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ABSTRACT Copulas and frailty models are important tools to model bivariate

survival data. Equivalence between Archimedean copula models and shared frailty

models, e.g., between the Clayton-Oakes copula model and the shared gamma frailty

model, has often been claimed in the literature. In this note we show that, in both

models, there is indeed the well known equivalence between the copula functions; the

modeling of the marginal survival functions, however, is quite different. The latter

fact leads to different joint survival functions.
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Introduction

Clustered survival data arise when event times belonging to the same cluster are

correlated. We will consider bivariate survival data, i.e., clustered survival data

with clusters of size two. To set the scene, consider the diagnosis of hip fracture

being healed in a dog (Risselada et al., 2006). The time to diagnosis is assessed by

two different imaging techniques, radiography (RX) and ultrasound (US) resulting

in two clustered (within dog) diagnosis times.

Lee et al. (1992) and Spiekerman & Lin (1998) study the properties of marginal Cox

regression models for clustered (bivariate) survival data. They show that the esti-

mators for the regression coefficients are consistent and they obtain an appropriate

version of the asymptotic variance-covariance matrix of the estimators that takes

the clustering into account.

This marginal regression model approach, however, does not give any information

on the dependence between the diagnosis times in a cluster.

When the dependence itself is of interest, it needs to be modeled. The two models

that have been used most frequently for bivariate survival data are copula models

and frailty models.

In copula models the joint survival function of the two diagnosis times in a dog is

modeled as a function, called the copula, of the marginal survival functions of the

two diagnosis times (see Section 2). The copula, used to couple the marginal survival

functions and the joint survival function, determines the type of dependence. In this
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note we consider parametric copula functions; the marginal survival functions can be

modeled in a parametric, a semi-parametric or a nonparametric way. An excellent

reference on copulas is Nelsen (2006).

Inferential procedures for copula models typically use a two-stage approach (e.g.,

see Shih & Louis (1995)). In the first stage the marginal survival functions are

estimated (parametric, semi-parametric or nonparametric estimation has been con-

sidered). In the second stage, estimates for the parameters in the copula function

are obtained by maximization of the likelihood with respect to the copula function

parameter, after we have replaced the (derivatives of the) marginal survival func-

tions by the corresponding estimated versions (obtained in the first stage) in the

likelihood expression.

When modeling the marginal survival functions in a semi-parametric or nonpara-

metric way the two-stage approach is a natural way to arrive at sound statistical in-

ference. For marginal survival functions modeled in a parametric way also maximum

likelihood estimation for all the parameters simultaneously (i.e., the parameters of

the marginal survival functions and the parameters of the copula) is possible.

The frailty model is a conditional hazard model which has a multiplicative fac-

tor, called the frailty, which models the random cluster effect. Conditional on the

frailty, the diagnosis times within a cluster are assumed to be independent. Starting

from the conditional hazard model, the joint survival function can be obtained by

integrating out the frailty (using an appropriate frailty density and its correspond-

ing Laplace transform) in the conditional bivariate survival distribution. The joint
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survival functions takes the form of an Archimedean copula (see Section 2). Based

on this finding it is often stated that the frailty model corresponds to a particular

Archimedean copula model (Manatunga & Oakes, 1999; Viswanathan & Manatunga,

2001; Andersen, 2005). This statement is, however, confusing since the two modeling

approaches are quite different in nature.

Explaining the similarities and the differences from a modeling as well as from an

inferential point of view is the main purpose of this note. In Section 2, we introduce

the copula model and the frailty model for bivariate survival data in a general

way. In Section 3, we compare the Clayton-Oakes copula with Weibull marginal

survival functions as arguments and the shared gamma frailty model with conditional

Weibull hazards and we demonstrate that the two models are of different nature.

We also discuss the case where the marginal survival functions (copula models) and

the conditional hazards (frailty models) are modeled in a semi-parametric and a

nonparametric way.

Section 4 contains a similar comparison for the positive stable copula and the shared

frailty model with positive stable frailty density. For the particular case of Weibull

marginal survival functions and conditional Weibull hazards we show that the two

models lead to the same inferential results.
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The Copula and the Frailty Model

Consider two clustered diagnostic times (T1, T2) (T1 for RX, T2 for US) and let

S1,c (t) and S2,c (t) be the marginal survival functions for the RX and US imaging

technique.

For a copula model the joint survival function is given by

Sc (t1, t2) = Cθ {S1,c (t1) , S2,c (t2)} ,

with Cθ a copula function, i.e., a distribution function on the unit square

Cθ : [0, 1]2 → [0, 1] : (u, v) → Cθ(u, v) parameterized by θ (possibly a vector).

The frailty model, on the other hand, is given by

hij(t) = uihj,u(t),

with hij(t) the hazard at time t in cluster i, i = 1 . . . , s, for diagnosis technique j

(1=RX, 2=US), hj,u(t) the hazard at time t for a cluster with frailty equal to one

and diagnosis technique j and ui the frailty term. The density of a frailty random

variable Ui is denoted as fU(.).

To compare copula models and frailty models we need the family of Archimedean

copulas

Cθ(u, v) = p {q(u) + q(v)} ,

where p(.) is any nonnegative decreasing function with p(0) = 1 and nonnegative
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second derivative and q(.) is its inverse function; p(.) is parametrized by θ.

To make the link between copula and frailty models, we only need functions p(.)

that are Laplace transforms of frailty densities fU(.) (frailty densities have support

[0,∞[)

p(s) = L(s) = E {exp (−Us)} =

∫
∞

0

exp (−us) fU(u)du (1)

leading to

Cθ(u, v) = L
{
L−1(u) + L−1(v)

}
.

For the copula model the joint survival function is

Sc (t1, t2) = L
[
L−1 {S1,c(t1)} + L−1 {S2,c(t2)}

]
. (2)

For the frailty model the joint conditional survival function for cluster i is Si (t1, t2) =

exp [−ui {H1,u (t1) + H2,u (t2)}] with Hj,u(t) =
∫ t

0
hj,u(s)ds the cumulative baseline

hazard for diagnosis technique j.

The joint survival function can be obtained by integrating out the frailties with

respect to the frailty density

Sm (t1, t2) =

∫
∞

0

Si (t1, t2) fU(ui)dui

= E [exp {−U (H1,u(t1) + H2,u(t2))}] . (3)
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The joint survival function derived from the frailty model (3) and the joint sur-

vival function specified for the copula model (2) are two different ways to model

P (T1 > t1, T2 > t2).

Expression (3) is nothing but the Laplace transform of the frailty density function

evaluated at s = H1,u (t1) + H2,u (t2) so that

Sm (t1, t2) = L {H1,u (t1) + H2,u (t2)} . (4)

Furthermore, the marginal survival function for each of the two imaging techniques

can be obtained by putting the diagnosis time for the other diagnostic technique

equal to zero in (4) and thus Sj,m(t) = L {Hj,u (t)}. It follows that

Hj,u(t) = L−1 {Sj,m(t)} . (5)

Using this relationship, (4) can be written as

Sm (t1, t2) = L
[
L−1 {S1,m (t1)} + L−1 {S2,m (t2)}

]
. (6)

Remark that the copula used in the joint survival functions (2) and (6) is the same.

The arguments of the copula, the marginal survival functions, however, are not the

same. From (2) and (6) it follows that the two models are different in nature. This

will be demonstrated in Section 3, where we compare the Clayton-Oakes copula with

Weibull marginal survival functions as arguments and the shared gamma frailty

model with conditional Weibull hazards. A similar comparison, in Section 4, for
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the positive stable copula and the shared frailty model with positive stable frailty

density, shows the exceptional character of this model, in the sense that both models

are equivalent.

The Clayton-Oakes Copula and the Gamma Frailty

Model

In the copula model assume that the marginal survival functions are obtained from

Weibull hazards and use the two-stage approach of Shih & Louis (1995). In the first

step, parameter estimates for λj and ρj are obtained by fitting the following survival

model in each group (RX or US) separately

hj,c(t) = λjρjt
ρj−1, (7)

with j = 1 for the RX diagnosis and j = 2 for the US diagnosis, i.e., Sj,c(t) =

exp (−λjt
ρj).

As an example, we use time to diagnosis data based on RX and US from 106 dogs.

The parameter estimates (ML estimates) for our example are λ̂1 = 0.106, ρ̂1 = 2.539,

λ̂2 = 0.219 and ρ̂2 = 2.323. To model the dependence we use the joint survival

function (2) with

L(s) = (1 + θs)−1/θ and L−1(s) = (s−θ − 1)/θ (8)
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with θ ≥ 0. L(.) is the Laplace transform of the one-parameter gamma density (see

(11)). The corresponding copula Cθ(u, v) =
(
u−θ + v−θ − 1

)
−1/θ

is the Clayton-

Oakes copula.

The joint survival function then becomes

Sc (t1, t2) =
[
{S1,c(t1)}

−θ + {S2,c(t2)}
−θ − 1

]
−1/θ

. (9)

Based on the joint survival function (9) the likelihood can be constructed (see e.g.

Shih & Louis (1995)). In the second step we replace in the likelihood Sj,c(.) by

Ŝj,c(.), obtained by replacing λj, ρj by λ̂j, ρ̂j (for j = 1, 2), and we then maximize

the likelihood with respect to θ. In our example θ̂ is 0.890.

Since the marginal survival functions and the copula are modeled in a parametric

way, the likelihood obtained from the joint survival function can also be maximised

jointly for the marginal survival function parameters and the copula function param-

eter, leading to parameter estimates λ̂1 = 0.145, ρ̂1 = 2.341, λ̂2 = 0.233, ρ̂2 = 2.212

and θ̂ = 1.066. Durrleman et al. (2000) give a detailed comparison between the

two-stage approach and the (joint) maximization of the likelihood.

For the frailty model we start from a conditional Weibull hazard with different λ̃

and ρ̃ parameters for the two diagnostic techniques (this is similar to the way in

which the marginal survival functions in the copula model were modeled)

hij(t) = uiλ̃j ρ̃jt
eρj−1, (10)
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with u1, . . . , us independent realizations of a one parameter gamma density with

mean one and variance θ

fU(ui) =
u

1

θ
−1

i exp(−ui

θ
)

θ
1

θ Γ(1
θ
)

. (11)

The Laplace transform for the gamma distribution and its inverse is given in (8).

Plugging in (8) into (4) leads to the joint survival function

Sm (t1, t2) = [1 + θ {H1,u(t1) + H2,u(t2)}]
−1/θ .

Making use of (5) this can be rewritten as

Sm (t1, t2) =
[
1 +

[
{S1,m(t1)}

−θ − 1
]

+
[
{S2,m(t2)}

−θ − 1
]]

−1/θ

=
[
{S1,m(t1)}

−θ + {S2,m(t2)}
−θ − 1

]
−1/θ

.

This expression looks similar to the copula form representation in (9). There is,

however, the substantial difference that Sj,m(t) 6= Sj,c(t), j = 1, 2. The marginal

survival function Sj,m(t) =
(
1 + θλ̃jt

eρj

)
−1/θ

is not of the Weibull form. Note that

the copula parameter also shows up in Sj,m(.).

Parameter estimates for shared frailty models with a parametric baseline function

can be easily obtained through maximization of the observable likelihood (Klein,

1992; Costigan & Klein, 1993). Estimates for the parameters λ̃1, ρ̃1, λ̃2, ρ̃2 and θ of

the frailty model are given by 0.079, 3.827, 0.218, 3.456 and 0.909 respectively.
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The parameter estimates for λ̃j, ρ̃j from the frailty model have a conditional meaning

(conditional on the particular cluster) whereas the parameter estimates from the

copula model refer to the marginal hazard and survival functions. To compare the

two models, note that the marginal hazard function in the frailty model is given by

hj,m(t) = λ̃j ρ̃jt
eρj−1

(
1 + θλ̃jt

eρj

)
−1

(12)

whereas the marginal hazard in the copula model is given by (7) and is free of θ.

Figure 1 shows the marginal hazards in the copula model and in the frailty model,

the pictures use the estimated parameters.

For ρ̃j > 1, as is the case in our example, the conditional hazard in (10) is a mono-

tone increasing function. With ρ̃j > 1 the marginal hazard function (12) reaches a

maximum in t =
{

(ρ̃j − 1)/(θλ̃j)
}1/eρj

. The marginal hazard in the copula model

is monotone increasing. Therefore the marginal hazard functions in the two models

can never be the same.

Figure 1

We also fitted the copula and frailty model using the semi-parametric (Cox) model

and the nonparametric model for the (conditional) hazards.

The semi-parametric copula model is given by

11



hj,c(t) =





h0(t) for RX

h0(t) exp(β) for US

and the nonparametric copula model by

hj,c(t) =





h1(t) for RX

h2(t) for US

with h0(t), h1(t) and h2(t) unspecified hazard functions.

Estimation for the semi-parametric and nonparametric copula model is typically

based on the two-stage approach (Shih & Louis, 1995; Spiekerman & Lin, 1998;

Andersen, 2005). For the semi-parametric model, we obtain in the first stage an

estimate of β through partial likelihood maximisation and we use the Breslow esti-

mator of S0(t) = exp(−
∫ t

0
h0(t)) (Breslow, 1974). For the nonparametric approach,

we use the Nelson-Aalen estimator of Sj,c(t) = exp(−
∫ t

0
hj(t)), j = 1, 2 (Nelson,

1972; Aalen, 1978). In the second stage we replace the marginal survival functions

in the likelihood by their corresponding estimates and then maximize with respect

to θ.

The semi-parametric frailty model is given by

hij(t) =





uih̃0(t) for RX

uih̃0(t) exp(β̃) for US

and the nonparametric frailty model by
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hij(t) =





uih̃1(t) for RX

uih̃2(t) for US

with again h̃0(t), h̃1(t) and h̃2(t) unspecified hazard functions.

Estimation for the semi-parametric frailty model is based on the EM-algorithm

(Klein, 1992). Estimation for the nonparametric frailty model is also based on the

EM-algorithm but introducing imaging technique as stratification factor.

Parameter estimates in the semi-parametric copula model are β̂ = 0.508 and θ̂ =

0.997; in the semi-parametric (Cox) gamma frailty model estimates are given by

β̂ = 0.828 and θ̂ = 1.250. In the nonparametric copula approach the estimate for θ

is 1.236; in the nonparametric gamma frailty model it is 1.204.

The Positive Stable Copula and Frailty Model

In the two-stage copula approach, the marginal survival functions corresponding to

(7) are used, but the copula function now uses the Laplace transform

L(s) = exp
(
−sθ

)
and L−1(s) = (− log s)1/θ (13)

with 0 ≤ θ < 1. L(.) is the Laplace transform of the positive stable density (see

(15)). The corresponding copula takes form
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Cθ(u, v) = exp

[
−

{
(− log u)1/θ + (− log v)1/θ

}θ
]

.

Therefore the joint survival function in the positive stable copula model is

Sc(t1, t2) = exp

[
−

[
{− log S1,c(t1)}

1/θ + {− log S2,c(t2)}
1/θ

]θ
]

. (14)

The parameter estimates λ̂1, ρ̂1, λ̂2 and ρ̂2 are obviously the same as for the Clayton-

Oakes copula model. As we did for the Clayton-Oakes copula, we replace the Sj,c(.)’s

in the (joint survival functions appearing in the) likelihood and we maximize with

respect to θ.

Under this new dependency structure the value of the association parameter θ is

estimated as 0.563.

Since the marginal survival functions and the copula are modeled in a parametric

way, the likelihood can be maximized jointly for the marginal survival function

parameters and the copula function parameter. The estimates obtained from this

approach are shown in Table 1.

In the frailty model approach, we fit the conditional model (10) to the data, with

the positive stable density as frailty density (Hougaard, 1986)

fU(ui) = −
1

πui

∞∑

k=1

Γ(kθ + 1)

k!

(
−u−θ

i

)k
sin(θkπ) (15)

with 0 ≤ θ < 1.
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This complex expression for the positive stable density translates into the simple

Laplace transform (13).

From (4) the joint survival function is

Sm(t1, t2) = exp
[
−{H1,u(t1) + H2,u(t2)}

θ
]
. (16)

Making use of (5) and (13) this can be rewritten as

Sm(t1, t2) = exp

[
−

[
{− log S1,m(t1)}

1/θ + {− log S2,m(t2)}
1/θ

]θ
]

which has the same form as (14).

Also for the shared frailty model with positive stable frailty density, the frailties can

be integrated out to obtain the observable likelihood which can then be maximized

with respect to all the parameters (Costigan & Klein, 1993).

Parameter estimates for λ̃1, ρ̃1, λ̃2, ρ̃2 and θ̃ are provided in Table 1.

For the positive stable copula with marginal Weibull hazards we have Sj,c(t) =

exp (−λjt
ρj); for the shared positive stable frailty model with conditional Weibull

hazards Sj,m(t) = exp
(
−λ̃θ

jt
eρjθ

)
.

So in both models the marginal survival functions are Weibull, i.e., the event times

are Weibull distributed. We can make the Weibull distributions identical by taking

λj = λ̃θ
j ρj = θρ̃j. (17)

Assuming bivariate survival data without censoring, the likelihood (which is the
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product over the clusters of the bivariate densities) for the copula function is

Lc =
s∏

i=1

exp
(
−zθ

i

)
λ1ρ1t

ρ1−1
i1 λ2ρ2t

ρ2−1
i2

{
z

2(θ−1)
i + (1/θ − 1)zθ−2

i

(zi1zi2)
(θ−1)

}

with zij =
(
λjt

ρj

ij

)1/θ
and zi = zi1 + zi2.

For the frailty model the observable likelihood is

Lm =
s∏

i=1

exp
(
−z̃θ

i

)
λ̃1ρ̃1t

eρ1−1
i1 λ̃2ρ̃2t

eρ2−1
i2

{
θ2z̃

2(θ−1)
i + θ(1 − θ)z̃θ−2

i

}

with z̃ij =
(
λ̃jt

eρj

ij

)
and z̃i = z̃i1 + z̃i2.

From (17) we easily see that

z̃ij = zij (18)

Using (17) and (18) one can show that Lm can be rewritten as Lc. As an illustration

check in Table 1 that for the estimates obtained from the maximization (jointly for

all the parameters) of Lm, resp. maximization of Lc, the relations (17) hold.

The fact that the parameters of the copula and frailty model can be identified, as

discussed in (17), seems to be an exclusive property of the combination of Weibull

distributed event times and frailties from a positive stable distribution. If the ex-

ponential distribution is assumed for the event times together with a positive sta-

ble distribution for the frailties for example, this property vanishes. Under these

assumptions the population hazard function in the copula model hj,c(t) = λj is con-

stant, but in the frailty model the marginal hazard function is no longer constant,
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but Weibull: hj,m(t) = θλ̃θ
jt

θ−1.

Conclusions

In this paper we discussed similarities and differences between copula models and

frailty models for bivariate survival data. We focused on the comparison between the

Clayton-Oakes copula model and the shared gamma frailty model; and between the

positive stable copula model and the shared positive stable frailty model. For each

of the two comparisons, the copula functions used for the bivariate joint survival

functions are the same but the marginal survival functions are modeled in a different

way. To show the differences in a concrete example, we use the Clayton-Oakes

copula model with Weibull marginal survival functions and the shared gamma frailty

model with conditional Weibull survival functions (Section 3). A similar comparison

between the positive stable copula model and the shared positive stable copula model

shows that, in the exceptional case of the Weibull, there is a one-to-one match

between the two models (Section 4).

With the more flexible semi-parametric and nonparametric model specification, pa-

rameter estimates of the copula model are typically obtained by separate modeling

of the marginal survival functions (step 1) and the copula function (step 2). There-

fore there is complete separation between the estimation of the marginal survival

function parameters and the copula function parameter. This provides an explana-

tion why the estimate of the copula function parameter in the copula and frailty
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model approach differs.
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Table 1: Estimates of the copula function parameter and the Weibull parameters of

the positive stable copula model (using the two-stage approach or joint estimation)

and of the positive stable frailty model.

Figure 1: The marginal hazard functions from the frailty model and the copula

model with gamma frailty density for the time to diagnosis of being healed data

assessed by either US or RX.



Table 1:

Frailty model Copula model

Parameter Parameter two-stage joint estimation

λ̃RX 0.020 λRX 0.106 0.118

ρ̃RX 4.560 ρRX 2.539 2.491

λ̃US 0.059 λUS 0.219 0.213

ρ̃US 4.240 ρUS 2.323 2.315

θ̃ 0.546 θ 0.563 0.546
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