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Abstract. As in most European countries, traffic safety has become
top priority in the National Safety Plan in Belgium. The first phase in
every safety analysis concerns the identification of the hazardous loca-
tions. In this respect, a local indicator of spatial association (Moran’s I)
is improved and applied to determine hot spots locations on highways
in Limburg, a province in Belgium. However, the analysis is complicated
by the fact that accident data have a very specific nature: they form
a Poisson random process rather than a Gaussian random process and
they are prone to sparseness. Therefore, the well-established indicator
needs some adaptations and simulations are required to determine the
underlying distribution of Moran’s I. This paper emphasizes the impor-
tance of using a correct distribution and indicates what could go wrong
otherwise e.g. at policy level.
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1 Introduction

In the last years, accident figures have become a ‘hot’ topic in the media, for
policy makers, for academics and for the broad audience. In comparison to most
other European countries, Belgium performs below par concerning traffic safety.
The risk of having a fatal accident (per vehicle kilometers driven) is 33% higher
in Belgium when compared to the European average [3]. Therefore, it seems
more than natural that traffic safety takes a top priority in the National Safety
Plan. Moreover, the States General of traffic safety set the amibitious goal to
reduce the number of fatal accidents per year by 2015 up to 500 [14].

An important topic of interest in safety analysis is investigating the location
of and the reason for the dangerous sites, referred to as hot spot analysis. Hot
spot analysis in traffic safety can in general be split up into four phases. Firstly,
the hazardous locations (hot spots) need to be identified. Next, the locations
will be rank ordered. If required, the severity of the accident can be accounted
for (e.g. [6], [7], [25] and [31]). Consequently, one tries to find an explanation



why some locations are hot spots and others not (i.e. profiling of hot spots).
Several techniques can be applied for this purpose. Examples are the analysis
of manoeuvre diagrams, conflict observation studies and methods based on in-
formation from the traffic accident records [28], [12], [11], [15], [16]. Finally, a
selection needs to be made about the sites to treat [26]. This often proves to be
a policy decision, and the choice can depend on many factors: e.g. the financial
supplies, whether or not it is preferred to look at a group of locations or at every
site separately, on a cost-benefit analysis [4], [18]. In this paper, the focus lies
on the first of the four phases, i.e. on the identification of hot spots.

Hot spot safety work can be described as the task to enhance traffic safety by
adapting the geometrical characteristics and the environmental features of prob-
lematic locations in the existing road network. More in specific, this task entails
localizing and treating intersections and road segments with an unusual high
number of accidents, the so-called hot spots. To reduce the number of accidents,
one needs to know where concentrations of accidents occur. As a consequence,
the geographical aspect is of major importance to describe and tackle the prob-
lem of traffic accidents in order to indicate the most critical hazardous locations
in a scientifically sound and practical, workable way. Although, one acknowledges
the importance of the geographical aspect, very often statistical - non-spatial -
regression models are used to model the number of accidents with respect to
some explanatory variables, hereby ignoring the existing geographical relation-
ship between the different locations [13], [10], [24]. Hierarchical Poisson-gamma
models are well-known in traffic accident modelling, next to zero-inflated Pois-
son and negative-binomial models and fairly recently Poisson-lognormal models
were used to consider the small accident counts [21], [19], [20], [22], [29].

In this paper, the geographical aspect is directly taken into account by ap-
plying a local indicator of spatial association to identify hazardous locations on
highways and by the consideration of distances along the road network. Because
of the nature of traffic accidents, the normal use of the indicator has serious
weaknesses and some adaptations were necessary to serve the purpose. This will
be explained in Sect. 2. The application on highways in a province of Belgium
is the content of Sect. 3, while Sect. 4 ends with conclusions and some ideas for
future research.

2 Methods

Recently, in traffic safety literature, there is a tendency to use spatial data ana-
lysis techniques next to statistical (Poisson) regression models [13], [10] to de-
termine locations with a high number of accidents. This enables to account for
the spatial character of a location. In this paper, a spatial autocorrelation index
is used. The application of spatial autocorrelation indexes allows to search for
relationships between locations that are close to another in space within a study
area and moreover they are similar or opposite to each other regarding a certain
variable under study.



One distinguishes between global and local spatial autocorrelation. The global
measure investigates globally if locations that belong to the study area are spa-
tially correlated. Next to the global measure, which gives an idea about the
study area as a whole, it might be interesting to limit the analysis to a part of
it. Indeed, it might happen that parts of the study area show a spatial auto-
correlation, which was not noticed in the global measure. On the other hand, if
global spatial autocorrelation is present, the local indexes can be useful to point
at the contribution of smaller parts of the area under investigation. These local
indexes are considered to be Local Indicators of Spatial Association (LISA) [1],
if they meet two conditions:

– it needs to measure the extent of spatial autocorrelation around a particular
observation, and this for each observation in the data set;

– the sum of the local indexes needs to be proportional to the global measure
of spatial association.

The global version of Moran’s I was first discussed in [27], though in this paper
its local version will be applied. The local version of Moran’s I at location i that
satisfies the above two requirements can be written down as follows:

Ii =
n

(n − 1)S2
(xi − x̄)

∑

j

wij(xj − x̄) (1)
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xi the value of the variable under investigation, X , at location i,

x̄ the average value of X ,

wij a weight that denotes the proximity between location i and j,

S2 = 1
(n−1)

∑n

i=1(xi − x̄)2, the variance of the observed values and,

n the total number of locations.

A nice property of Moran’s I is the fact that it looks relative with respect to an
average value. Because of computational issues, it is often impossible to compute
the index for the study area as a whole in one time, and one needs to split up the
study area in smaller parts (as will be the case in Sect. 3). By plugging in the
average of the entire study area as x̄ (instead of just the average of the smaller
part), all results can easily be combined. So, x̄ might serve as a reference value
for the study area under investigation.

Anselin [1] derives the mean and variance of Ii under the randomization
assumption for a continuous X-variable. The expected value of Ii is, for example
[30]:

E[Ii] =
−1

n − 1

n
∑

j=1

wij .

The exact distributional properties of the autocorrelation statistics are elusive,
even in the case of a Gaussian random field. The Gaussian approximation tends
to work well, but the same cannot necessarily be said for the local statistics
[30]. Anselin [1] recommends randomization inference, e.g. by using a permuta-
tion approach. However, Besag and Newell [5] and Waller and Gotway [32] note



that when the data have heterogeneous means or variances, a common occur-
rence with count data, such as traffic accidents, the randomization assumption
is inappropriate. Instead, they recommend the use of Monte Carlo testing.

Within the field of application, this local measure of spatial association can
be regarded as being a traffic safety index, since for each hectometer (the basic
spatial unit for analysis on highways in Belgium) of road the local Moran in-
dex can be regarded as a measure of association between the hectometer under
study and the neighboring hectometers that are similar to the one under study
concerning the number of accidents. A negative value of the local autocorrela-
tion index at location i indicates opposite values of the variable at location i

compared to its neighboring locations. A positive value, on the contrary, points
at similar values at location i and its neighborhood. This means that location i

and its weighted neighborhood can both have values above the average value or
both can have values below the average. In the application area of traffic safety,
however, one is only interested in locations that have

a. a high number of accidents in regard to the total average number of accidents
(xi − x̄ > 0),

b. and where the neighborhood also shows more accidents than was expected
on average (

∑

j wij(xj − x̄) > 0).

One might argue that it is also important to look at locations with a high number
of accidents at location i and a very low number in the surrounding area. In this
case, very negative values of Moran’s I would occur. However, this gives very
contradictory effects as will be illustrated by an example. E.g. suppose that the
global average equals one accident (x̄ = 1). If 5 accidents occurred at location
i and none in its surrounding, this would lead to a negative value of Moran’s
I. However, adding one accident to every surrounding point of location i, hence
making the surrounding area more hazardous, would lead to a Moran’s I of zero.
This is really counterintuitive, so therefore it was opted to look only at points
where the location and its surrounding area reinforce each other in a positive
way.

An important disadvantage of spatial autocorrelation in general is that this
measure is not uniquely defined. There is no optimal specification for the weights
and this proves to be one of the most difficult and controversial methodological
issues in spatial econometrics [2]. One needs to account for two different aspects,
i.e. the number of neighbors (level of connection) and the value of the weights.
Concerning the level of connection, it seems impossible to define an optimal
distance between two hectometer poles for which both poles would still show any
connection. This optimal distance will vary with the type and the characteristics
of the road under investigation, but probably also with the road configuration
and the posted speed limit. Additionally, the choice of weights is not uniquely
defined. A suggestion was made to assign all locations in the neighborhood of
a certain location a weight equal to one and the remaining locations a weight
value of zero, though this does not account for the fact that the locations are not
uniformly spread. It seems only natural to account for the distance between the
locations to determine the local autocorrelation. Often the inverse of the squared



distance is used. This entails that the less nearby a location is to the location
under study, the less weight is given to that ‘distant’ location when computing
the autocorrelation. Note that at the end of a road, one only accounts for the
neighbors that exist.

3 Application: Accidents on Highways

This Section gives an illustration of the use of the local Moran index for acci-
dents on highways in the province of Limburg in Belgium. An important issue
for accident analysis is the variability, i.e. the fact that the yearly number of
accidents on a road segment varies for each year. This can be explained by the
inherent accident risk of a road segment. The randomness in the number of ac-
cidents is typical, because of the nature of accidents and it depends on factors
that cannot always be predicted. Therefore it is of great importance to study
the road network for a sufficient amount of time. The study period must be long
enough to ensure representative accident samples. Based on a large number of
studies, in general, it is agreed upon that the period of three to five years is
sufficient to guarantee the reliability of the results [8]. For the analysis, data on
accidents on highways were collected from 2003 to 2005. Analyses were carried
out on the province of Limburg in Belgium. Figures 1 and 2 indicate the location
of the province of Limburg within Flanders (the upper, Dutch speaking part of
Belgium) and the highways in Limburg, respectively.

Fig. 1. Limburg within Flanders



Fig. 2. Highways in Limburg

Because we want to compare the results of Limburg with other provinces in
Flanders, the average number of accidents for Flanders was set as a reference
value in the analysis. Limburg has 3252 hectometer poles alongside its two high-
ways (E313 and E314). Each accident that occurs on a highway is registered at
the closest hectometer pole. The distance matrix that is used for the weights
in Moran’s I was completely determined based on distances from one point to
another along the road network (so not a bird’s-eye view). These network dis-
tances are used to account for the curvature in the highways and to take care
of the junction in a proper way. Note that the inverse of the squared distance
was used to determine the weights for the computation of Moran’s I. The num-
ber of neighbors for this analysis is also determined based on distance. For each
hectometer pole, poles at 1km from the left and at 1 km from the right are
included as neighbors. So each point, not located near the end of any highway,
has approximately 20 neighboring points. Nearby the junction, it happens that
hectometer poles from the second highway are within the predefined number of
neighbors from a location at the first highway. To account for them in a proper
way, distances are calculated based on the network.

470 accidents occurred on Limburg highways from 2003 to 2005, which makes
it the safest province in Flanders for this period. Since accidents form a Poisson
process instead of a Gaussian process and because of the sparseness (most loca-
tions have a zero accident count), the distribution of the local autocorrelation
statistic proves to be far from Gaussian. Moreover, count data often suffer from
the problem of overdispersion and means and variances tend to be hetereoge-
neous, so as stated in [5], [32] and [30]. Therefore, a Monte Carlo approach is
recommended to derive the distribution of the test statistic.

To this end, the 470 accidents are spread randomly over the 3252 locations
and the local Moran index is then calculated for each location. Note that loca-



tions are allowed to have more than one accident (sampling with replacement).
Otherwise, high concentrations of accidents cannot be determined. This simu-
lation was repeated 500 times to end up with an approximate distribution of
the Moran index for this situation (see Fig. 3). It is obvious that a Gaussian
approximation would not work well in these circumstances.

Fig. 3. Simulated density of local Moran index

To determine the hot spots, we decided to look only at locations that show a
positive reinforcement with their neighbors in the calculation of the local auto-
correlation index. So, these values were filtered out of the 500× 3252 values (i.e.
53,407 out of the 1,626,000 index values) which results in the following density
(see Fig. 4).

Fig. 4. Simulated density of positive reinforced Moran values



From this distribution, the 95% percentile was calculated, and this value, i.e.
P95 = 3.93, was utilized as the cut-off value to determine an accident hot spot.
Therefore, first, the Moran index was calculated for the true number of accidents
on each location. Next, the Moran indexes where the location under study and
surrounding area positively reinforced each other were selected and each of these
index values was compared to the cut-off value. If that local value exceeded the
cut-off value (i.e. if Ii > P95), then location i was considered to be hazardous.
Of the 3252 locations, 15 proved to be hot spots. They are shown in Fig. 5.

Fig. 5. Hot spots in Limburg

For comparison purposes, the Gaussian approximation was used to investigate
the difference in results. Using also the 95% percentile (of the Gaussian distribu-
tion!) as cut-off value, now 59 locations proved to be hot spots according to this
method. They are shown in Fig. 6. The previous 15 are part of them, however,
about 3/4 (!) of the points are falsely identified as belonging to the 5% most
extreme Moran index values. From a policy point of view, this might lead to a
wrong allocation of funds to ameliorate traffic safety and thus it indisputably
shows the importance of using the right distributions.

Recently, some other spatial analysis techniques have been applied to road acci-
dents, e.g. the use of local indicators of network-constrained clusters [34] or the
use of network K-functions [33], [23], [17]. A comparison of the results of these
techniques with the result presented in this paper provides a promising pathway
for future research.



Fig. 6. Hot spots in Limburg when using the Gaussian approximation

4 Conclusion

The aim of this paper was to apply a local indicator of spatial association, more
in specific Moran’s I, to identify hazardous locations on highways. Because of
the nature of traffic accidents, locations with zero counts are very frequent.
Moreover, accident data in general stem from a Poisson random process, rather
than a Gaussian random process, so the normal use of the indicator seemed very
elusive. To account for these characteristics, a simulation procedure was set up to
arrive at the distribution of the local indicator, so as to determine the 5% most
extreme observations. The study area of application was the highway network of
the province of Limburg in Belgium. To construct the distribution of Moran’s I,
a Monte Carlo simulation experiment was set up where the reported number of
accidents was spread randomly over the population of possible locations. This
was repeated 500 times and each time the Moran index was calculated for each
location. Locations with a local Moran index above the 95% cut-off value of
the density are then regarded as hot spots. 15 locations ended up as being
hazardous. For comparison purposes, the same analysis was carried out using the
Gaussian approximation instead of the simulated distribution. Now 59 locations
were defined as hot spots, including the previous 15. This illustrates that blindly
using the Gaussian approximation certainly is not an option, and one absolutely
needs to take into account the nature of the data under study! For policy makers,
this is a very relevant result, since they usually do not have access to an unlimited
budget to treat hot spots. To allocate their funds in the best possible way, it is
important to know which location are true hot spots.

A generalization of this result is possible, when more provinces are analyzed.
Applying this and other (spatial) techniques to identify hot spots on other road



types (regional/provincial and local roads) and to compare the different results
is certainly an important avenue for future research.
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