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Abstract

Testing humans for infectious diseases is often done by assessing the presence or absence of

diseases-specific antibodies in serum samples. For feasibility and economical reasons, these sera

are often tested for more than one antigen. Studying diseases with similar transmission routes

can govern new insights for disease dynamics. We use flexible marginal and conditional models to

model multi-sera data on the Varicella-Zoster Virus and the Parvo B19-virus in Belgium. Next to

the derivation of the age-dependent marginal force of infection, we introduce new epidemiological

parameters: the age-dependent joint and conditional force of infection. These parameters allow us

to study the association among the occurrence and acquisition of both infections. Furthermore, we

show how to test for association and whether the infection-specific age-dependent force of infection

curves are proportional and consequently whether separable mixing in the population holds.

1 Introduction

As a part of human epidemiology, mathematical modelling of infectious diseases usually involves de-
scribing the flow of individuals between mutually exclusive infection states. For instance, for infections
that induce long-lasting immunity, the individuals can be classified into three different stages [1]. In
the first stage individuals are susceptible to infection, meaning that they have not been exposed yet. In
the second stage, individuals are infected and infectious to others while in the third stage individuals
are no longer infectious and have acquired immunity to reinfection. This so-called SIR-model is used
to describe the age- and time-dependent transmission of the infection.

Serological data are usually collected in cross-sectional studies. Under the assumptions of lifelong
immunity and that the epidemic is in a steady state (i.e. at equilibrium), the prevalence can be
estimated from such data. In general, empirical data show that the prevalence is age-dependent. In
the literature, several flexible (non)parametric methods, some of them imposing monotonicity, have
been proposed to model the age-specific prevalence (see e.g. [2, 3? ]).

In the presented analyses, focus is on the Varicella-Zoster Virus and the Parvo B19-virus. These
viruses are similar in that transmission is by airborne droplets and occurs during close contacts.
The contact rate and the infectiousness of the pathogen determine the spread of the infection in a
population. It has been shown that the contact rate depends on age through heterogeneity in mixing
of individuals from different age-classes.

Except for the work of Farrington et al.[3, 4], Kanaan and Farrington [5] and Sutton et al.[6],
who proposed a bivariate model for mumps and rubella and hepatitis B and C, respectively, while
ascribing dependency to individual heterogeneity, none of the proposed methods takes account of
the association between different infections. In addition, there could be a public health interest in
estimating the probability of acquiring a second, altogether different, infection.

In this paper, we introduce the use of marginal and conditional models to study the association
among different infectious diseases. We will exploit both flexible parametric and nonparametric meth-
ods to achieve the necessary flexibility as a function of age. The essential modelling tool which we use,
is the vector generalized additive model methodology of Yee and Wild [7].

In Section 2, we start with introducing the data, while in Section 3 an overview of several existing
univariate approaches to model the age-dependent prevalence is given. We introduce the bivariate
Dale and the baseline category logits model in Section 4 and apply them to the data in Section 5.
Monotonicity constraints for the bivariate models are imposed in Section 6 using the so-called ‘pool
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adjacent violator algorithm’. We develop marginal, conditional and joint force of infection and a test
for proportionality in Section 7. We end with a discussion in Section 8.

2 Data

In a period from November 2001 until March 2003, 2381 serum samples in Belgium were collected
and consecutively tested for Varicella-Zoster Virus (VZV) and Parvo B19-virus (B19) (see e.g. [8]).
Together with the test result for VZV and B19, the gender and age of the individuals were recorded.
In this paper, samples from children under 6 months were omitted because of distortions expected
from the presence of maternal antibodies.

The Varicella-Zoster Virus, also known as human herpes virus 3 (HHV-3), is one of eight herpes
viruses known to affect humans (and other vertebrates). Primary VZV infection results in chickenpox
(varicella), has a two-week incubation period and is highly contagious by air droplets starting two
days before symptoms appear. Infectiousness is known to last up to ten days. Therefore, chickenpox
spreads quickly through close social contacts.

Parvovirus B19 was the first human Parvovirus to be discovered, in 1975. In clinical terms Par-
vovirus B19 is best known for causing a childhood exanthem called fifth disease or erythema infectio-
sum. The virus is primarily spread by infected respiratory droplets. B19 symptoms begin some six
days after exposure and last for about a week. After being infected, patients are infectious for five to
seven days and usually develop the illness after an incubation period of four to fourteen days.

3 Univariate Modelling

In the context of infectious diseases several flexible modelling techniques have been proposed to model
the age-specific prevalence. Often, these models are part of the generalized linear model framework
[9]. In this framework, the prevalence π is related to the age at infection x = (x1, . . . , xn) and possibly
other covariates (e.g. gender) using the formula g(π|x) = h(x), where g is a link-function, as e.g. the
‘logit’-, ‘probit’- or ‘complementary log log’-function, and h an assumed systematic component.

Both parametric and nonparametric models have been proposed. Among the parametric models,
fractional polynomials (FPs, [10]) offer a wide variety of functional forms for the systematic component
h. One attractive property of FPs is the inclusion of more conventional polynomials of the form
h(x) = β0 + β1x + β2x

2.
In contrast to parametric models, local regression methods, splines, etc. provide easy-to-apply

nonparametric modelling techniques. In this paper, both flexible parametric (fractional polynomials)
and nonparametric models (smoothing splines, [11]) are used to achieve necessary flexibility in mod-
elling multisera data. We defer the application of these techniques to Section 5 and first describe the
bivariate approaches.

4 Multivariate Modelling Approaches

4.1 Marginal and Conditional Models

Given bivariate binary dependent data on two infectious diseases (y1, y2) from a sample of individuals
together with their age x, denote the joint probability πj1,j2 = P (y1 = j1, y2 = j2), where the index
jk, k = 1, 2 corresponds to disease 1 and 2, respectively, and jk = 1 (0) indicating past or current
infection (susceptibility) for disease k = 1, 2. Modelling such multivariate categorical data can be done
using conditional or marginal models [12].

A first marginal model that can be considered is the bivariate Dale model (BDM, [13, 14]). The
BDM relates the probability of past or current infection for both diseases to the age at infection. The
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bivariate Dale model consists of the following three models which are modelled simultaneously






logit(π1+|x) = h1(x),
logit(π+1|x) = h2(x),

log(OR|x) = h3(x).
(1)

Here OR denotes the age-dependent odds ratio (π11π00)/(π10π01); π1+, π+1 the marginal prob-
abilities and hi, i = 1, 2, 3 smooth differentiable functions. Using (1), when OR 6= 1, then
π11 = 1+(π1+ +π+1)(OR−1)−{[1+ (π1+ +π+1)(OR−1)]2 +4OR(1−OR)π1+π+1}

1/2/(2(OR−1)),
when OR = 1, then π11 = π1+π+1, it is straightforward to write down the multinomial (log)likelihood
in terms of hi, i = 1, 2, 3.

Modelling the OR allows us to describe the association between both diseases. An OR=1 indicates
both infectious disease processes to behave independently. Alternatively, the correlation as an associa-
tion parameter can be modelled in what is called the bivariate probit model (BPM) where probit-link
functions are used instead of logit-link functions and a rhobit-link function relates the correlation to a
smooth differentiable function of the covariate of interest, i.e. age here [15].

In fully marginal models, the parameters characterize the marginal probabilities and the association
is of secondary importance. They also allow other functional forms to be related to the different
response variables. Furthermore, the design is reproducible in the sense that the marginal models are
consistent with the result obtained from separate univariate analyses.

In contrast, conditional models focus primarily on the association by looking at one variable con-
ditional on the other. Consider the baseline-category logits model (BCL, see e.g. [16]). The BCL
is a conditional model where three of the four joint probabilities are modelled proportionally to the
remaining joint probability. Taking, e.g., the joint probability of being susceptible to either infection
as the reference category, the BCL considers the following three equations simultaneously



















log
(

π11

π00

|x
)

= h1(x),

log
(

π10

π00

|x
)

= h2(x),

log
(

π01

π00

|x
)

= h3(x).

(2)

Again, using (2), the multinomial (log)likelihood can be expressed in terms of hi, i = 1, 2, 3.
For both BDM and BCL, hi can take different forms. One can opt to use a (orthogonal) quadratic
function, a FP or a smoothing spline. By using flexible functionals hi the difference between marginal
and conditional models with respect to their aims diminishes.

A multivariate extension of the smoothing spline approach was provided by the development of
vector generalized additive models by Yee and Wild [7], who used vector smoothing [17] to extend the
class of generalized additive models to a multivariate setting. In what follows we restrict attention to
one covariate and refer to Yee and Wild [7] for the more general additive models.

The multivariate extension of a univariate smoother towards vector smoothers is provided by
ℓ(h1, h2, h3; y) − 1

2

∑3
i=1 λi

∫

{h′′
i (x)}2dx, where ℓ(h1, h2, h3; y) denotes the loglikelihood of the mul-

tivariate model, λi, i = 1, 2, 3 denote component-specific smoothing parameters and
∫

{h′′
i (x)}2dx,

i = 1, 2, 3 denote component-specific penalties. Determining the optimal values for λi, i = 1, 2, 3 is
done by generalized cross validation.

4.2 Hypotheses Testing

In both the BDM (1) and BCL (2) several hypotheses of interest can be tested using an F-test modifi-
cation of the likelihood ratio test [7]. For the BDM, potential interest lies in: (1) H0 : h1(x) = c+h2(x)
where c is an unknown constant, corresponding to the proportional odds assumption and; (2)
H0 : h3(x) = c implying that the OR is age-independent. Note that H0 : h3(x) = 0 corresponds
to the hypothesis of independence. In the BCL, proportionality of π01(x) and π10(x) can be tested
using H0 : h2(x) = c + h3(x). Other hypotheses could be tested too, but the interpretation in the
context of infectious diseases is less straightforward and mostly not of interest.
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Table 1: Parameter estimates and standard errors for the quadratic and best fractional polynomial.
Univariate Model Bivariate Model

Parameter Estimate s.e. Parameter Estimate s.e.

VZV
Quadratic Polynomial Model

Intercept 2.956 0.112 Intercept 2.700 0.101
age 49.381 4.901 age 44.437 3.488
age2 -39.851 4.334 age2 -31.167 3.431

Fractional Polynomial Model
Intercept 5.699 0.295 Intercept -2.654 0.321

age−1 -4.072 0.987 age 1.048 0.096
age−1 log(age) -13.193 1.480 age log(age) -0.243 0.026

B19 Virus
Quadratic Polynomial Model

Intercept 0.537 0.046 Intercept 0.382 0.047
age 31.254 2.251 age 29.283 1.829
age2 -27.558 2.298 age2 -22.001 1.865

Fractional Polynomial Model
Intercept -11.084 0.956 Intercept -11.052 0.955

age0.5 6.373 0.582 age0.5 6.350 0.581
age0.5 log(age) -1.217 0.121 age0.5 log(age) -1.212 0.121

OR
Quadratic Polynomial Model

- - - Intercept 0.792 0.178
Fractional Polynomial Model

- - - Intercept 0.724 0.186

5 Application to the Data

In Table 1, parameter estimates and standard errors are given for both the univariate model and the
BDM with quadratic and best FP, while Table 2 shows the parameter estimates and standard errors
for the quadratic polynomial and best FP for the BCL. Note that the quadratic model is a specific FP
of degree 2 with powers 1 and 2 and, is, in that sense non-optimal.

There is a moderate difference between the estimates for the BDM-marginal prevalences compared
to the corresponding univariate estimates (Table 1). The standard errors of the parameters based on the
bivariate model are smaller than the corresponding ones for the univariate models. This corresponds to
the increased efficiency associated with bivariate modelling. For VZV, the best FPs differ. While the
use of FPs already provides a fair amount of flexibility, using smoothing splines allows more features
of the data to be revealed.

A comparison of the AIC-values of the different univariate models showed that the spline-based
model provides the best fit for both VZV (1109.17 compared to 1129.81 and 1110.58) and B19 (2739.59
compared to 2796.49 and 2766.12). For the bivariate models, the BDM and BCL with quadratic
polynomials resulted in the largest AIC-values (3910.18 and 3887.35). A moderate improvement was
found using the FPs (3872.70 and 3872.19), while again the spline-based models resulted in the lowest
AIC-values (3848.89 and 3857.26, respectively). Since the AIC-values for both BDM and BCL are
comparable due to the multinomial nature of the models, we end up with the spline-based BDM model
as the bivariate model with lowest AIC-value.

In Figure 1, the age-dependent prevalences for VZV and B19 together with the OR according to
the spline-based BDM are shown. Testing for a constant OR (H0 : h3(x) = c in (1)) using the BDM-
models and the F-test modification of the likelihood ratio test as mentioned in Section 4.2 resulted

4



Table 2: Parameter estimates and standard errors for the baseline category logits model using a
quadratic and the best fractional polynomial of age.

Parameter Estimate s.e.

log(π11/π00)
Quadratic Polynomial Model
Intercept 3.082 0.165

age 71.633 5.492
age2 -55.061 5.040

Fractional Polynomial Model
Intercept 12.803 0.827

age−1 29.718 4.016
age−0.5 -43.249 3.663

log(π10/π00)
Quadratic Polynomial Model
Intercept 2.596 0.167

age 47.479 5.404
age2 -37.706 4.947

Fractional Polynomial Model
Intercept -3.006 0.361

age0.5 1.521 0.141
age2 -0.001 3e-4

log(π01/π00)
Quadratic Polynomial Model
Intercept 0.064 0.210

age 42.739 7.722
age2 -43.874 7.501

Fractional Polynomial Model
Intercept -3.802 0.460

age 0.353 0.059
age2 -0.005 0.001
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Figure 1: The marginal prevalence-curves for VZV (first panel) and B19 (second panel) together with
the OR (third panel) according to the spline-based BDM together with 95% bootstrap-based pointwise
confidence intervals.

in a constant OR (a p-value of 0.37 for the spline-based BDM). Bootstrap-based confidence intervals
confirmed the latter result (Figure 1).

The odds ratios, according to the different models, are significantly larger than 1, indicating depen-
dency of VZV- and B19-occurrence. Fitting the spline-based BDM model, the estimated OR equals 2.11
with 95% confidence interval (1.45,3.23), meaning that the odds of past or current VZV(B19)-infection
among the B19(VZV)-non-susceptible group is 2.11 times larger than the odds of past or current
VZV(B19)-infection among the B19(VZV)-susceptible group. Non-susceptibility referring to past or
current infection. Similarly, fitting a spline-based bivariate probit model gives an age-independent cor-
relation of 0.21 with 95% confidence interval (0.20,0.61). While the hypothesis of a constant OR was
not rejected, the hypotheses corresponding to the proportional odds assumption (BDM), independence
(BDM) and proportionality of π01(x) and π10(x) (BCL) were all rejected at the 5%-significance level.

The left panel of Figure 2 shows the spline-based BDM and BCL estimated joint probabilities
together with a barplot of the observed proportions. A deviance of 3043.99 (3046.57) on 5239.33
(5236.43) degrees of freedom for the BDM (BCL) indicates a good fit to the data.

6 Monotonicity

Assuming time homogeneity and the presence of antibodies to be lifelong, the prevalence should be
a monotone increasing function of age. In case of heterogeneity, constrained estimation leads to an
improved estimation of the (sero)prevalence as a function of age (see e.g. [? 18]). [19] showed that
constrained smoothing leads to estimates of the form ‘smooth then constrain’. This method was
applied before to hepatitis A, rubella and measles [18].

For the bivariate modelling this means that π11, π1+ and π+1 should be monotone increasing and
consequently π00 should be monotone decreasing, while there is no restriction on π10 and π01. There-
fore, we apply the Pool Adjacent Violater Algorithm (‘PAV’, [20]) to monotonize the marginal and joint
estimated prevalences. This results in π̂10 = PAV(π̂1+) − PAV(π̂11) and π̂01 = PAV(π̂+1) − PAV(π̂11)
as estimates for π10 and π01, respectively.

In Figure 2, the non-monotone result (left panel) is contrasted with its monotonized version (right
panel) in terms of the joint probabilities, resulting in differences at larger age-values for both π̂11 and
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Figure 2: The joint probabilities according to the spline-based BDM (solid lines) and BCL (dashed
lines). Observed proportions are shown from dark grey to light grey for p11, p10, p01 and p00, respec-
tively. In the left panel: the non-monotone result, in the right panel: the monotonized result.

π̂10.
Clearly, monotonization is needed for B19. Up to now, the reason for the decrease in seroprevalence

around the age of 30 years is unknown. Possible explanations include changes in contact behaviour
but this has not been formally assessed.

7 Estimating the Force of Infection

A key parameter in studying infectious disease dynamics is the per capita rate at which a susceptible
gets infected, or equivalently the hazard to become infected. The term used in infectious disease
modelling for this hazard is the force of infection (FOI). From an assumed functional form for the

FOI, the prevalence can be expressed as π(a) = 1−e
−

∫

a

0

λ(x)dx
, and using seroprevalence data and the

corresponding binomial loglikelihood, the parameters in the functional form for λ(x) can be estimated.
[3] for instance parametrized the FOI as a gamma function of age λ(a) = αxβexp(−a/γ) and derived
estimators of α, β and γ using maximum likelihood.

Alternatively, the FOI can be estimated from the prevalence π(a) using λ(a) = π
′

(a)/(1 − π(a)).
This allows us to use existing methodology to model the prevalence and derive the FOI thereof.
Especially, the use of (vector) generalized additive models is appealing in terms of their flexibility and
the inherited flexibility of the estimated FOI-curve.

Using the marginal prevalences derived from the spline-based BDM and monotonized using the
‘PAV’-function, we can derive the FOI. More explicitly, it is straightforward to show that using a
logit-link function, the force of infection can be expressed as

λV ZV (a) = h
′

1(a)π1+(a), and λB19(a) = h
′

2(a)π+1(a), (3)

for VZV and B19, respectively. Alternatively, the non-monotonized prevalence can be used to derive
the FOI using (3) and the negative values can then be put to zero. The latter estimation method falls
again in the ‘smooth then constrain’ approach. Figure 3 shows the prevalence and FOI curves based
on the BDM with application of the ‘PAV’-function.

The marginal prevalence for VZV increases rapidly over the first 10 years of life, reaches the 90
percent level already at 8.2 years and an absolute maximum of 98.2 percent at 30.7 years of age. The
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Figure 3: The marginal prevalences and FOI-curves according to the monotonic spline-based BDM
together with 95% bootstrap-based pointwise confidence intervals. In the left panel: VZV, in the right
panel: B19.

prevalence of B19 knows a more moderate increase over the first 16 years, when it reaches 75 percent
and remains constant thereafter. This is translated in the FOI-curves showing the age of maximal
FOI at 6.1 years of age (95% CI: (4.9,7.0)) for VZV and 8.3 years of age (95% CI: (7.6,12.0)) for B19.
The FOI is nominally much larger for VZV (maximum: 0.32) than for B19 (maximum: 0.11). The
confidence intervals show small variability while the application of the ‘PAV’-function is invasive for
the prevalence for B19 between 16.5 and 36.4 years of age. This is also reflected in the estimated
FOI-curve for B19. The latter finding indicates that the assumption of time homogeneity, under which
the FOI can be derived from seroprevalence, could be violated. There is however, no indication that
this is truly the case.

7.1 Conditional FOI

Using multi-sera data, one can analyse quantities like the prevalence and FOI for one infection con-
ditional on being in a specific state for the second infection (Figure 4). The potential interest in
conditional prevalences and FOIs is not only related to quantifying the association between two or
more infections (eg to evaluate the impact of combination vaccines) but could also be valuable to
analyse chronic co-infections, such as Human Papilomavirus (HPV), Human Immunodeficiency Virus
(HIV) and hepatitis B (HBV) or C (HCV) virus where the acquisition of a second related infection
(multitype, eg HPV type 16 and HPV type 18, or multi-virus, eg HBV and HCV), could have a
dramatic impact on the course of disease and infectiousness to others [21].

Suppose that conditional on B19, one is interested in the rate of acquiring VZV. Thus one looks at
the quantities λV ZV =1|B19=i = π

′

V ZV =1|B19=i/(1− πV ZV =1|B19=i), where i = 1 (i = 0) if the state for

B19 is (non-)infected (Figure 4). Similarly, one can be interested in looking at the rate of acquiring
B19 conditional on VZV and thus λB19=1|V ZV =i = π

′

B19=1|V ZV =i/(1 − πB19=1|V ZV =i), where i = 1

(i = 0) if the state for VZV is (non-)infected (Figure 4). In Figure 5, the conditional and marginal
prevalence- and FOI-curves are shown.

It is straightforward to verify that λV ZV =1|B19=1 = λV ZV =1|B19=0 = λV ZV =1 (λB19=1|V ZV =1 =
λB19=1|V ZV =0 = λB19=1) if and only if VZV and B19 are independent. In Section 4, VZV-and
B19-occurrence were shown to be dependent and as such the difference depicted in Figure 5 is signif-
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icant. Moreover, it is straightforward to verify that a positive dependence (OR>1) is equivalent to
λB19=1|V ZV =1 > λB19=1|V ZV =0 and λV ZV =1|B19=1 > λV ZV =1|B19=0.

Both panels of Figure 5 show that the FOI for VZV (B19) conditional on being infected for B19
(VZV) is higher compared to the FOI for VZV (B19) when conditioning on the non-infected status of
B19 (VZV). In other words, a person who is infected for VZV (B19) has a higher probability to become
infected for B19 (VZV) compared with persons still susceptible for VZV (B19). Since B19 and VZV
are transmitted through close contacts, it is more likely that a person who has already been infected
with a first infection has had more close contacts than a person who has not been infected. Such a once
infected person is also more likely to continue having more contacts through which a second, similarly
transmitted infection, can be acquired, than a person who has not been infected yet. Note that these
findings are again in accordance to the positive OR in Section 5.

7.2 Joint Force of Infection

Next to the conditional FOIs, looking at the quantity λV ZV =1,B19=1 = π
′

11/(1 − π11), could be of
interest. However, the interpretation of this joint FOI is tedious. The numerator indicates the pro-
portion that is still susceptible for at least one of the two infections, while the denominator gives us
the instantaneous rate at which persons, at least susceptible for one of both infections, go to the state
of having (had) both infections. Since VZV and B19 have a short generation interval, simultaneous
acquisition is unlikely to occur. Moreover, due to the discrete nature of the data; i.e. age at infection
is measured in days; the contribution to this rate from individuals moving from a fully susceptible
status to a fully infected status (see dashed arrow in Figure 4) for both diseases should be interpreted
as the rate of acquisition of both infections in one day.

In Figure 6, it is shown that the joint FOI coincides almost entirely (especially from 10 years
onwards) with the conditional FOI for B19 given one is VZV-infected. This is not surprising given
that VZV is the dominant infection and its acquisition is almost complete at 10 years of age. The
contribution to the joint FOI thus merely comes from those individuals infected by VZV but still
susceptible for B19. Looking more carefully at the expressions of both FOIs in terms of prevalences;
π

′

V ZV =1,B19=1/(1− πV ZV =1,B19=1) and π
′

B19=1|V ZV =1/(1− πB19=1|V ZV =1); near equality holds when
πV ZV =1,B19=1

∼= πB19=1|V ZV =1 or equivalently when πV ZV =1
∼= 1 which is indeed the case for individ-

uals from 12 years onwards. Moreover, this result indicates that acquiring both diseases on the same
day is very unlikely.

In the next section, we go deeper into the relation between the FOI and the way people of different
ages mix and how the infections spread.

7.3 Proportional FOI

The average force of infection is the average hazard to acquire infection and, if assumed that we have
a short infectious period, can be calculated using the integral equation (see [3])

λ(x) =
ND

L

∫ ∞

0

β(x, y)λ(y)S(y)M(y)dy, (4)

with population size N , mean duration of the infectious period D, life expectancy L, number of
susceptibles at age y: S(y), survivor function M(y) and the contact function β(x, y) which denotes
the per capita rate at which an individual of age y makes effective (i.e. enabling transfer of infection)
contacts with individuals of age x.

Usually, β(x, y) is described by a matrix, presenting contact rates between different age-classes,
referred to as the contact or mixing matrix. The solution of (4) can often not be determined, since
β(x, y) is typically unknown. If however, β(x, y) is assumed to be of a specific form, Farrington et al.[3]
showed how Bayes factors can be used to select the most appropriate form from a set of possible forms.
One such form is separable mixing, where it is assumed that there exist functions u and v such that
β(x, y) = u(x)v(y), in other words the rate for a susceptible person to make contact with an infectious
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Figure 6: The joint and B19|VZV=1-conditional FOI together with the joint and B19|VZV=1-
conditional FOI according to the monotonic spline-based BDM.

person is the product of the density of susceptibles and infected people. Under separable mixing it can
be shown that there exists a function ℓ(y) such that β(x, y) ∝ λ(x)ℓ(y). So if assumed that mixing is
separable, and that the infections under consideration are transmitted through the same routes, the
forces of infection should be proportional too. If they are not, the separable mixing assumption is not
fulfilled. [3] used a likelihood ratio test to test for proportional FOIs while assuming the shape of the
FOI to follow a gamma function. By using spline smoothers robustness with respect to possible model
misspecification is achieved. Moreover, assuming a gamma function, the FOI-curve is restricted to have
only one maximum while a secondary local maximum is likely to be observed because of parent-child
transmission.

The proportionality of both marginal FOIs can be expressed as λ1+(x) = αλ+1(x) and equivalently,
in terms of the marginal prevalences, 1−π1+(x) = γ(1−π+1(x))α, where γ = (1−π1+(0))/(1−π+1(0))
and α is an unknown constant. Some further rewriting shows that proportionality of both marginal
FOIs can be assessed by looking at log(1− π1+(x))− α log(1− π+1(x)) = γ

′

, where γ′ = log(γ) and α
is the unknown constant. We then consider the bivariate model







log(1 − π1+(x)) = h1(x)
log(1 − π+1(x)) = h2(x)

log(OR) = h3(x)
(5)

where hi, i = 1, 2, 3 are again smooth functions. For the marginal prevalences to be monotone, both
hi, i = 1, 2 should monotone decreasing. Similar as for the BDM, the corresponding loglikelihood can
be derived and monotonicity can be achieved using the ‘PAV’-function. Specifying spline functions for
hi, i = 1, 2, 3 in (5) and testing for spline effects resulted in a constant OR = 2.14, while the spline
was maintained for both marginal prevalences. Within this model formulated as (5) with h1(x) =
β0 + s1(x); h2(x) = β1 + s2(x); and h3(x) = β2, testing for proportionality reduces to testing the
hypothesis: s2(x) = s1(x)/α. The likelihood ratio test s2(x) = s1(x)/α is approximately χ2-distributed
with degrees of freedom equal to the difference in empirical degrees of freedom of the two models. If
H0 is valid, the null model will give us an estimate of α.

The application to VZV and B19 resulted in a p-value of 0.0012 indicating proportionality does
not hold and consequently contradicts the separable mixing assumption. Note that using (5) to model
bivariate data resulted in an AIC-value of 3857.07 which is comparable to the AIC-value of the spline-
based BCL-model but still considerably larger than the AIC-value of the spline-based BDM-model
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(Section 5).

8 Discussion

In this paper, based on multisera data, the bivariate Dale model and the baseline category logits model
are used to model the marginal prevalence of both Varicella-Zoster Virus and Parvo-virus B19. Using
splines to achieve the necessary flexibility through the use vector generalized additive models, the
intrinsic difference among marginal and conditional models diminishes.

The use of a bivariate model for this kind of data, improves not only the efficiency but allows us to
study the association between infections. It is shown that the acquisition of VZV-and B19 is positively
related. Most likely, due to the similarity in transmission by close contacts for both infections. Co-
infections, i.e. joint infections caused by more than one pathogen, are an aggravating factor in disease
progression for virtually all infections. For VZV and B19, this is unlikely to occur because: (1) acute
VZV and B19 are short lived, (2) when people are infected they will change their mixing behaviour (i.e.
stay home in bed), and substantially reduce their chance of contacting a person infected by another
pathogen unless the first infection is no longer there as is the situation for VZV and B19 since also
the infectious periods for both are very short. For HBV, HCV, HPV and HIV chronic or persistent
infection may occur, giving rise to a very long infectious period. The methods we expanded here may
be most relevant for these potentially chronic infections, as the chance that co-infection occurs during
the long asymptomatic period typical of each of these infections is great. The conditional FOI-curves
can be regarded as quantifications of how strong the association between the infections is. Individuals
already infected for one disease are more likely to become infected for the other disease (with similar
transmission routes) at an earlier age as compared to the average acquisition age for that particular
disease.

Reparametrizing the Dale model to use ’complementary log’-links for the marginal prevalences to
test for proportionality of the FOI and consequently separable mixing showed that proportionality of
the FOIs does not hold and therefore, the separability assumption for VZV and B19 is violated. This
is due to the fact that contacts are mainly assortative with age.

Extensions towards more than two infections are straightforward using the existing extensions of
the bivariate Dale and bivariate category logits model (see [13], [16]). Extensions to include several
covariates in the presented model is straightforward. The inclusion of gender in the model even up to its
interaction with age resulted in a non-significant contribution to the model (p-value 0.28). Furthermore,
the application of the presented methodology to data from several countries is straightforward.
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