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Abstract

We give a representation-theoretic and a categorical interpretation of the Drinfel’d

double into the framework of group-cograded multiplier Hopf algebras. The Drin-

fel’d double as constructed by Zunino for a finite-type Hopf group-coalgebra is an

example of this construction in the sense that the components of the group-cograded

multiplier Hopf algebras are unital and finite-dimensional algebras and the admis-

sible action is related with the adjoint action of the group on itself.
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1 Introduction

Let G be any group. The prototype of a G-cograded multiplier Hopf algebra is given

by the multiplier Hopf algebraK(G) of complex valued functions with finite support

in G. Recall that the product in K(G) is pointwise. The algebra K(G) has no unit,

except where G is finite. The multiplier algebra M(K(G)) of K(G) is the largest

algebra with unit in whichK(G) sits as a dense two-sided ideal. ClearlyM(K(G)) is

given by the algebra of all complex functions on G. The comultiplication ∆ onK(G)

is given by the formula (∆(f))(p, q) = f(pq) for all f ∈ K(G) and p, q ∈ G. We have
∆(f) ∈ M(K(G)⊗K(G)). If G is finite, the multiplier algebra M(K(G)⊗K(G))
equals K(G)⊗K(G).
In this paper we work with more general G-cograded multiplier Hopf algebras in

the sense of [A-De-VD, Definition 1.1]. Essentially, a multiplier Hopf algebra B is

G-cograded if there is a central, non-degenerate embedding I : K(G)→M(B). We

require that I respects the comultiplication in the sense that∆(I(f)) = (I⊗I)(∆(f))
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for all f ∈ K(G). On the left hand side, we have extended the homomorphism ∆

from B to the multiplier algebra M(B), in the sense of [VD1-A5]. Similary, on the

right hand side, we have extended the homomorphism I ⊗ I from K(G)⊗K(G) to
M(K(G)⊗K(G)). A G-cograded multiplier Hopf algebra is denoted as B =

p∈G
Bp

where Bp are algebras with a non-degenerate product. For all p, q ∈ G we have

∆(Bpq)(1⊗Bq) = Bp⊗Bq. Observe that the multiplier algebraM(B) =
p∈G

M(Bp).

It is shown in [A-De-VD] that a Hopf group-coalgebra as introduced by Turaev in

[T], is a special case of a group-cograded multiplier Hopf algebra. Therefore, a lot of

results for Hopf group-coalgebras follow from the more general results of multiplier

Hopf algebras. E.g. the Drinfel’d double as constructed in [Z1] is an example of the

Drinfel’d double construction Dπ in [De-VD3, Theorem 3.8]. In the paper [De-VD3],

we consider any group-cograded multiplier Hopf algebra B with an admissible action

of the group. If we take the components of B as unital finite-dimensional algebras

and we require the admissible action to be a “crossing”, we recover the construction

as given in [Z1].

For convenience of the reader, we recall the construction of the Drinfel’d double

Dπ. We start with a G-cograded multiplier Hopf algebra B. So B has the form

B =
p∈G

Bp. Assume that there is a group homomorphism π : G→ Aut(B), where

Aut(B) denotes the group of algebra automorphisms on B.

We call π an admissible action of G on B if also the following requirements hold

(1) ∆(πp(b)) = (πp ⊗ πp)(∆(b)) for all b ∈ B
(2) πp(Bq) = Bρp(q) where ρ is an action of the group G on itself

(3) πρp(q) = πpqp−1

This means that the map π takes care of ρ not being the adjoint action. If ρ

is the adjoint action itself, π is called a crossing.

Take B and π as above. We consider a new regular multiplier Hopf algebra on B

by deforming the comultiplication while the algebra structure on B is kept. The

deformation of the comultiplication of B depends on the action π, in the following

way

∆(b)(1⊗ bI) = (πq−1 ⊗ ι)(∆(b)(1⊗ bI))
(1⊗ bI)∆(b) = (πq−1 ⊗ ι)((1⊗ bI)∆(b))

for all b ∈ B and bI ∈ Bq.
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Further we assume that �A,BX is a pairing of two regular multiplier Hopf alge-
bras, in the sense of [Dr-VD]. As before, B is G-cograded and π is an admissible

action of G on B. We consider a twisted tensor product algebra on the tensor prod-

uct A⊗B. This means that the trivial flip map is replaced by a more general twist
map R : B ⊗ A → A ⊗ B. This map R satisfies the appropriate compatibility

conditions with respect to the multiplications on A and B. The twist map R de-

pends on the pairing �A,BX, as well as on the action π. For an explicit expression
of the formula R(b ⊗ a), we refer to [De-VD3, Definition 3.4]. The algebra defined
in this way is denoted as A �Y B. Finally, this algebra has the structure of a regu-

lar multiplier Hopf algebra if we consider the comultiplication ∆ on A �Y B where

∆(a �Y b) = ∆cop(a)∆(b) in M((A �Y B)⊗ (A �Y B)). We observe that for a ∈ A, we
use the opposite comultiplication of A. For b ∈ B, we use the deformation ∆(b) as
defined above.

In this paper, we characterize the modules ofDπ. This is done from the point of view

that Dπ is a non-trivial twisted tensor product on the space A⊗ B, see above. We
require a natural condition on the pairing �A,BX which generalizes the dual bases
for finite-dimensional Hopf algebras. Then the characterization of the left modules

over Dπ can be rephrased purely in terms of the multiplier Hopf algebra B, without

any reference to the multiplier Hopf algebra A. The compatibility conditions for

these π-Yetter-Drinfel’d modules over B are given in Theorem 2.1. When we require

the admissible action to be a crossing (this means that π is related with the adjoint

action of the group G on itself) and we assume that the components are unital and

finite-dimensional, the characterization in Theorem 2.1 can be put in the setting of

[Z2, Section 8]. We notice that in this special situation our Drinfel’d double con-

struction is isomorphic with the so-called mirror construction, given in [Z2, Section

9]. If π is a crossing of the group G on an arbitrary G-cograded multiplier Hopf

algebra B, we have that the Drinfel’d double Dπ is again G-cograded and there is a

natural crossing of G on Dπ, see [De-VD3, Proposition 3.13]. Furthermore, we have

that Dπ is π-quasitriangular, see [De-VD-W, Theorem 3.12]. The categorical inter-

pretation of this quasitriangularity is translated to the π-Yetter-Drinfel’d modules

over B, see Theorem 3.1. Our braiding is in the sense of the centre-construction of

a category as given in [K, Sections XIII 4-5].

All algebras are considered over the field C. We do not assume that an algebra
A has a unit. But we require that the multiplication, considered as a bilinear map

is non-degenerate. The multiplier algebra, denoted as M(A), is the largest algebra
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with a unit in which A is contained as a dense two-sided ideal. The identity in any

(multiplier) algebra is denoted by 1. The identity map is denoted as ι.

For a regular multiplier Hopf algebra A (i.e. with a bijective antipode) we de-

note the comultiplication by ∆. Observe that ∆ : A → M(A ⊗ A). However, by
the defining conditions on ∆, we have for all a, b ∈ A that ∆(a)(1⊗ b), ∆(a)(b⊗ 1),
(1 ⊗ b)∆(a) and (b ⊗ 1)∆(a) are elements in A ⊗ A. It can be motivated, see e.g.
[Dr-VD-Z, Section 2] that these elements are denoted by Sweedler notation, e.g.

∆(a)(1 ⊗ b) = a(1) ⊗ a(2)b. In an expression, denoted by Sweedler notation, one
always has to make sure that at most one factor a(k) is not multiplied (“covered”)

by an element in A.

When we consider a module V over an algebra A, we always mean a left mod-

ule which is unital. A (left) A-module V is unital if A � V = V . By the regularity

conditions on A, this implies that for all x ∈ V , we have an element e ∈ A such

that x = e � x. For details, we refer to [Dr-VD-Z, Section 3]. Therefore, the comul-

tiplication on A can be used to make the category of (left) A-modules into a tensor

category with unit.

Basic references

The material needed for reading this paper is given in the following basic refer-

ences. For (regular) multiplier Hopf algebras, we refer to [VD1] and [VD-Z1]. The

group-cograded multiplier Hopf algebras are introduced in [A-De-VD] and studied

in [De-VD-W]. They generalize the Hopf group-coalgebras, as introduced by Tu-

raev in [T]. The Drinfel’d double construction into the framework of multiplier Hopf

algebras is associated to a pairing, see [Dr-VD] and [De-VD1]. To have the anal-

ogous properties as for the Drinfel’d double of a finite-dimensional Hopf algebra,

we assume that the pairing �A,BX of two multiplier Hopf algebras has a canonical
multiplier W ∈M(A⊗ B). Essentially, the multiplier W takes the role of the dual

bases in the finite-dimensional case. For details, we refer to [De-VD2, Section 4].

The Drinfel’d double construction for group-cograded multiplier Hopf algebras is

done in [De-VD3].
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2 π-Yetter-Drinfel’d modules

Let �A,BX be a pair of multiplier Hopf algebras. Let G denote a group and assume
that B is G-cograded. As an algebra, we write B =

p∈G
Bp. Let π be an admissible

action of G on B, in the sense of [De-VD3, Definition 2.6]. So for all p ∈ G, we
have an automorphism πp on B which respects the multiplication and the comulti-

plication of B. Furthermore for all p, q ∈ G, we have πp(Bq) = Bρp(q) where ρ is an

automorphism of G on itself. We require that πρp(q) = πpqp−1 for all p, q ∈ G. In the
framework of Hopf group-coalgebras, one sets ρp(q) = pqp

−1 for all p, q ∈ G, see [T].
Let Dπ denote the Drinfel’d double as constructed in [De-VD3, Theorem 3.8]. As

an algebra, Dπ is a twisted tensor product on the linear space A ⊗ B. Therefore,
a left Dπ-module is nothing but a linear space V with a left B-module structure,

denoted as B.V , as well as a left A-module structure, denoted as A � V . For all

a ∈ A, b ∈ Bp and x ∈ V , the following compatibility equation yields

b · (a � x) = ai � (bi · x)

where ai ⊗ bi = T (b⊗ a) = (πp−1(b(1)) a S−1(b(3)))⊗ b(2).
The actions and are the regular actions of B on A, associated to the pairing

�A,BX, see [Dr-VD].

We rephrase the above compatibility condition in terms of the multiplier Hopf alge-

bra B, without any reference to the paired multiplier Hopf algebra A. We need the

notion of a right-B-comodule. In Hopf algebra theory, it is possible to define the

structure of a comodule on a vector space. In the setting of multiplier Hopf algebras

however, more structure is needed. In [VD-Z2], the setting is that of an algebra V

and a regular multiplier Hopf algebra B. Then, a right coaction of B on V is an

injective linear map Γ : V →M(V ⊗B) satisfying
(i) Γ(V )(1⊗ B) ⊆ V ⊗ B and (1⊗ B)Γ(V ) ⊆ V ⊗B

(ii) (Γ⊗ ι)Γ = (ι⊗∆)Γ
The algebra structure of V is needed to be able to consider the multiplier algebra

M(V ⊗ B). It would be too restrictive to assume that the coaction Γ has range in
the tensor product itself.

Observe that Condition (i) is used to give a meaning to the left hand side of the equa-

tion in Condition (ii). The link between left A-modules and right B-comodules is

given by the so-called canonical multiplierW inM(A⊗B), in the sense of [De-VD2,
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Section 4] and [De2, Section 2]. A multiplier W in M(A⊗B) is called canonical for
the pairing �A,BX if W is invertible in M(A ⊗ B) and if �W, a ⊗ bX = �a, bX for all
a ∈ A and b ∈ B. Let B be a finite-dimensional Hopf algebra and consider A = BI

where BI denotes the dual Hopf algebra of B. If {fi} ⊂ BI and {ei} ⊂ B are dual

bases, then W = fi⊗ei is the canonical element in BI⊗B for the natural pairing
�BI, BX.

2.1 Theorem Consider the notations and the assumptions as above. We have

that V is a (left) Dπ-module if and only if V is a left B-module for the action B.V

and V is a right B-comodule for the right coaction Γ : V → M(V ⊗ B) such that
the left action and the right coaction of B on V satisfy the compatibility relation

(d(1) ·⊗cd(2))Γ(v) = (1⊗ c)Γ(d(2) · v)(1⊗ πp−1(d(1)))

for all v ∈ V , c ∈ Bq and d ∈ Bpq (where p, q ∈ G).

Proof. In [De2, Theorem 2.3], we have proven that a left A-module V is deter-

mined by a unique right B-comodule structure on V in the following way. Let A�V

denote a left A-module, then there is a right B-comodule Γ : V → M(V ⊗ B) so
that

a � v = (ι⊗ �a, ·X)Γ(v)
for all A ∈ A and v ∈ V .
On the right hand side of the above equation, we have that Γ(v) sits in the mul-

tiplier algebra M(V ⊗ B). However, by the regularity conditions on the pairing
�A,BX, there is an element b ∈ B such that the right hand side should be read as

(ι⊗�a, ·X)(Γ(v)(1⊗b)). As we assume for the coaction Γ that Γ(V )(1⊗B) ⊆ V ⊗B,
the expression (ι⊗�a, ·X)(Γ(v)(1⊗b)) determines an element in V . The compatibility
condition between the left B-module structure and the left A-module structure on

a left Dπ-module V can be rephrased as follows. For all a ∈ A, b ∈ Bp and v ∈ V ,
we have

(ιV ⊗ �a, ·X)(b ·⊗1)Γ(v) = b · ((ιV ⊗ �a, ·X)Γ(v)) = b · (a � v) = ai � (bi · v)

= (ιV ⊗ �ai, ·X)Γ(bi · v) = (ιV ⊗ �πp−1(b(1)) a S−1(b(3)), ·X)Γ(b(2) · v)

= �a(1), S−1(b(3))X�a(3), πp−1(b(1))X(ιV ⊗ �a(2), ·X)Γ(b(2) · v)

= (ιV ⊗ �a, ·X) (1⊗ S−1(b(3)))Γ(b(2) · v)(1⊗ πp−1(b(1))) .
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Observe that the above equations are in V ⊗B. All decompositions are well-covered
by the use of the regularity conditions on the pairing �A,BX. As the pairing is a
non-degenerate linear form on A ⊗ B, we obtain the following equation in V ⊗ B.
For any p, q ∈ G and b ∈ Bp, bI ∈ Bq, we have for all v ∈ V

(b ·⊗bI)Γ(v) = (1⊗ bIS−1(b(3)))Γ(b(2) · v)(1⊗ πp−1(b(1))).

From the axioms on a regular multiplier Hopf algebra, we have (1⊗B)∆(B) = B⊗B,
see [VD1]. By the use of [VD1, Lemma 5.5], the equation above is equivalent to the

following statement. For any p, q ∈ G and d ∈ Bpq, c ∈ Bq we have for all v ∈ V

d(1) ·⊗cd(2) Γ(v) = (1⊗ c)Γ(d(2) · v)(1⊗ πp−1(d(1))).

By the use of the G-cograding and the admissible action π, we have that in the left

hand side (1⊗ c)∆(d) ∈ Bp⊗Bq. In the right hand side we have (πp(c)⊗ 1)∆(d) ∈
Bρp(q) ⊗Bρp(q−1)pq.

2.2 Definition Let B be a G-cograded multiplier Hopf algebra and let π be

an admissible action of G on B. An algebra V with a left B-module structure and a

right B-comodule structure is called a π-Yetter-Drinfel’d module if the compatibility

condition of Theorem 2.1 is satisfied. The set of all π-Yetter-Drinfel’d modules over

B is denoted as Bπ(YD)B.

In the characterization of Theorem 2.1, we have dispensed with the Drinfel’d double

Dπ. So we do not need to assume that B is paired with another multiplier Hopf

algebra to define the π-Yetter-Drinfel’d modules over B.

2.3 Remark Let B be a finite-type Hopf group-coalgebra and assume that π

is a crossing, i.e. πp(Bq) = Bpqp−1 for all p, q ∈ G. In Theorem 2.1, the multiplier

Hopf algebra A can be taken as the (usual) Hopf algebra B∗ =
p∈G
(Bp)

I, where

(Bp)
I denotes the linear dual of Bp. The formula in Theorem 2.1 is now given as in

[Z2, Section 8]. When G is given by the trivial group, we recover the well-known

characterization of Yetter-Drinfel’d modules for a finite-dimensional Hopf algebra.

In these settings, we don’t need an underlying algebra structure on the Yetter-

Drinfel’d modules because the comultiplication of B is a map ∆ : B → B ⊗ B.
Furthermore, there is always a canonical multiplier W in M(B∗ ⊗ B). More pre-
cisely, W =

p∈G
fp,i ⊗ ep,i where for all p ∈ G, the sets {fp,i} in (Bp)I and {ep,i} in

Bp are dual bases.
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3 The braided monoidal category Bπ(YD)B
As before, we consider a multiplier Hopf algebra B which is cograded by a group G.

As an algebra we have B =
p∈G

Bp where Bp is a subalgebra with a non-degenerate

product. Let π denote an admissible action of G on B. We consider the category

Bπ(YD)B of π-Yetter-Drinfel’d modules over B, in the sense of Definition 2.2. The
morphisms in Bπ(YD)B are linear maps which are left B-module morphisms as well
as right B-comodule morphisms.

If B is paired with a multiplier Hopf algebra A, we have proven in Theorem 2.1

that the category Bπ(YD)B is given by the left unital modules over the Drinfel’d
double Dπ, associated to the pair �A,BX. We made use of the canonical multiplier
W in M(A⊗B). The morphisms between left Dπ-modules, correspond to the mor-

phisms in Bπ(YD)B, use [De2, Theorem 2-3]. By the bialgebra structure on Dπ, the

modules over Dπ have the structure of a monoidal tensor category. Therefore, it is

expected that the category Bπ(YD)B is also a monoidal tensor category. Let V be
in Bpπ(YD)B and let V I be in Bqπ(YD)B, then V ⊗ V I is in Bpq(p)q

π(YD)B in the
following way

b · (v ⊗ vI) = πq−1(b(1)) · v ⊗ b(2) · vI

for all b ∈ Bρq(p)q, v ∈ V and vI ∈ V I. To determine the right B-comodule structure
on the tensor product V ⊗ V I, we translate the A-module structure on V ⊗V I (Acop
is embedded in Dπ). This translation is done by the use of the canonical multiplier

in M(A⊗ B). We have denoted this multiplier by the letters W and P . For a ∈ A
and b ∈ B, we write (a⊗ 1)W (1⊗ b) as aW (1)⊗W (2)b in A⊗B. Following [De2,
Proposition 2.2], we have for all b ∈ B, v ∈ V and vI ∈ V I

Γ(v ⊗ vI)(1⊗ 1⊗ b) = (W (1) � (v ⊗ vI))⊗W (2)b

= (P (1) � v)⊗ (W (1) � vI)⊗W (2)P (2)b.

We made use of the formula (∆⊗ι)(W ) = W 13W 23. We have obtained the following

right B-comodule structure on V ⊗ V I

Γ(v ⊗ vI)(1⊗ 1⊗ b) = Γ(vI)23Γ(v)13(1⊗ 1⊗ b)

for all v ∈ V , vI ∈ V I and b ∈ B. In the right hand side, we use the leg-numbering
notation in the usual way.
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One can check that the compatibility condition holds for the tensor object V ⊗ V I.
Moreover, we have that Bπ(YD)B is a monoidal category. We omit these proofs
because we would be repeating the construction of Dπ as bialgebra, see [De-VD3].

So far, we have “translated” the multiplier Hopf algebra structure on Dπ to de-

termine the monoidal category Bπ(YD)B. Further structures on the multiplier Hopf
algebra Dπ will correspond directly to properties of its category of modules and

can be translated towards the category Bπ(YD)B. Further in this sequel, we as-
sume that the admissible action of G on B is given as a crossing. This means that

πp(Bq) = Bpqp−1 for all p, q ∈ G. However, the components of the G-cograded mul-
tiplier Hopf algebra B, denoted as Bp for all p ∈ G, are arbitrary algebras with a
non-degenerate multiplication. In this setting, we have that Dπ is G-cograded and

there is a natural crossing of G on Dπ. More precisely, in [De-VD3, Proposition

3.13], we have proven that Dπ is G-cograded as follows

Dπ =
p∈G
(Dπ)p with (Dπ)p = A �Y Bp−1 .

For all p ∈ G, define πIp on A via the formula �πIp(a), bX = �a, πp−1(b)X for all a ∈ A,
b ∈ B. Then, the maps πIp ⊗ πp define a crossing of G on D

π. Let W in M(A⊗ B)
denote the canonical multiplier of the pair �A,BX. Let σ be the twist map on A⊗B,
extended toM(A⊗B). It is proven in [De-VD-W, Theorem 3.12] that the embedding
σ(W ) in M(Dπ ⊗Dπ) is a generalised π-matrix for Dπ, in the sense of [De-VD-W,

Definition 3.1]. By the use of [De-VD-W, Section 3.4], this π-quasitriangularity of

Dπ corresponds to the following properties of the category of (left) modules over

Dπ. For all p ∈ G, let pM denote the modules over the algebra (Dπ)p. Then we

have that the category of left modules over Dπ is given as DπM =
p∈G

pM. For all

p ∈ G, there is an invertible functor Fp on DπM. If V ∈ qM, then Fp(V ) ∈ pqp−1M.

As a linear space, we have that Fp(V ) equals V . Let the D
π-module structure

on V be denoted as Dπ → V . For an element (a �Y b) ∈ (Dπ)pqp−1, we have

(a �Y b) → Fp(v) = Fp((π
I
p−1(a) �Y πp−1(b)) → v). A morphism in qM is sent to

itself, now considered as a morphism in pqp−1M.

Finally, the π-quasitriangularity of Dπ gives the following π-braiding in
DπM. Let

V (resp. V I) be in pM (resp. qM). Then we have

tV,V I : V ⊗ V I → Fp(V
I)⊗ V such that

tV,V I(v ⊗ vI) = Fp(W
(1) � vI)⊗ (W (2) · v)

where A � V (resp. B · V ) denotes the A-module (resp. B-module) structure on V .
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In Theorem 2.1, we have given a characterization for the π-Yetter-Drinfel’d mod-

ules, without the use of a pairing and a Drinfel’d double. So, associated to any

G-cograded multiplier Hopf algebra B and a crossing π of G on B, we have the

following π-braided monoidal tensor category Bπ(YD)B.

3.1 Theorem Let B be a G-cograded multiplier Hopf algebra and let π de-

note a crossing of G on B. The monoidal category Bπ(YD)B is π-braided.

Proof. Let V be in Bπ(YD)B. The left action of B on V is denoted as B · V .
The right coaction of B on V is denoted as Γ : V →M(V ⊗B). If B is paired with
another multiplier Hopf algebra A, we already have that the category of the left

modules over Dπ is a braided tensor category, see above. We rephrase the results

on this category, but we dispense with the Drinfel’d double Dπ itself. Let V be in

Bp−1π(YD)B and V I is in Bq−1π(YD)B. Then V ⊗ V I is a π-Yetter Drinfel’d module
over the subalgebra Bq−1p−1 .

For all p ∈ G, there is an invertible function Fp on Bπ(YD)B. For V in Bq−1π(YD)B,
we have Fp(V ) in Bπ(YD)B. As an algebra, we have that Fp(V ) equals V . As a left
B-module, Fp(V ) lies over the subalgebra Bpq−1p−1 . For b ∈ Bpq−1p−1 and v ∈ Fp(V ),
we have b · Fp(v) = Fp(πp−1(b) · v).
We now find the right B-comodule structure on Fp(V ). If B is paired with a multi-

plier Hopf algebra A, we assume that W ∈M(A⊗B) is the canonical multiplier of
this pair. By the uniqueness of the canonical multiplier W , we have for all p ∈ G,
(π
I
p ⊗ πp)(W ) = W . For v ∈ V and b ∈ B we have

Γ(Fp(v))(1⊗ b) = (W (1) � Fp(v))⊗W (2)b

= Fp(π
I
p−1(W

(1)) � v)⊗W (2)b = Fp(W
(1) � v)⊗ πp(W

(2))b

= (Fp ⊗ πp) (W (1) � v)⊗W (2)πp−1(b) = (Fp ⊗ πp)(Γ(v)(1⊗ πp−1(b)).

Finally the braiding in the category of left Dπ-modules gives the following braiding

on Bπ(YD)B. For V in Bp−1π(YD)B and V I in Bq−1π(YD)B, we have

tV,V I : V ⊗ V I → Fp(V
I)⊗ V such that for v ∈ V , vI ∈ V I

tV,V I(v ⊗ vI) = Fp(W
(1) � vI)⊗W (2) · v = Fp(v

I(1))⊗ (vI(2) · v).

In the right hand side of this formula, the tensor v
I(2) · v should be read as vI(2)b · v

where b is chosen in Bp−1 such that b · v = v, see [Dr-VD-Z]. The summation
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v
I(1) ⊗ vI(2)b stands for the element Γ(vI)(1⊗ b) in V I ⊗B.

3.2 Remark Suppose that G is given by the trivial group G = {e}. The

G-cograded multiplier Hopf algebra B is a usual multiplier Hopf algebra. In the

case that B is finite-dimensional (and so B is a Hopf algebra), Theorem 3.1 recovers

the categorical interpretation of the usual Drinfel’d double of B which is equivalent

with the centre-construction of B-mod as given in [K, Section XIII.5].

3.3 Examples

3.3.1 G-cograded multiplier Hopf algebras

We first give examples of G-cograded multiplier Hopf algebras with a crossing.

• The Hopf group-coalgebras and their crossing, as considered in [T], are exam-
ples of G-cograded multiplier Hopf algebras. This point of view is explained

in [A-De-VD, Theorem 1.5]. Let K(G) denote the multiplier Hopf algebra

of the complex valued functions with a finite support in G. The product is

pointwise and the coproduct is dual to the product in the group. We write

K(G) =
p∈G

Cδp. In this case all the components are equal to the trivial alge-

bra C. The natural crossing on K(G) is related with the adjoint action of G
on itself.

• Let (A,∆) denote any multiplier Hopf algebra. Let G be a group which acts
on the multiplier Hopf algebra A by means of automorphisms αp for all p ∈ G.
We assume αe = ι, αp(αq(a)) = αpq(a) for all p, q ∈ G and a ∈ A. Further,
the automorphism αp respects the comultiplication of A in the sense that

∆(αp(a)) = (αp ⊗ αp)∆(a) for all p ∈ G and a ∈ A. Consider the tensor
product algebra B = K(G) ⊗ A with the trivial product. In [De1, Example
3.3] is given a non-trivial coproduct on K(G)⊗ A as follows

∆(δp ⊗ a)((1⊗ 1)⊗ (δq ⊗ aI)) = (δpq−1 ⊗ αq(a(1)))⊗ (δq ⊗ a(2)aI)

for all p, q ∈ G and a, aI ∈ A.
The multiplier Hopf algebra B = K(G) ⊗ A is G-cograded. We have B =

p∈G
Bp whereBp = Cδp⊗A. Let {fp | p ∈ G} denote a family of automorphisms

on A which respect the comultiplication of (A,∆) and assume furthermore that

fpq = fp ◦ fq and fp ◦αq = αpqp−1 ◦ fp for all p, q ∈ G. Then, a crossing of G on

11



B is given by the automorphisms πp on B where πp(δq ⊗ a) = δpqp−1 ⊗ fp(a)
for all p, q ∈ G and a ∈ A. Observe that the family {αp | p ∈ G} can always
be taken to define a crossing on B. In this example all components are equal

to the (possible infinite-dimensional) multiplier Hopf algebra A. However, the

comultiplication on B in not trivially given by the comultiplication on A. We

notice that (B,∆) has integrals if (A,∆) has integrals, see [De1, Theorem

1.16.1]. So, in these situations we can consider the pairing �B,BX where B
denotes the dual multiplier Hopf algebra, in the sense of [VD2]. The pairing

�B,BX has a canonical multiplier W in M(B ⊗ B), see [De-VD2, Proposition
4.12].

3.3.2 π-Yetter-Drinfel’d modules

Let B be a G-cograded multiplier Hopf algebra and let π denote a crossing of G

on B. Assume that �A,BX is a pair of multiplier Hopf algebras with a canonical
multiplier W in M(A⊗B). The tensor algebra A⊗B (with trivial product) can be
made into a π-Yetter-Drinfel’d module over B as follows. For all p ∈ G and b ∈ Gp
we set

b · (x⊗ y) = (πp−1(b(1)) x S−1(b(3)))⊗ b(2)y

for all x ∈ A and y ∈ B. Observe that and are the regular actions of B on A,

associated to the pairing �A,BX.

Γ(x⊗ y)((1⊗ 1)⊗ b) = (W (1)x⊗ y)⊗W (2)b

for all x ∈ A and y, b ∈ B. This π-Yetter-Drinfel’d module for B corresponds with

the left regular module of the Drinfel’d double Dπ on itself.

Let B be a finite-type Hopf group-coalgebra with a crossing π, in the sense of

[T, Section 11]. Then we have B =
p∈G

Bp where for all p ∈ G, the algebra Bp
is unital and finite-dimensional. This multiplier Hopf algebra B is paired with the

(usual) Hopf algebra A =
p∈G
(Bp)

I where (Bp)I is the linear dual of Bp. The canon-

ical multiplier W in M(A ⊗ B) is given by the formal summation
p∈G

fp,i ⊗ ep,i
where {fp,i} ⊂ (Bp)I and {ep,i} ⊂ Bp are dual bases. Consider the tensor algebra

p,q∈G
((Bq)

I⊗Bp). This algebra is a π-Yetter-Drinfel’d module for B in the following

12



way. For all p ∈ G and b ∈ Bp, f ∈ A and y ∈ B we set

b · (f ⊗ y) = f(S−1(b(3)) · πp−1(b(1)))⊗ b(2)y

Γ(f ⊗ y)((1⊗ 1)⊗ b) =
i

(fp,if ⊗ y)⊗ ep,ib.
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