mori et al., 2004] Mori, G., Paternò, F., and Santoro, C.
(2004). Design and development of multidevice user
interfaces through multiple logical descriptions. IEEE
Transactions On Software Engineering, 30(8):1 – 14.

[Navarre et al., 2005] Navarre, D., Palanque, P., Bastide,
R., Schyn, A., Winckler, M., Nedel, L., and Freitas, C.
(2005). A formal description of multimodal interaction
techniques for immersive virtual reality applications. In
Proceedings of Tenth IFIP TC13 International Confer-
ence on Human-Computer Interaction, Rome, IT.



[Palanque and Bastide, 1994] Palanque, P. and Bastide, R.
(1994). Petri net based design of user-driven interfaces
using the interactive cooperative objects formalism. In
Interactive Systems: Design, Specification, and Verifica-
tion, pages 383–400. Springer-Verlag.

[Paternò, 2000] Paternò, F. (2000). Model-Based Design
and Evaluation of Interactive Applications. Springer-
Verlag.

[Pellens et al., 2007] Pellens, B., De Troyer, O., Kleiner-
mann, F., and Bille, W. (2007). Conceptual modeling of
behavior in a virtual environment. Special issue: Inter-
national Journal of Product and Development, 4(6):626–
645.

[Raymaekers and Coninx, 2001] Raymaekers, C. and Con-
inx, K. (2001). Menu interactions in a desktop haptic en-
vironment. In Proceedings of Eurohaptics 2001, pages
49–53, Birmingham, UK.

[Tanriverdi and Jacob, 2001] Tanriverdi, V. and Jacob, R.
(2001). VRID a design model and methodology for
developing virtual reality interfaces. In Proceedings of
ACM Symposium on Virtual Reality Software and Tech-
nology, Alberta - Canada.

[Taylor II et al., 2001] Taylor II, R., Hudson, T., Seeger,
A., Weber, H., Juliano, J., and Helser., A. (2001). VRPN:
A device-independent, network-transparent vr peripheral
system. In In Proceedings of the ACM, pages 55–61.

[Vanacken et al., 2006] Vanacken, D., De Boeck, J., Ray-
maekers, C., and Coninx, K. (2006). NiMMiT: A no-
tation for modeling multimodal interaction techniques.
In Proceedings of the International Conference on Com-
puter Graphics Theory and Applications (GRAPP06),
Setbal, Portugal.

[Vanderdonckt, 2005] Vanderdonckt, J. (2005). A MDA
compliant environment for developing user interfaces of
information systems. In Proceedings of 17th Conf. on
Advanced Information Systems Engineering CAiSE’05,
pages 16–31, Porto, Portugal.

[Vanderdonckt et al., 2004] Vanderdonckt, J., Limbourg,
Q., Michotte, B., Bouillon, L., Trevisan, D., and Florins,
M. (2004). Usixml: a user interface description lan-
guage for specifying multimodal user interfaces. In Pro-
ceedings of W3C Workshop on Multimodal Interaction
WMI’2004, pages 35–42, Sophia Antipolis.

[Virtools inc, 2007] Virtools inc (August 2007). Virtools
Dev. http://www.virtools.com.

[Willans J.S. and S.P., 2000] Willans J.S., H. M. and S.P.,
S. (2000). Implementing virtual environment object be-
havior from a specification. pages 87 – 97.


