
Multimedia Systems manuscript No.
(will be inserted by the editor)

Jan Van den Bergh · Bert Bruynooghe · Jan Moons · Steven Huypens · Bart
Hemmeryckx-Deleersnijder · Karin Coninx

Using High-Level Models for the Creation of Staged Participatory
Multimedia Events on TV

Abstract Broadcasted television shows are becoming more
interactive. Some broadcast TV shows allow even home view-
ers without professional equipment to be part of them. In
this paper we present an approach that takes this concept
even further. In the proposed kind of participation television
viewers will not only participate in the show through inter-
action or video streams, but also be able to create and host
their own show. The core of the presented approach con-
sists of the use of high-level models to describe the differ-
ent aspects of the television show, and a generic runtime
environment. This paper discusses this type of participation
television, Staged Participatory Multimedia Events, and the
supporting runtime environment in more detail. It also in-
troduces the tool and the models that are used to support
graphical creation of the structure and appearance of Staged
Participatory Multimedia Events.1

1 Introduction

In recent years the degree of interactivity of television pro-
grams has steadily increased. When viewing a television show
one can participate in it by voting or playing along. In some
TV-shows (such as “De ThuisPloeg” in Flanders) this par-
ticipation can mean that participating viewers are invited to
the studio for the next episode or get a professional camera
at their home. The growing availability of high-quality live
streaming video enables integration of live video from view-
ers into TV shows. These live video streams are obtained via

Jan Van den Bergh, Steven Huypens, Karin Coninx
Hasselt University – transnationale Universiteit Limburg
Expertise Centre for Digital Media – Institute for BroadBand Technol-
ogy
Wetenschapspark 2, 3590 Diepenbeek, Belgium
E-mail: {jan.vandenbergh,steven.huypens,karin.coninx}@uhasselt.be

Bert Bruynooghe, Jan Moons, Bart Hemmeryckx-Deleersnijder
Alcatel-Lucent
Copernicuslaan 50, 2018 Antwerp, Belgium
E-mail: {bert.bruynooghe,jan.moons,bart.hemmeryckx-
deleersnijder}@alcatel-lucent.be

1 The original publication is available at www.springerlink.com

video phones (in the TV-show “Matina” in Italy) or camera-
enabled mobile phones (in the TV-show “CultTV” in France).
“Ze Live” is interactive program of one hour where young-
sters can participate via audio calls, webcam calls or mobile
video calls. It was broadcasted on Plug-TV, a youngster TV
channel of RTL in Belgium.

At the same time there is a growing trend of end-users
creating their own content and making it available to the gen-
eral public. Users have been able to easily produce their own
content and share it with others worldwide on blogs, sites
such as MySpace and YouTube. Social networks as well as
traditional media coverage can spread the users’ creations to
thousands of people around the world in a very short time.

These two trends are combined when end-users can cre-
ate and participate in television shows that are broadcasted
or multicasted on digital TV channels. Our research aims
to establish this goal for a well defined subset of interactive
television events with rich user participation. We call these
events Staged Participatory Multimedia Events (SPMEs).

SPMEs are events whose director and participants can all
be television viewers. In this paper, we only discuss the sys-
tem intended for television sets, although the usage of other
platforms is also supported. Table 1 gives an overview of all
supported devices. One example SPME, AuctionTV, will be
used throughout the paper. It is a live auction in which all
participants, including the auctioneer and the seller view the
event through their television set and will be discussed into
more detail in section 3.

Internet service providers or broadcasters may use SPME
as an added value to their existing services by including
them into their interactive television offering (e.g. in a so
called walled garden). This however requires that the tech-
nical knowledge to create and adapt these events is minimal
and that the runtime environment can be integrated into the
existing infrastructure.

After a discussion of related work, section 3 describes
the structure and properties of such shows into more detail
and introduces an example. Section 4 then discusses the Par-
ticipationTV runtime infrastructure and the format descrip-
tion used to configure the flow of the SPME. This format
description can be generated from graphical models. These

2 Jan Van den Bergh et al.

Platform Input device Streaming from C to S Streaming from S to C Application type

PC

Mouse
RTP RTSP

Local application
remote control
game controller
Browser controls

RTMP RTSP
Webpage

remote control using Quicktime
(mapped to keyboard) Flash and AJAX

Set-top box remote control
browser controls

SIP RTSP

Web page
proprietary
webcam/microphone
streaming
proprietary RTSP
playing and AJAX

Device Dependent Device Dependent Proprietary Solution
Signal for IP- Broadcast signal MHP + parallel
webcam / microphone return stream channel

Game console Game Controller Device dependent Device dependent Proprietary application

Mobile phone
MIDLET controls SIP, . . . SIP, MMS, . . . Local application
DTMF handled SIP SIP SIP service attached
at server side to SIP number

Table 1 Overview of all target platforms for SPME and the corresponding streaming technology from Client to Server and vice versa. Input
devices, application types and streaming protocols that are already implemented and tested are mentioned in italics

models are discussed in section 5 followed by the discussion
of the tool support. The paper ends with the presentation of
conclusions and future work.

2 Related Work

There is a body of work regarding participation TV besides
the effort discussed in this paper.

Inhabitated TV [2] bundled some of the experiments with
a big participatory role of end-users in broadcast television
(and cinema). Inhabitated TV featured a collaborative virtual
environment (CVE) in which different layers of interaction
and awareness were possible. All people involved could be
divided into three groups: performers, inhabitants and view-
ers. The performers were immersed in the CVE through spe-
cialized equipment, while inhabitants could navigate, inter-
act and communicate in the CVE using a standard internet
connection and equipment. Finally, the viewers of broadcast
TV had only limited interaction capabilities. Although the
shows allowed participation in the show, the lack of rich ex-
pressions of the characters in the CVE made it difficult for
viewers to associate themselves with the performers.

Such richer expressions were possible in some shows
broadcasted later on, where live video streams from view-
ers were integrated in the show. Examples of such shows are
CultTV in France and Mattina in Italy. The latter uses the
Mycast system from Digital Magics 2 to integrate live feed-
back from viewers from videophones and webcams into the
daily morning show by Rai Uno, a national TV station in
Italy [9].

2 http://www.digitalmagics.com

OpenTV offers a tool and framework that allows creation
of Participation TV 3 without coding. The framework is fo-
cused on enhancing existing television shows and formats
with interactivity and extended statistics and does not al-
low the advanced viewer-driven shows which integrate live
video-feeds as we presented in this paper.

TVML 4 has a different focus and allows to easily cre-
ate 3D non-interactive TV shows using a simple scripting
language. SoapShow 5 allows users to create their own soap
online using video, still images, text and sound clips. Cur-
rently it’s limited to the web, but SoapShow is planning to
show the best soaps on Dutch television.

Telebuddies [13] is a proof-of-concept framework that
gives a social dimension to existing shows. It allows viewers
of a television program, which are spread over different loca-
tions, to chat with one another and to play against each other
in automatically composed groups based on similar inter-
ests. While both the telebuddies framework and SPME allow
a social television experience between people at different lo-
cations and could both be used to augment existing shows,
SPME are primarily television programs in their own right
and can be used for both small and large audiences. In con-
trast to telebuddies, SPME can be described using a generic
XML language (see section 4.2) and created using graphical
models.

Finally, a different form of user participation is investi-
gated within the project NM2 where television viewers can
influence storylines. These storylines and the possible in-
teractions are modeled using the Narrative Structuring Lan-

3 http://www.opentvparticipate.com/
4 http://www.nhk.or.jp/strl/tvml/
5 http://www.soapshow.nl

High-Level Models for the Creation of SPME 3

guage [18]. This language deals only with the possible plots
and interactions and the related media fragments. Layout
of these elements cannot be specified. The way the inter-
action is performed is described in less detail in NSL than
in SpIeLan as discussed in this paper. Their runtime system
has however been used in a television show in Finland where
viewers could influence the story by sending SMS messages.

3 Staged Participatory Multimedia Events

Staged Participatory Multimedia Events are broadcasted (for
large audiences) or multicasted (for small communities) in-
teractive television events that actively engage TV viewers
and turn them into true participants. They provide a stage for
viewers to participate in interactive television applications
that are not necessarily publicly or commercially available
yet. The basic requirement for viewing an SPME is having a
television set.

In the classification of interactive television genres and
formats composed by Jensen [12] and shown in table 2, SPME
are targeted to support the “Games and betting” and “T-
commerce” categories within a walled garden environment
as shown in Table 2. The SPME technologies can however
also be used in an enhanced TV setting. SPME modeling
techniques and runtime technology might even be used to re-
alize the interactive part of interactive advertising. This path
however would need further investigation.

Format SPME
Electronic Program Guides -
Enhanced TV x
Video-on-demand -
Personalized TV -
Internet TV -
ITV advertising -
T-commerce and home banking X
Games and betting X

Table 2 Interactive Television Formats and SPME

In order to participate communication from the TV (as
a client) towards the server is needed. This up-link can be
established through a set-top box with remote control as in-
teraction device. Mobile phones can contact the server us-
ing text messaging or MMS. Also game consoles deliver
this kind of connection capabilities to the Internet or any
other broadband network today. Total participation can in-
volve devices as webcams, microphones and other interac-
tion devices, which also demand higher speed connections.

The format of an SPME can be defined using the graph-
ical modeling language discussed in section 5.2 or directly
using the XML-language that is used as a blue print of the
show (see section 4). Show participants can have different
interaction capabilities based on their role. Some roles may
have hardware requirements such as a webcam and micro-
phone. Each format allows all participants to chat with one

another. Since the creation of an attractive format requires
some technical skills, the creation of these formats will prob-
ably be accomplished by professionals or prosumers, while
customizations are expected to be made by a broader audi-
ence.

An SPME is started when the first viewer activates a
format. This first viewer does not only start the show but
will also become its director, identified by the role master.
All other viewers that join the active format initially get the
role participant. The show is driven by viewer interaction
or time-based events if desired. The format, however, deter-
mines the actions that can be performed by viewers based on
their role and the actions that have already been performed.
Examples of such formats can be a distributed auction or a
quiz in which not only the public, but also the candidates
and even the quiz master are TV viewers.

AuctionTV is an example of such a format and will be
used for illustration throughout the paper. The format allows
one of the television viewers to offer an item for sale through
an auction. Media about that item is made available on the
web before the start of the show. A (sub)set of the partic-
ipants in the show are part of the show through live video
streams. These live streams originate from webcams that be-
long to the television set. In the realized proof-of-concept,
only the auctioneer and the seller are shown using live feeds.
Another version of the AuctionTV format could also show
all bidders.

The auctioneer, who can be any television viewer, can
start a session on a specialized channel, offered by a me-
dia company such as a broadcaster or an internet service
provider. Once the auctioneer has started the show, he gets
the role master and other viewers of that channel can join
the show. They will initially get the role participant. One
of these participants can offer an item for sale and as such
becomes the seller. The seller does no longer have the role
participant but gets the role seller instead. Then the auc-
tioneer initiates an interview with the seller, followed by the
bidding process. Whenever a participant p bids, the auction-
eer raises the price, confirming the bid. In doing so the role
winner is added to the roles of p and removed from the pre-
vious bidder (if there was one). When an acceptable bid has
been made and confirmed, the bidding process is ended by
the auctioneer. The auctioneer finally does an interview with
the winner of the highest bid. As long as no bid is made, the
auction can be cancelled by the auctioneer, just as all other
viewer actions, using a remote control (see Fig. 1).

The AuctionTV scenario demonstrates some of the tech-
nical properties that all SPME have in common:

1. Viewers are the centerpiece of SPME. They start and
stop the show and control everything in between. The
AuctionTV example is even completely driven by viewer
actions. Although this need not be the case as timer events
are also supported.

2. The person that starts the show is the show master and is
in control of the show. All important decision regarding
the flow of the show are made by the master. All other
viewers of the show are initially participants.

4 Jan Van den Bergh et al.

(a) (b)

Fig. 1 AuctionTV application used with different interaction method-
s/devices (a) a TV remote control (b) a game controller

3. Each person watching an SPME has one or more roles.
The roles played by a person can change over time. E.g.
one of the participants in the AuctionTV format gets the
role seller and loses the role participant.

4. As viewer participation is key to SPME, visual and au-
ditive integration of the key players in the broadcasted
or multicasted media stream is important. Viewers can
thus be part of the show through live video (and audio)
streams provided by webcams as illustrated by Fig. 2.

5. SPMEs have a script; the consequences of viewer actions
have predefined (predictable) results.

6. All SPME formats have a similar screen structure, which
is illustrated in Fig. 2. The background panel consists
of non-interactive content and is shared by all viewers
whatever their role is.

7. On television sets, all interactions are presented in inter-
action panels or popups. Interaction panels are the pre-
ferred medium on television sets to present information
and interaction capabilities, specific for one or more roles,
to the appropriate viewers.
Each interaction panel and popup allows the viewer to
perform one task such as making a bid, setting the price
of the item to be sold, or start the interview with the win-
ner (a transition to a new screen layout). The interaction
panels are layered on top of each other in one designated
area of the screen, the interaction bar (see Fig. 2).
A popup temporarily disables access to all interaction
panels. A popup thus has behavior similar to that of a
modal dialog box on a desktop computer. Furthermore,
it allows the designer to escape the rigid form of the in-
teraction panels for some important interactions or role-
specific information.

8. Highly different interaction methods or devices can be
used (see Fig. 1), even when only television sets are con-
sidered as a platform.

4 The SPME runtime support

The SPME runtime support consists of two parts: a descrip-
tion of the SPME using XML (from now on called SPME
XML) and a generic runtime environment that interprets this

Fig. 2 Example structure of the screen contents of an SPME: (1) back-
ground panel featuring live streams of participants with different roles
(4) and an interaction bar (2) containing the names of the available
interaction panels as well as the content of one of these panels, in this
case having label Start (3)

Fig. 3 Usage of SPME XML parts in the ParticipationTV runtime

description. The relation between SPME XML and its use in
the Participation TV runtime is shown in Fig. 3, which shows
only the key server-side component, the Orchestrator. It re-
ceives all events related to SPME. These events are gener-
ated by user interaction through a supported client system or
by a timer associated to a SPME. It then ensures that all nec-
essary actions are performed and that all user interfaces are
updated. These updates can involve changing backgrounds
or interaction panels. More information about the infrastruc-
ture is given in section 4.1, while section 4.2 discusses the
different parts of SPME XML.

4.1 The runtime infrastructure

The ParticipationTV infrastructure consists of four major
components: the Orchestrator, the VideoMixer, the Partici-
pationTV Service and an Instant Messaging server. Fig. 4
shows how these components interact. The figure clearly
shows that the instant messaging (IM) server plays an impor-
tant role in the infrastructure as it handles all communication
between the participants and the Orchestrator, which han-
dles the communication with the ParticipationTV Service.

High-Level Models for the Creation of SPME 5

Fig. 4 The ParticipationTV Runtime infrastructure. Dashed connec-
tions use the XMPP protocol, the dotted connection uses proprietary
XML-based communication and continuous line connection uses a
webservice protocol.

The latter holds the list of all available SPME formats, while
the Orchestrator deals with all communication related to the
SPMEs while they are executing. The creation of the medi-
astreams and the transmission to the viewers of the SPME is
handled by the last component, the Videomixer.

The choice for an IM server to handle all communication
with the SPME viewers is based on the capabilities of the
eXtensible Messaging and Presence Protocol, short XMPP [16,
17]. The protocol is based on XML, which means that it
is easily extensible with ParticipationTV’s own XML-based
SPME language. ParticipationTV clients or server-side com-
ponents that need to send ParticipationTV specific messages
to each other can simply do so by embedding them in an
XMPP message and the IM server will make sure that they
will arrive at the corresponding entity. Furthermore the pres-
ence part makes it easy to see who of your contacts are
online and you can invite them to play a TV program that
you made or host, although people can also join a Participa-
tionTV program if they know the format and host.

The actual core of ParticipationTV is the Orchestrator, a
server-side XMPP component that plugs into the IM server.
The Orchestrator has a variety of functions: keeping track
of ParticipationTV format instances and sessions, making
sure participants have the correct roles, handling workflow,
sending the right interactive components to all participants
and steering the video mixer (see also Fig. 3).

Furthermore, the Orchestrator has a crucial role during
the start of a SPME. Before a user can start a new SPME or
join an already started SPME, the user has to log into Par-
ticipationTV, which will send an XMPP message to the Or-
chestrator component to ask for the available formats. The
Orchestrator will make use of the ParticipationTV web ser-
vice to retrieve the list of formats. After the user has selected

a format and states that he wants to be the host, the Orches-
trator will exercise the following steps:

1. Load the corresponding SPME XML files into its work-
flow engine.

2. Create the new session and inform the web service of the
newly created session.

3. Attach the role master to this user.
4. Start an instance of the video mixer.
5. Create a room in the Multi-User chat component [7] of

the IM server.
6. Send a message back to the user that everything is set up

correctly and that he can join the Multi-User chat com-
ponent. All participants of the same format instance will
end up in the same Multi-User chat room.

All other users that subsequently log in will be able to
join the format instance/session created by this first user.
The workflow engine that is part of the Orchestrator will
now start to process the SPME XML files and will act ac-
cordingly:

1. Steer the video mixer, which composes the correct video
image for all users.

2. If there is interactivity, make sure the user with the cor-
rect role will receive it and can act upon it.

3. Go through the flow until the format has finished or stopped
by the user who has the role master.

4.2 The runtime SPME description

The runtime SPME description (SPME) consists of three
parts (as shown in Fig. 3): the flow description (using events),
the background panels and the interactions, shown as inter-
action panels and popups on television sets.

The flow description is a list of named events and the
according event descriptions, which consist of a set of com-
mands. The current set of commands relevant to each role is
maintained in the state machine of the orchestrator to enable
consistent view on the show for all participants, even when
they join lately or are accidentally disconnected. There are
three kinds of commands:

– The first category of commands applies to variables and
roles. Both variables and roles are maintained in a Jscript 6

environment and can be resolved to strings to be used
in the layout files. Variables will typically be used for
the dynamic behavior of the show, and do support ba-
sic Jscript evaluation, while roles have to be considered
as dynamic groups of users, which are typically used
for role dependent content and interactions (popup di-
alogs and interaction panels). The first set of commands
in Listing 1 fall into this category.

– The second category consists of a single timing-related
command setTimer: upon execution, it starts a timer that
spawns a new event when it times out.

6 http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/jscript7/html/jsoriJScript.asp

6 Jan Van den Bergh et al.

Listing 1 SPME XML - example commands

<AddToRole u s e r =”#INTERACTOR#”
roleName =” S e l l e r ” />

<RemoveFromRole u s e r =”#INTERACTOR#”
roleName =”PARTICIPANT” />

<S e t V a r i a b l e name=” Reques t edBid ”
v a l u e =”100” />

<S e t V a r i a b l e name=” Reques t edBid ”
v a l u e =” $Reques tedBid$ +100”/>

<Se tT imer a s s o c i a t e d E v e n t =” Nex tSc reen ”
e x p i r a t i o n T i m e =”10000” />

<SetBackground panelName =” I n t r o ” />
<A d d I n t e r a c t i o n u s e r =”#PARTICIPANT#”

panelName =” S e l l ”
a s s o c i a t e d E v e n t =” BecomeSe l l e r ” />

<R e m o v e I n t e r a c t i o n u s e r =”#MASTER#”
panelName =” Cance l ” />

<ShowPopup u s e r =”#MASTER#”
panelName =” AckBid ”
a s s o c i a t e d E v e n t =” MasterAckBid ”/>

– The last category of commands changes the layout of the
screen and the interaction possibilities of the different
users: a new background panel can be assigned, interac-
tion panels can be added and removed, and popups can
be displayed. Interaction panels and popups also have
an associated event, which the user will spawn when he
presses OK when the interaction panel or popup is ac-
tive. These graphical items are designated by a panel-
Name, which maps to a description in the corresponding
layout files. Examples of this category of commands can
be seen in the lower part of Listing 1.

The remaining parts of SPME XML concern the specifi-
cation of the user interface, the background panel and the in-
teractions. Originally, both were described in a ad hoc man-
ner MyXaml 7, an open source language and library to de-
scribe GUIs of Windows applications, together with some
terminal dependent custom controls. This offered the advan-
tage that we could reuse the MyXaml libraries and quickly
test the usage of the platform in the spirit of X’treme Proto-
typing [14, chapter 4]. Later on, we realized that many items
in scenes were coming back several times and we needed
dynamic scene changes, which were not obvious to describe
in MyXaml.

In the current implementation, the description of the back-
ground panel is done based on SMIL [3], which allows dy-
namic positioning of text, video and images, while also al-
lowing control of the audio. It also offers the possibility to
separate the content description (body) from the actual lay-
out and styling (regions and paramSets), which enhances the
readability and reduces viscosity. The dynamic scene pro-
gression is described using the par and seq tags from SMIL,
where the former are triggered by the events.

For the interactions, we plan to use a language on a higher
level of abstraction than that of MyXaml, which we are still

7 http://www.myxaml.com

Listing 2 SPME XML - partial background specification using SMIL

<p a r t r i g g e r =” S t a r t B i d ”>
< t e x t r e g i o n =” b i d T e x t ”

s r c =” d a t a : Bid : $Reques tedBid$ ”
t r i g g e r =” S t a r t B i d , NextBid ”/>

<v i d e o s r c =”webcam : #MASTER#”
r e g i o n =” masterWebcam ”/>

<a u d i o s r c =” microphone : #MASTER#”
r e g i o n =” masterWebcam ”/>

<img s r c =” a u c t i o n t v / s e l l e r i n t e r v i e w . png ”
r e g i o n =” s e l l e r B g ”/>

<v i d e o s r c =” I t e m P r e s e n t a t i o n S G I . a v i ”
r e g i o n =” i t emVideo ”/>

</ par>

Listing 3 SPME XML - envisioned interaction descriptions

<ack s t a t e m e n t =”Make a b i d ” name=” AckBid”/>
<q u e s t i o n name=” Answer ”

desc =”Which one i s more fun ?”>
<i t em v a l u e =”Mont Ventoux ”/>
<i t em v a l u e =” Kemmelberg”/>

</ q u e s t i o n >
<number name=” NextBid ” min =”0” max=”200”

s t e p =”5” desc =”What w i l l be t h e n e x t b i d ?”/>
< t e x t name=” NameInput ”

desc =” Give your name :”/ >

using today. This with the eye on supporting SPME on other
platforms than television sets, such as mobile phones and
PC’s. It should thus be a language that is terminal indepen-
dent, and describing the interaction itself rather than how it
should be rendered. Based on our current tests, we already
came up with some basic types of interaction: acknowledg-
ment, multiple choice question, number input and plain text
input. Listing 3 shows examples of such specifications using
a preliminary XML syntax.

The applicable interactions should be communicated with
the user in a form that is optimized for the type of terminal
that is used. On PC, it may be rendered as a clickable inter-
face allowing keyboard input, while on set-top box it needs
an interface controllable with a remote control. On mobile
devices, we can think of text to speech and vice versa in or-
der not to overload the tiny screen.

5 Modeling SPME

5.1 Requirements

To support the creator of an SPME, who is not necessarily
a professional with a deep understanding of the implemen-
tation issues but rather a knowledgeable viewer, a graphical
modelling language with tool support has been constructed.
The tool allows the creator to model an SPME using the
graphical language and save it in the XML format that can
be executed by the SPME runtime. This avoids the overhead
of writing SPME XML by hand, which would be a challenge

High-Level Models for the Creation of SPME 7

for non-technical users not familiar with the implementation
constructs of the SPME runtime.

To understand some of the choices that were made, we
first present the requirements we set for the language:

R.1 : Supporting the creation of SPMEs; from concept de-
velopment and concept prototyping over production and
testing to prototype deployment 8;

R.2 : Independence of the final interaction devices, since these
might be different for different users and not known in
the early design phases;

R.3 : Emphasizing the user participation and their presence;

From these requirements we can derive a fourth require-
ment:

R.4 : Having a level of abstraction that allows the specifi-
cation to be used during the concept development and
prototyping stage, where attention to details about layout
and graphic design should be avoided but not necessarily
omitted.

Requirement R.4 provides the required flexibility toward the
deployment stage: the decision which platforms and inter-
action devices to target can be postponed until late in the
process but does not hinder early testing [21] (R.1). Includ-
ing other or new interaction devices does not require any
changes apart from filling in device specific details at the fi-
nal artefacts of the design process. As such, requirement R.4
is directly related to requirement R.2.

With these requirements in mind, we created SpIeLan
(SPME interface language), a graphical modeling language
for the design of SPME. It consists of three models: the sce-
nario, the scene stage and the scene script. It is important to
note that the names and the contents of these models have
been slightly changed to better fit the updated requirements
of the runtime infrastructure discussed in section 4 since ear-
lier reports on SpIeLan [21,22]. The visual syntax has also
been updated, based upon an informal test with both pro-
grammers and non-programmers, people familiar with par-
ticipationTV and people that were not familiar with it [19].

5.2 Scenario model: the overall scenario

The scenario model provides a high-level overview of the
show format: it provides general information about the roles
that viewers can have during the show and the scenario flow.
A scenario is composed of a set of scenes. A scene is a con-
tiguous part of the show during which the background panel
(see section 3) does not change. The structure of the show is
organized into a main flow, which can branch out if neces-
sary.

Fig. 5 shows a scenario model for the format AuctionTV.
At the top of the diagram the header contains general infor-
mation about the format and the roles that viewers can play.
In Fig. 5 there are four roles. Two of these roles (master

8 More information about these stages of interactive TV shows can
be found in [10].

and participant) are always present in an SPME specifica-
tion since the master is the one that initiates the show and all
other viewers that join initially get the role participant. Due
to the definition of the role master there is only one user at
any given time with this role. For each role, the tool also
displays the media requirements. These requirements can be
the availability of audio and video capturing and streaming
equipment and possibly the availability of media fragments
on the server (such as a video about the auctioned item for
the seller). Note that each role is shown in a different color,
which is also used for the visualization of the concepts asso-
ciated with the role (such as events and media requirements).

Fig. 5 Scenario of AuctionTV SPME

The first scene in the AuctionTV scenario in figure 5 is
Intro. The model shows that at the start of this scene the vari-
able RequestedBid with initial value 100 is used and set by
a participant. This participant loses its initial role but gets

8 Jan Van den Bergh et al.

Icon Name Semantics
StartScenario Starts the SPME
EndScenario Ends the SPME
Event Performs a simple action not

defined by the other types
SelectValue Selects a value from a predefined

set (currently only strings)
EditValue Edits a value (currently only

numbers)
Table 3 Types of user-generated events in an SPME

the role Seller instead 9. The master of the show, the auc-
tioneer, can also perform an action (StartPresenting). This
action triggers the following scene because it is also shown
next to the connection to that scene.

The auctioneer (the master) gives an introduction to the
auction in the second scene. The show then continues with
an interview with the seller and the bidding process. In this
process participants can accept a bidding price (event User-
AcceptBid, variable AcceptedBid) set by the auctioneer. The
auctioneer then announces the winner, a role that has been
set during the bidding process, in scene AuctioneerFullScreen.
When the winner is announced, the auctioneer starts an in-
terview with the winner (scene WinnerInterview) and finally
the show is ended.

There is however an alternative flow possible as long
as no bid is made. This fact cannot be completely derived
from the scenario model but is described in the script of the
scene SellerInterview that will be discussed in section 5.4.
The auctioneer starts the alternative flow when he decides to
cancel the show (using the event CancelAuction). This event
also appears at the start of the second flow, which consists of
one scene, Cancelled, which means that this event starts the
alternative flow.

The AuctionTV scenario contains different types of events.
All events that are currently supported by SPME are shown
in Table 3. The symbols for these events are taken from the
Canonical Abstract Prototypes notation [6]. The semantics
of these symbols is kept the same, although it is more re-
stricted and more specific to SPME. The symbols for these
events are abstract because highly different remote controls
could be used to interact with the SPME, even when only
the TV is considered as a visual medium, as can be seen in
Fig. 1. A time event can also be used as a trigger for scene
changes and is represented by a stylized sand glass.

As the AuctionTV scenario demonstrated, alternative scene
flows are possible. Should this not be sufficient, control struc-
tures can be used. Discussion of the control structures is
however out of the scope of this paper.

Fig. 6 Scene stage specification

5.3 Scene stage: the screen layout

The second model specifies the scene stage; the arrangement
of the user interface controls on the television screen. The
model consists of two required parts. The first required part
is the scene header which contains the name of the scene,
the roles actively involved in the scene, and the data used
and produced during the scene.

The second part describes the screen layout. It completely
specifies the background as specified in Fig. 2. In contrast
to earlier versions of the model [20], the layout of the in-
teraction bar and interaction panels is no longer explicitly
specified in the scene stage. The representation of the user
interface controls is based on the Canonical Abstract Pro-
totypes notation [6], although some changes and additions
have been made. Both parts are shown in Fig. 6.

The most important changes for SPME were the intro-
duction of two additional types of abstract components (see
Table 4): the ParticipantElement and the ActiveParticipant-
Collection. The first is an abstract representation of pres-
ence information of a single person participating in the show
(such as a live video stream), while the second handles a
group of people of which one or more can be active. Persons
that are in the active state are highlighted. The ActivePar-
ticipantCollection could, for example, be used in the Auc-
tionTV scenario to show all participants that have made a
bid. In which case, active could mean “having made the last
bid”.

Other changes give more details about more concrete
things that are important for SPME: the type of media that
is used is indicated using additional icons. A camera for live

9 A person can only affect his own role(s).

High-Level Models for the Creation of SPME 9

Icon Name Semantics
Element Displays media

or text
Collection Groups a set of

media or text elements
ParticipantElement Displays media

about a viewer
ActiveParticipant- Displays media
Collection about a group of viewers

Table 4 User interface controls for SPME

video streams, a microphone for live audio streams and a
clapper board for pre-recorded media. All of these icons can
be seen in Fig. 6. The ParticipantElement Auctioneer has
both live video and audio, while the element Item shows a
recorded media-stream. They are shown respectively in the
middle-left and middle-right of Fig. 6. The safe zone (the
zone that should be visible on all TV sets) is indicated using
a dashed rectangle, while a thin-lined rectangle can be over-
laid on ParticipantElements and elements to indicate the size
and position of a mask image that is associated with these
controls.

5.4 Scene script: the interaction

The third and last model specifies the scene script; it speci-
fies which actions can be performed by the viewers in which
order and what they result in. This section offers an overview
of the model that should be sufficient to roughly understand
the semantics. For additional details about the semantics of
this model we refer the interested reader to [22], which dis-
cusses an earlier version of the scene script. The semantics
between that version and the current version are, however,
limited.

The scene script has a similar structure as the scene stage.
The header is the same as that of the scene stage (see Fig. 6)
and contains the same information as the scene in the sce-
nario model. The remaining content of the model differs. An
example of this contents is shown in Fig. 7. It shows that in
the scene Bidding, the master can initially see two interac-
tion panels (with associated events StartBidding and Can-
celAuction). The event CancelAuction ends the scene and
hides the corresponding interaction panel, while StartBid-
ding enables the participants to make a bid (event UserAc-
ceptBid). When a bid is made, the auction can no longer be
canceled because the event UserAcceptBid removes the in-
teraction panel Cancel from the interaction bar of the mas-
ter. The participant that makes the bid gets the additional
role winner. In addition to this, the value for AcceptedBid is
set. The master can then set a new bidding price (AckBid) or
end the bidding process (AnnounceWinner).

The example shows that the basic building blocks in the
scene script, SystemActions, correspond to interaction pan-
els. The name of the interaction panel is shown at the top
of the rectangular shape that represents the SystemAction.

Fig. 7 Scene script corresponding to the header in Fig. 6

Fig. 8 IteratedSystemAction

When the system performs an action, such as modifying
variables, this action is specified below the SystemAction’s
name. The data that is used and produced by this action is
shown in the middle, as are changes in roles. At the bot-
tom, the related events are displayed. At the left side the
event is shown that can be triggered through the interaction
panel, while the event at the right side will hide the interac-
tion panel without triggering the related functionality.

There are two types of SystemActions that can be used in
the scene script. The simple SystemAction used in Fig. 7 and
the IteratedSystemAction (see Fig. 8). The latter differs from
the first in that it allows multiple persons to trigger the same
event (each triggered event causes the execution of the as-
sociated functionality). The designer can specify how many
people have to trigger the event before the execution of the
IteratedSystemAction is finished. This amount corresponds

10 Jan Van den Bergh et al.

Fig. 9 Procedure to add a scene

by default to all people sharing the role associated with the
trigger event, but an absolute amount can also be used.

6 Tool Support

SpIeLan is supported by a custom-built tool, called Experi-
ence Scripter (Fig. 10). The tool has a layered design; the
front-end, which was realized using the Piccolo-toolkit [1],
contains all information regarding the concrete visual syn-
tax, while the back-end consists of the abstract syntax and
supports the model serialization to various formats. Both
layers are loosely coupled as the back-end never directly in-
vokes functionality of the front-end. Changes in the back-
end are communicated to the front-end via an asynchronous
publish-subscribe mechanism. The following two sections
provide more details about the front-end and the back-end
respectively.

6.1 Design of the front-end

Since not all envisioned users of the tool will be program-
mers nor have highly technical skills, we tried to follow
design guidelines for end-user development (EUD) such as
those that were discussed by Repenning and Ioannidou [15]
as closely as possible during the design of the Proof-of-Concept
tool. We will shortly discuss how these guidelines reflect
into the tool we designed.

In our tool we tried to make most syntactic errors impos-
sible. Scenes can only be connected to other scenes or to the
header. For example, one can add a scene after an existing
scene by selecting scene from the toolbox and then clicking
on the existing scene. Adding a scene before the first scene,
such as Intro, of a flow can be done by first clicking on the
scenario header and then on Intro (see Fig. 9). Similarly only
syntactically correct scene scripts can be constructed.

Since a graphical diagram cannot represent all informa-
tion about a language construct, a property panel is provided
that contains the additional information about the selected
language construct. Certain properties are common to all
diagram elements: name, type, id and description. The lat-
ter allows the tool user to give some additional detail about

Fig. 11 A language construct has a graphical representation and as-
sociated properties with comments. The highlighted concept (named
Auctioneer) is a ParticipantElement whose properties are shown in
the Properties grid at the left side.

what is meant by a specific construct. It thus offers a sim-
ilar function as comments in a programming language, but
is limited to the scope of a single graphical element. Fig. 11
shows the property panel for the ParticipantElement named
Auctioneer. In addition to the general properties, it also has
some specific properties that complement the information in
the diagram or provide a more convenient way to change
this information. E.g. detailed positioning can be easier to
accomplish using the properties grid, while initial arrange-
ment can be accomplished in the diagram.

The current implementation supports incremental devel-
opment and decomposable test units. The most logical test
units smaller than the complete SPME are scenes. Though
previews can be shown of incomplete specifications, inter-
action panels will only be shown when they are specified in
the scene script; events that have no corresponding entity in
the scene script are thus ignored for prototype generation.
User interface elements will have to have some associated
media files before a concrete prototype can be generated.
High-level prototype generation such as described in earlier
work[21]) can provide an alternative in earlier stages of de-
velopment. These high-level prototypes do not require the
specification of interaction panels nor the specification of
media files for the user interface elements.

To get a better idea of the issues that should be tack-
led by the tool to optimally support the user in defining and
understanding SpIeLan models, an informal user test of the
graphical notation was performed [19, pp.154–160] as well
as a broad brush evaluation using the cognitive dimensions
framework [11]. These evaluations resulted in features of the
tool that relate to the following cognitive dimensions:

viscosity The viscosity, resistance to change, was kept as
low as possible. For example, adding a ParticipantEle-
ment in the scene stage automatically adds the necessary
media requirements (such as support for streaming video
and audio) to the visualization of the relevant role in all
necessary places. Another example is that when a media
element is present in several scenes, changes in its lo-

High-Level Models for the Creation of SPME 11

Fig. 10 Proof-of-Concept tool support (Experience Scripter) showing from left to right: a scenario model, the toolbox from which concepts can
be dropped on the models and the properties grid, and the scene stage. All these parts can be positioned as dockable or floating windows by the
tool user.

cation can be performed on all instances using a single
action.

abstraction Some unnecessary abstractions, such as num-
bers associated to events and roles, were removed from
the original notation as they proved to be confusing to
some users. Some concepts, such as those related to the
layout and composition of the interaction panels were
removed altogether because they were implementation
dependent and could be generated automatically.
Some additional abstractions were created to make edit-
ing the diagrams easier. For example, some user inter-
face components seemed to appear in almost all scenes.
This motivated the definition of an additional property
for user interface components: persistent (see also Fig. 11).
A user interface component that is marked as persistent
appears, by default, in all scenes of the SPME. Once
marked as persistent, changes to a persistent user inter-
face component made in one scene are reflected in all
scenes. When this behavior is not desired in a certain
scene, one can set another property (DefaultLayout) to
false to reflect these changes.

hidden dependencies Nearly all dependencies between the
different models are indicated symbolically. For exam-

ple, the information about the scenes that is given in the
scenario model is duplicated in the scene stage and scene
script.

visibility The tool supports juxtaposing all models related
to a scene. Local visibility is optimized by showing the
most relevant information in the models, sometimes re-
quiring information duplication over the various mod-
els, and showing the other information about the selected
concepts in a separate properties pane.

secondary notation The graphical representation of the mod-
els themselves has very little support for secondary nota-
tion. However, each concept can be annotated with free
text. Although the graphical display of the variables that
are used is an integral part of the graphical notation, they
are (currently) not used to generate the SPME. In some
sense, they can thus also be considered as a secondary
notation that increases visibility. The availability of these
notations allows the gradual specification of more details
by people with the appropriate knowledge.

12 Jan Van den Bergh et al.

6.2 Back-end

The back-end of the Experience Scripter is built around an
implementation of the meta-model or abstract syntax of SpIeLan.
This meta-model consists of 38 classes, including the com-
mon base class Concept. Four of these are abstract classes
and three others have no visual representation. About half
of these classes are directly represented on the toolbox and
thus are created directly by the users of the tool. All other
concepts are created implicitly by the tool together with the
concepts that are represented in the toolbox or during serial-
ization.

The back-end of the tool is currently able to serialize
the models to two different formats: a direct serialization to
XML [5] that includes all model information and the SPME
runtime format discussed in section 4.2. A scaled-down run-
time system can be accessed directly from within the tool
and allows to quickly check the effect any changes made to
the models on a single machine. The generation of XForms [8]-
based prototype descriptions as discussed in [21] is incom-
plete but is straight forward given the fact that it was com-
pletely implemented for an earlier version of the language
and the changes in the meta-model since then are minimal.

6.3 Discussion

Having presented the current tool-support, we now revisit
the requirements set in section 5.1. Requirement R.1, sup-
port for the creation process of SPMEs form concept devel-
opment to prototype development, was addressed by offer-
ing the possibility to work at multiple levels of detail. One
can start by creating the scenario flow and giving only tex-
tual descriptions for the scenes. These can be refined by a
rough, high-level sketch of the interface in the scene stage,
while the roles and the events they can trigger in the dif-
ferent scenes can be specified in the scenario model. The
sequence of the actions and the reaction of the system can
be specified at a later point in the scene script, while fine
grained positioning of the media-elements and specification
of the associated video clips, fonts and still images can be
performed in the scene stage.

The tool and the models allow to specify the show at
different levels of formality (rigid specification using pre-
defined constructs or free form text) and detail. This does,
however, not mean that the tool and models can be used
throughout the complete development cycle, nor that it facil-
itates discussion between all people that are involved in the
design process since these may have highly different back-
grounds.

Facilitating such discussions might require incorporating
some of the ideas presented in [4]. The tools presented in
this paper, provide alternative views for one model at differ-
ent levels of formality or abstraction. For our tool this could
mean that one or more additional views for the scene stage
and scene script could be offered that use the final presenta-
tion (available on a specific platform). The scenario model

could also feature alternative visualizations where the scenes
could be visualized using sketches of the screen or a textual
description of the scene. A more polished user interface fea-
turing extensive (semantic) drag-and-drop and syntax-high-
lighting for the scripts in the scene script might also be use-
ful. More user tests involving the people that make the cur-
rent interactive TV applications would be necessary to de-
termine the necessity of these additions.

The complete specification is independent of the final
interaction devices; only events and corresponding interac-
tions are specified in the models. The concrete interaction vi-
sualization is determined by the runtime-environment. Nonethe-
less, a designer can preview the creation during the develop-
ment. The fact that only events and associated SystemAc-
tions are used to specify user interaction satisfies require-
ment R.2 (be independent of the final interaction devices).
Furthermore, also the specification of the background panel
can be done at a high level of abstraction in the scene stage
without worrying about the graphic design, which means
that requirement R.4 is also satisfied.

Requirement R.3 demands that user participation and pres-
ence is emphasized. This requirement is satisfied by the promi-
nent specification of the involvement of users with a specific
role for each scene in all models. The visual and audible
presence is also emphasized by two dedicated kinds of user
interface controls (see Table 4) and the role specification in
the scenario header.

7 Conclusions and future work

In this paper we described a new type of participation TV:
Staged Participatory Multimedia Events (SPME) on TV. It
gives an unprecedented amount of control to television view-
ers: they are no longer just viewers but participants or even
the host of a show. They can be part of the show through the
use of currently available technology such as webcams, mi-
crophones and a remote control. Examples of SPME formats
can include existing TV shows adapted for greater viewer
participation, AuctionTV, adaptions of board games, shows
for specific communities or even a headbangers competition.

A flexible proof-of-concept runtime infrastructure was
created. This infrastructure uses open specifications and pro-
tocols such as SMIL, MyXaml and XMPP and has been
demonstrated and tested at various events related to inter-
active television.

The creation of a format can be done using the SPME
XML or through a graphical modeling language, SpIeLan,
from which the SPME XML can be generated. Proof-of-
concept tool support for SpIeLan has been realized. The de-
sign of this tool was based on general guidelines for the cre-
ation of end-user development environments [15], user feed-
back during informal user tests and a broadbrush evaluation
using the cognitive dimensions framework [11].

Although further tests are still needed to be able to draw
definitive conclusions about the possibility to let end-users

High-Level Models for the Creation of SPME 13

create SPME, this paper demonstrates that model-driven cre-
ation of participation TV such as SPME is possible.

Revisiting the requirements set in the beginning of the
paper, we can state that the realized proof-of-concepts in-
dicate that it is feasible to create SPME using SpIeLan and
the supporting tool with limited technical knowledge. Fur-
thermore, the realized runtime environment is flexible and
builds on existing standards increasing the chances that it
the SPME can be integrated in the infrastructure of inter-
ested service providers or broadcasters.

Future work will be conducted along several paths. One
of the major tasks will be to extend the platform support
for SPME with, for example, a web-based PC-client and a
mobile phone client as shown in Table 1. The interaction
methods for the viewers will also be adapted to these target
platforms. The introduction of a high-level language for in-
teraction descriptions should minimize the effort for creators
of SPME that target all these platforms.

More large scale user tests with the formats are needed
to validate the viability of SPME as a commercial platform.
Therefore such tests are planned with one or more of the
then supported platforms.

Also the tool support and the modeling language, SpIeLan,
will be the subject of further research. Improvement of the
tools usability and its suitability for end-user development
of SPME is an important point for further research.

While the focus for the presented infrastructure and mod-
eling support was largely focused on the T-Commerce and
Games categories of interactive television. Future research
will reveal whether they can also be used for other kinds of
interactive television or even outside the world of interactive
television.

Acknowledgements This research was performed in the context of
the IWT project Participate of Alcatel Bell. Part of the research at the
Expertise Centre for Digital Media is funded by the ERDF (European
Regional Development Fund), the Flemish Government and the Flem-
ish Interdisciplinary institute for Broadband Technology (IBBT).

We also thank the anonymous reviewers for their extensive feed-
back and suggestions.

References

1. Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit design for interac-
tive structured graphics. IEEE Trans. Softw. Eng. 30(8), 535–546
(2004). DOI http://dx.doi.org/10.1109/TSE.2004.44

2. Benford, S., Greenhalgh, C., Craven, M., Walker, G., Regan, T.,
Morphett, J., Wyver, J., Bowers, J.: Broadcasting on-line social
interaction as inhabited television. In: Proceedings of the Sixth
European Conference on Computer-Supported Cooperative Work,
p. 179 (1999)

3. Bulterman, D., Grassel, G., Jansen, J., Koivisto, A.,
Layaı̈da, N., Michel, T., Mullender, S., Zucker, D.: Syn-
chronized multimedia integration language (smil 2.1).
http://www.w3.org/TR/2005/REC-SMIL2-20051213/ (2005)

4. Campos, P., Nunes, N.: Principles and practice of work style mod-
eling: Sketching design tools. In: Proceedings of HWID06 -
Human-Work Interaction Design, IFIP International Federation
for Information Processing, pp. 203–219. Springer (2006)

5. consortium, W.W.W.: Extensible Markup Language (XML).
World Wide Web, http://www.w3.org/XML/ (2001)

6. Constantine, L.L.: Canonical abstract prototypes for abstract vi-
sual and interaction design. In: Proceedings of DSV-IS 2003, no.
2844 in LNCS, pp. 1 – 15. Springer, Funchal, Madeira Island, Por-
tugal (2003)

7. Coppens, T., Trappeniers, L., Godon, M.: Amigotv : towards a
social tv experience. In: Proceedings of EuroITV 2004 (2004)

8. Dubinko, M., Klotz, L.L., Merrick, R., Raman, T.V.: Xforms
1.0. W3C, World Wide Web, http://www.w3.org/TR/2003/REC-
xforms-20031014/ (2003)

9. Dusseldorp, M.V.: Video-phone feeds getting into mainstream me-
dia. E-Media TidBits, http://www.poynter.org/column.
asp?id=31\&aid=81683 (2005)

10. Gawlinski, M.: Interactive Television Production. Focal Press
(2003)

11. Green, T.R.G., Petre, M.: Usability analysis of visual program-
ming environments: A ’cognitive dimensions’ framework. Journal
of Visual Languages and Computing 7(2), 131–174 (1996)

12. Jensen, J.F.: Interactive television: new genres, new format, new
content. In: IE2005: Proceedings of the second Australasian con-
ference on Interactive entertainment, pp. 89–96. Creativity & Cog-
nition Studios Press, Sydney, Australia, Australia (2005)

13. Luyten, K., Thys, K., Huypens, S., Coninx, K.: Telebuddies: So-
cial stitching with interactive television. In: Accepted for publica-
tion for CHI 2006 (Extended Abstracts) (2006)

14. Michahelles, F.: Innovative application development for ubiqui-
tous and wearable computing. Ph.D. thesis, Ludwig-Maximilians-
Universität München (2004)

15. Repenning, A., Ioannidou, A.: End-User Development, chap.
What Makes End-User Development Tick? 13 Design Guidelines,
pp. 51–85. Springer (2006)

16. Saint-Andre, P.: Extensible messaging and presence protocol
(xmpp): Core. ftp://ftp.rfc-editor.org/in-notes/
rfc3920.txt (2004). c©The Internet Society

17. Saint-Andre, P.: Extensible messaging and presence proto-
col (xmpp): Instant messaging and presence. ftp://ftp.
rfc-editor.org/in-notes/rfc3921.txt (2004). c©The
Internet Society

18. Ursu, M.F., Cook, J.J., Zsombori, V., Zimmer, R., Kegele, I.,
Williams, D., Thomas, M., Wyver, J., Mayer, H.: Conceiving
shapeshifting tv: A computational language for truly-interactive
tv. In: Interactive TV: A Shared Experience. 5th European Con-
ference, EuroITV 2007, LNCS, vol. 4471, pp. 96–106. Springer
(2007)

19. Van den Bergh, J.: High-level user interface models for model-
driven design of context-sensitive interactive applications. Ph.D.
thesis, Hasselt University (transnationale Universiteit Limburg)
(2006)

20. Van den Bergh, J., Bruynooghe, B., Moons, J., Huypens, S., Han-
dekyn, K., Coninx, K.: Model-driven creation of staged participa-
tory multimedia events on tv. In: Interactive TV: A Shared Experi-
ence. 5th European Conference, EuroITV 2007, LNCS, vol. 4471,
pp. 21–30. Springer (2007)

21. Van den Bergh, J., Huypens, S., Coninx, K.: Towards Model-
Driven Development of Staged Participatory Multimedia Events.
In: Interactive Systems. Design, Specification, and Verification,
13th International Workshop, DSVIS 2006, LNCS, vol. 4323, pp.
81–94. Springer (2007)

22. Van den Bergh, J., Luyten, K., Coninx, K.: High-Level Model-
ing of Multi-User Interactive applications. In: Task Models and
Diagrams for User Interface Design, 5th International Workshop,
TAMODIA 2006, LNCS, vol. 4385, pp. 153–168. Springer (2007)

