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ABSTRACT 

 

The relation between Pearson’s correlation coefficient and Salton’s cosine measure is 

revealed based on the different possible values of the division of the 1L -norm and the 2L -

norm of a vector. These different values yield a sheaf of increasingly straight lines which 

form together a cloud of points, being the investigated relation. These theoretical results are 

tested against the author co-citation relations among 24 informetricians for who two matrices 

can be constructed, based on co-citations: the asymmetric occurrence matrix and the 
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symmetric co-citation matrix. Both examples completely confirm the theoretical results. The 

results enable us to specify an algorithm which provides a threshold value for the cosine 

above which none of the corresponding Pearson correlations would be negative. Using this 

threshold value can be expected to optimize the visualization. 

 

 

I.  Introduction 

 

Ahlgren, Jarneving & Rousseau (2003) questioned the use of Pearson’s correlation coefficient 

as a similarity measure in Author Cocitation Analysis (ACA) on the grounds that this measure 

is sensitive to zeros. Analytically, the addition of zeros to two variables should add to their 

similarity, but these authors demonstrated with empirical examples that this addition can 

depress the correlation coefficient between variables. Salton’s cosine is suggested as a 

possible alternative because this similarity measure is insensitive to the addition of zeros 

(Salton & McGill, 1983). In general, the Pearson coefficient only measures the degree of a 

linear dependency. One can expect statistical correlation to be different from the one 

suggested by Pearson coefficients if a relationship is nonlinear (Frandsen, 2004). However, 

the cosine does not offer a statistics. 

 

In a reaction White (2003) defended the use of the Pearson correlation hitherto in ACA with 

the pragmatic argument that the differences resulting from the use of different similarity 

measures can be neglected in research practice. He illustrated this with dendrograms and 

mappings using Ahlgren, Jarneving & Rousseau’s (2003) own data. Leydesdorff & Zaal 

(1988) also found marginal differences between using these two criteria for the similarity. 

Bensman (2004) contributed a letter to the discussion in which he argued for the use of 

Pearson’s r for more fundamental reasons. Unlike the cosine, Pearson’s r is embedded in 

multivariate statistics, and because of the normalization implied this measure allows for 

negative values.  

 

Jones & Furnas (1987) explained the difference between Salton’s cosine and Pearson’s 

correlation coefficient in geometrical terms, and compared both measures with a number of 

other similarity criteria (Jaccard, Dice, etc.). The Pearson correlation normalizes the values of 

the vectors to their arithmetic mean. In geometrical terms, this means that the origin of the 
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vector space is located in the middle of the set, while the cosine constructs the vector space 

from an origin where all vectors have a value of zero (Figure 1).  

 

 

Fig. 1. The difference between Pearson’s r and Salton’s cosine is geometrically equivalent to a translation 

of the origin to the arithmetic mean values of the vectors. 

 

Consequently, the Pearson correlation can vary from –1 to + 1,
5
 while the cosine varies only 

from zero to one in a single quadrant. In the visualization (using, e.g., Pajek or MDS), this 

variation in the Pearson correlation is convenient because one can distinguish between 

positive and negative correlations. Leydesdorff (1986; cf. Leydesdorff & Cozzens, 1993), for 

example, used this technique for illustrating factor-analytical results of aggregated journal-

journal citations matrices with MDS-based journal maps.  

 

Although in many practical cases, the differences between using Pearson’s correlation 

coefficient and Salton’s cosine may be negligible, one cannot estimate the significance of this 

difference in advance. Given the fundamental nature of Ahlgren, Jarneving & Rousseau’s 

(2003, 2004) critique, in our opinion, the cosine is preferable for the analysis and visualization 

of similarities. Of course, a visualization can be further informed on the basis of multivariate 

statistics which may very well have to begin with the construction of a Pearson correlation 

matrix (as in the case of factor analysis). In practice, therefore, one would like to have 

theoretically informed guidance about choosing the threshold value for the cosine values to be 

included or not. However, there is no one-to-one correspondence between a cut-off level of r 

= 0 and a value of the cosine similarity because of the different metrics involved. 

 

                                                 
5
 In cases that one wishes to use only positive values, one can linearly transform the values of the correlation 

using (r 1) / 2  (Leydesdorff and Vaughan, 2006, at p.1617). 
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Since negative correlations also lead to positive cosine values, the cut-off level is no longer 

given naturally in the case of the cosine, and, therefore, the choice of a threshold remains a bit 

arbitrary (Leydesdorff, 2007a). Yet, variation of the threshold can lead to different 

visualizations (Leydesdorff & Hellsten, 2006). Using common practice in social network 

analysis, one could consider using the mean of the lower-triangle of the similarity matrix as a 

threshold for the display (Wasserman & Faust, 1994, at pp. 407f.), but this solution is often 

not satisfying the criterion of generating correspondence between, for example, the factor-

analytically informed clustering and the clusters visible on the screen.  

 

Formalization of the problem 

In a recent contribution, Leydesdorff (2008) suggested that in the case of a symmetrical co-

occurrence matrix, Small’s (1973) proposal to normalize co-citation data using the Jaccard 

index (Jaccard, 1901; Tanimoto, 1957) has conceptual advantages above the use of the cosine. 

Egghe (2008), however, was able to show using the same data that all these similarity criteria 

can functionally be related to one another. The results in Egghe (2008) can be outlined as 

follows. 

 

Let  1 2 nX x ,x ,..., x  and  1 2 nY y , y ,..., y  be two vectors where all the coordinates are 

positive. The Jaccard index of these two vectors (measuring the “similarity” of these vectors) 

is defined as 

 
2 2

2 2

X Y
J

X Y X Y




  
 (1) 

 

n

i i

i 1

n n n
2 2

i i i i

i 1 i 1 i 1

x y

J

x y x y



  



 



  
 (2) 

where 
n

i i

i 1

X Y x y


   is the inproduct of the vectors X  and Y  and where 
n

2

i
2

i 1

X x


   and 

n
2

i
2

i 1

Y y


   are the Euclidean norms of X  and Y  (also called the 2L -norms). Salton’s 

cosine measure is defined as 

 

2 2

X Y
Cos

X Y


  (3) 



 5 

 

n

i i

i 1

n n
2 2

i i

i 1 i 1

x y

Cos

x y



 




 

 (4) 

in the same notation as above. Among other results we could prove that, if 
2 2

X Y , then 

 
Cos

J
2 Cos




 (5) 

a simple relation, agreeing completely with the experimental findings. 

 

For Dice’s measure E: 
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 (7) 

we could even prove that, if 
2 2

X Y , we have E Cos . The same could be shown for 

several other similarity measures (Egghe, 2008). We refer the reader to some classical 

monographs which define and use several of these measures in information science: Boyce, 

Meadow & Kraft (1995); Tague-Sutcliffe (1995); Grossman & Frieder (1998); Losee (1998); 

Salton & McGill (1987) and Van Rijsbergen (1979); see also Egghe & Michel (2002, 2003). 

 

Egghe (2008) also mentioned the problem to relate Pearson’s correlation coefficient with the 

other measures. The definition of r  is: 

 

n n n

i i i i

i 1 i 1 i 1

2 2
n n n n

2 2

i i i i

i 1 i 1 i 1 i 1

n x y x y

r

n x x n y y

  

   

  
   
  

   
    
   

  

   

 (8) 

 

In this study, we address this remaining question about the relation between Pearson’s 

correlation coefficient and Salton’s cosine.  
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The problem lies in the simultaneous occurrence of the 2L -norms of the vectors 

 1 nX x ,..., x  and  1 nY y ,..., y  and the 1L -norms of these vectors in the definition of the 

Pearson correlation coefficient. The 1L -norms are defined as follows: 

 
n

i
1

i 1

X x


  (9) 

 
n

i
1

i 1

Y y


  (10) 

These 1L -norms are the basis for the so-called “city-block metric” (cf. Egghe & Rousseau, 

1990). The 1L -norms were not occurring in the other measures defined above, and therefore 

not in Egghe (2008). This makes r  a special measure in this context. In Ahlgren, Jarneving & 

Rousseau (2003) argued that r  lacks some properties that similarity measures should have. Of 

course, Pearson’s r  remains a very important measure of the degree to which a regression line 

fits an experimental two-dimensional cloud of points. (See Egghe & Rousseau (2001) for 

many examples in library and information science.) 

 

Basic for determining the relation between r  and Cos  will be, evidently, the relation between 

the 1L - and the 2L -norms of the vectors X  and Y . In the next section we show that every 

fixed value of 1

2

X
a

X
  and of 1

2

Y
b

Y
  yields a linear relation between r  and Cos . We will 

see that variations in a  and/or b  yield a sheaf of straight lines, yielding a description of the 

non-functional relation of r  and Cos  (contrary to the functional relations (such as (5)) as 

proved by Egghe (2008)). Since we determined the functional relation between Cos  and all 

the other measures (except r ) in Egghe (2008), we hence will also be able to determine the 

relation of r  with the other measures. 

 

In the third section we test our model for the relation between r  and Cos  against the data 

described in Leydesdorff (2008). In fact, this data originated from Ahlgren, Jarneving & 

Rousseau (2003) (Table 7, p.555 with main diagonal values added in Table 1 in Leydesdorff 

(2008, p. 78)) being co-citation data of 24 informetricians. First we will use the asymmetric 

occurrence data containing only 0s and 1s: 279 papers contained at least one co-citation to 

two or more authors of the list of 24 authors under study (Leydesdorff & Vaughan, 2006, 

p.1620). In this case of an asymmetrical occurrence matrix, an author receives a 1 on a 
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coordinate (representing one of these papers) if he /she is cited in this paper and a score 0 if 

not. This table is not included here or in Leydesdorff (2008) since it is long (but it can be 

obtained from the authors upon request).  

 

As a second example, we use the symmetric co-citation data as provided by Leydesdorff 

(2008, p. 78), Table 1 (as described above). Both examples confirm the obtained model form 

the previous section: in each case the exact parameter values are calculated. These predictions 

are very close to the experimental cloud of points of the relation between r  and Cos , for 

which graphs will be presented. The paper closes with conclusions and the specification of 

some open problems. 

 

Data 

Ahlgren, Jarneving & Rousseau (2003 at p. 554) downloaded from the Web of Science 430 

bibliographic descriptions of articles published in Scientometrics and 483 such descriptions 

published in the Journal of the American Society for Information Science and Technology 

(JASIST) in the period 1996-2000. From the 913 bibliographic references in these articles they 

composed a co-citation matrix for twelve authors in the field of information retrieval and 12 

authors doing bibliometric-scientometric research. They provide both the co-occurrence 

matrix and the Pearson correlation table in their paper (at p. 555 and 556, respectively).  

 

Leydesdorff & Vaughan (2006) repeated the analysis in order to obtain the original 

(asymmetrical) data matrix. Using precisely the same searches these authors found 469 

articles in Scientometrics and 494 in JASIST on 18 November 2004. The somewhat higher 

numbers are consistent with the practice of Thomson Scientific (ISI) to reallocate papers 

sometimes at a later date to a previous year. Thus, these differences can be disregarded.  

 

On the basis of this data, Leydesdorff (2008, at p. 78) added the values on the main diagonal 

to Ahlgren, Jarneving & Rousseau (2003) Table 7 which provided the author co-citation data 

(p. 555). The data allows us to compare the various similarity matrices using both the 

symmetrical co-occurrence data and the asymmetrical occurrence data (Leydesdorff & 

Vaughan, 2006; Waltman & van Eck, 2007; Leydesdorff, 2007b). The data will be further 

analyzed after we have established our mathematical model on the relation between Pearson’s 

correlation coefficient r  and Salton’s cosine measure Cos . 
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II.  Mathematical model for the relation between r 

and Cos 

 

Let  1 2 nX x ,x ,..., x  and  1 2 nY y , y ,..., y  the two vectors of length n . Denote 

 1

2

X
a

X
  (11) 

and 

 1

2

Y
b

Y
  (12) 

(notation as in the previous section). Note that, trivially, a 1  and b 1 . We also have that 

a n  and b n . Indeed, by the inequality of Cauchy-Schwarz (e.g. Hardy, Littlewood & 

Pólya, 1988) we have 

 
n n

i i
1

i 1 i 1

X x 1 x
 

     

 

1 1
n n2 2

2

i

i 1 i 1

2

1 x

n X

 

   
    
   



 
 

Hence 

 1

2

X
a n

X
   

But, if we suppose that X  is not the constant vector, we have that a n , hence, by the 

above, a n . The same argument goes for Y , yielding b n . We have the following 

result. 

 

Proposition II.1:  

The following relation is generally valid, given (11) and (12) and if X  nor Y  are constant 

vectors 

 
2 2

n ab
r Cos

nn a n b

 
  

  
 (13) 
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Note that, by the above, the numbers under the roots are positive (and strictly positive since 

X  nor Y  are constant). 

Proof: 

Define the “Pseudo Cosine” measure PCos  

 

n

i i

i 1

n n

i i

i 1 i 1

x y

PCos

x y



 


  
  
  



 
 (14) 

One can find earlier definitions in Jones & Furnas (1987). The measure is called “Pseudo 

Cosine” since, in formula (3) (the real Cosine of the angle between the vectors X  and Y , 

which is well-known), one replaces 
2

X  and 
2

Y  by 
1

X  and 
1

Y , respectively. Hence, as 

follows from (4) and (14) we have 

 

n n

i i

i 1 i 1

n n
2 2

i i

i 1 i 1

x y
Cos
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x y

 

 

  
  
  

 

 

 

 1 1

2 2

X YCos
ab

PCos X Y
  , (15) 

using (11) and (12). Now we have, since X  nor Y  are constant (avoiding 
0

0
 in the next 

expression). 

 

n n
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by (11), (12) and (14). By (15) we now have 

 
2 2

ab
n

r Cos

Cos n a n b




 

 

from which Cos  can be resolved: 

 
2 2n a n b r ab

Cos
n

  
  (16) 

Since we want the inverse of (16) we have, from (16), that (13) is correct.  

 

Note that (13) is a linear relation between r  and Cos , but dependent on the parameters a  and 

b  (note that n  is constant, being the length of the vectors X  and Y ).  

Note that Cos 0  if and only if 

 
2 2

ab
r 0

n a n b
  

 
 (17) 

and that r 0  if and only if 

 
ab

Cos 0
n

   (18) 

Both formulae vary with variable a  and b , but (17) is always negative and (18) is always 

positive. Hence, for varying a  and b , we have obtained a sheaf of increasing straight lines. 

Since, in practice, a  and b  will certainly vary (i.e. the numbers 1

2

X

X
 will not be the same for 

all vectors) we have proved here that the relation between r  and Cos  is not a functional 

relation (as was the case between all other measures, as discussed in the previous section) but 

a relation being an increasing cloud of points. Furthermore, one can expect, that the cloud of 

points will occupy a range of points, for Cos 0 , below the zero ordinate while, for r 0 , the 

cloud of points will occupy a range of points with positive abscissa values (this is obvious 

since Cos 0  while all vector coordinates are positive). Note also that (17) (its absolute 

value) and (18) decrease with n , the length of the vector (for fixed a  and b ). This is also the 

case for the slope of (13), going, for large n , to 1, as is readily seen (for fixed a  and b ).  

 

All these findings will be confirmed in the next section where also exact numbers will be 

calculated and compared with the experimental graphs. 
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III.  One example and two applications 

 

We re-use the data set of Ahlgren, Jarneving & Rousseau (2003) which was also used in 

Leydesdorff (2008). This data deals with the co-citation features of 24 informetricians. We 

distinguish two types of matrices (yielding the different vectors, representing the 24 authors). 

 

First, we use the binary asymmetric occurrence matrix: a matrix of size 279 x 24 as described 

in Section I. Then, we use the symmetric co-citation matrix of size 24 x 24 where the main 

diagonal gives the number of papers in which an author is cited – see Table 1 in Leydesdorff 

(2008). Although these matrices are constructed from the same data set, it will be clear that 

the corresponding vectors are very different: in the first case all vectors have binary values 

and length n 279 ; in the second case the vectors are not binary and have length n 24 . So 

these two examples will also reveal the n-dependence of our model, as described in Section II. 

 

III.1  The case of the binary asymmetric occurrence matrix 

Here n 279 . Hence the model (13) (and its consequences such as (17) and (18)) are known 

as soon as we have the values a  and b  as in (11) and (12), i.e., we have to know the values 

1

2

X

X
 for every author, represented by X . Since all vectors are binary we have, for every 

vector X :  

 1

2

X sum of the 1s (ones) in X

X sum of the 1s (ones) in X
  

 1

2

X
sum of the 1s (ones) in X

X
  (19) 

We have the data as in Table 1. They are nothing else than the square roots of the main 

diagonal elements in Table 1 in Leydesdorff (2008). 

 



 12 

Table 1. 
1

2

X

X
 for the 24 authors 

Author 1

2

X

X
 ( a  or b  in (13)) 

Braun 50  

Schubert 60  

Glänzel 53  

Moed 55  

Nederhof 31  

Narin 64  

Tyssen 22  

van Raan 50  

Leydesdorff 46  

Price 54  

Callon 26  

Cronin 24  

Cooper 30  

Van Rijsbergen 30  

Croft 18  

Robertson 36  

Blair 18  

Harman 31  

Belkin 36  

Spink 21  

Fidel 23  

Marchionini 24  

Kuhltau 26  

Dervin 20  

 

For (13) we do not need the a  and b -values of all authors: to see the range of the r -values, 

given a Cos -value we only calculate (13) for the two smallest a  and b  values and for the 

two largest a  and b  values 

1. Smallest values: a 18 , b 20  

yielding ab 360 18.973666   



 13 

2. Largest values: a 64 , b 60  

yielding ab 3,840 61.967734   

This is a rather rough argument: not all a  and b  values occur at every fixed Cos -value so 

that better approximations are possible but, for the sake of simplicity, we will use the larger 

margins of above: if we can approximate the experimental graphical relation between r  and 

Cos  in a satisfactory way, the model is approved. 

 

Using (13), (17) or (18) we obtain, in each case, the range (based on 1. and 2. above) in which 

we expect the practical ( Cos, r ) points to be. 

 

For Cos 0  we have r  between 0.0729762  and 0.2869153  (by (17)). For r 0  we have 

by (18), Cosbetween 0.068006  and 0.2221066 . Further, by (13), for Cos 0.1  we have r  

between 0.0343323  and 0.15 . For Cos 0.2  we have r  between 0.1416408  and 

0.028424 . For Cos 0.3  we have r  between 0.2489421  and 0.1001529 . Finally for 

Cos 0.4  we have r  between 0.3562577  and 0.2287298  and for Cos 0.5  we have r  

between 0.4635662  and 0.3573067 . We do not go further due to the scarceness of the data 

points. 

 

The experimental ( Cos, r ) cloud of points and the limiting ranges of the model are shown 

together in Fig. 2, so that the comparison is easy. 

 

 

Fig. 2. Data points ( Cos, r ) for the binary asymmetric occurrence matrix and ranges of the model. 



 14 

For reasons of visualization we have connected the calculated ranges. Fig. 2 speaks for itself. 

The indicated straight lines are the upper and lower lines of the sheaf of straight lines 

composing the cloud of points. The higher the straight line, the smaller its slope. The r -range 

(thickness) of the cloud decreases when Cos  increases. We also see that the negative r -

values, e.g. at Cos 0 , are explained, although the lowest fitted point on Cos 0  is a bit too 

low due to the fact that we use the total a,b  range while, on Cos 0 , not all a  and b values 

occur. 

 

We can say that the model (13) explains the obtained ( Cos, r ) cloud of points. We will now 

do the same for the other matrix. We will then also be able to compare both clouds of points 

and both models. 

 

III.2  The case of the symmetric co-citation matrix 

Here n 24 . Based on Table 1 in Leydesdorff (2008), we have the values of 1

2

X

X
. For 

example, for “Braun” in the first column of this table, 
n

i
1

i 1

X x 168


   and 

n
2

i
2

i 1

X x 4,504 67.1118469


   . In this case, 1

2

X
168/ 67.1118469 2.5032838

X
  . 

The values of 1

2

X

X
 for all 24 authors, represented by their respective vector X , are provided 

in Table 2. 

Table 2: 
1

2

X

X
 for the 24 authors 

Author 1

2

X

X
 ( a  or b  in (13)) 

Braun 2.5032838 

Schubert 2.4795703 

Glänzel 2.729457 

Moed 2.7337391 

Nederhof 2.8221626 

Narin 2.8986697 

Tyssen 3.0789273 
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van Raan 2.4077981 

Leydesdorff 2.8747094 

Price 2.7635278 

Callon 2.8295923 

Cronin 2.556743 

Cooper 2.3184046 

Van Rijsbergen 2.4469432 

Croft 3.0858543 

Robertson 2.920658 

Blair 2.517544 

Harman 2.5919129 

Belkin 2.8555919 

Spink 3.0331502 

Fidel 2.6927563 

Marchionini 2.4845716 

Kuhltau 2.4693658 

Dervin 2.5086617 

 

As in the previous example we only use the two smallest a  and b  values and the two largest  

a  and b  values. 

1. Smallest values: a 2.3184046 , b 2.4077981  

yielding ab 5.5822502  

2. Largest values: a 3.0858543 , b 3.0789273  

yielding ab 9.501121  

 

As in the first example, the obtained ranges will, probably be a bit too large since not all a  

and b  values occur at every Cos -value. We will now investigate the quality of the model in 

this case. 

 

If Cos 0  then, by (17) we have that r  is between 0.3031765  and 0.6553024 . If r 0  we 

have that Cos  is between 0.2325928  and 0.39588 , using (18). For Cos 0.1  we have that r  

is between 0.1728293  and 0.4897716 . For Cos 0.2 , r  is between 0.0424834  and 

0.3242411 . Cos 0.4  implies that r  is between 0.2182085  and 0.0068199 . Cos 0.6  

implies that r  is between 0.4789003  and 0.3378808  and finally, for Cos 0.8  we have that 

r  is between 0.7395922  and 0.6689418 . 

 

The experimental (Cos, r)  cloud of points and the limiting ranges of the model in this case are 

shown together in Fig. 3, so that the comparison is easy.  
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Fig. 3. Data points (Cos, r)  for the symmetric co-citation matrix and ranges of the model. 

 

The same properties as in the previous case are found here, although the data are completely 

different. Again the lower and upper straight lines, delimiting the cloud of points, are clear. 

They are also delimiting the sheaf of straight lines, given by (13). Again, the higher the 

straight line, the smaller its slope. The r -range (thickness) of the cloud decreases when Cos  

increases. This effect is stronger in Fig. 3 than in Fig. 2. We again see that the negative values 

of r , e.g. at Cos 0 , are explained. 

 

We conclude that the model (13) explains the obtained (Cos, r)  cloud of points. 

 

 

IV.  Conclusions and open problems 

 

In this paper we have presented a model for the relation between Pearson’s correlation 

coefficient r  and Salton’s cosine measure. We have shown that this relation is not a pure 

function, but that the cloud of points (Cos, r)  can be described by a sheaf of increasing 

straight lines of which the slopes are decreasing, the higher the straight line in the sheaf. The 

negative part of r  is explained and we have explained why the r -range (thickness) of the 

cloud decreases when Cos  increases. All these theoretical findings are confirmed on two data 

sets from Ahlgren, Jarneving & Rousseau (2003) on co-citation data of 24 informetricians: 

vectors in the asymmetric occurrence matrix and the symmetric co-citation matrix.
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The algorithm enables us to determine the threshold value for the cosine above which none of 

the corresponding Pearson correlation coefficients on the basis of the same data matrix will be 

lower than zero. In general, a cosine can never correspond with an r 0 , if one divides the 

product between the two largest values for a and b (that is, 

n

i

i 1

n
2

i

i 1

x

x









 for each vector) by the 

size of the vector n. In the case of Table 1, a was 64  (for Narin) and b was 60  (for 

Schubert) and hence ab  was 61.967734 . Since n 279  in this case, the cosine should be 

chosen above 0.2221066 . Fig. 2 suggests that one should not choose a cosine threshold lower 

than 0.2; Fig. 3 suggests cosine 0.4  while the threshold value is 0.39588 . 

 

The cosine threshold value which corresponds to r 0  thus is sample specific. However, one 

can automate the calculation of this value for any dataset by using Equation 18. In the future, 

we shall provide this (“Egghe-Leydesdorff threshold”) value as output of the various 

bibliometric programs available at http://www.leydesdorff.net/software.htm in order to inform 

the user who wishes to visualize the resulting cosine-normalized matrices. 

 

In the introduction we already described the functional relationship between Cos  and the 

other similarity measures such as Jaccard, Dice,…. Based on 2L -norm relations, e.g. 

2 2
X Y  (but generalizations are given in Egghe (2008)) we could prove in Egghe (2008) 

that ( J  = Jaccard) 

 
Cos

J
2 Cos




 (20) 

and that E Cos  ( E  = Dice) and the same for the other similarity measures discussed in 

Egghe (2008). It is then clear that the combination of these results and (13) yield the relations 

between r  and these other measures. Under the above assumptions of 2L -norm equality we 

see, since E Cos , that (13) is also valid for Cos  replaced by E . For J , using (13) and (20) 

one obtains: 

 
2J

Cos
J 1




 (21) 

http://www.leydesdorff.net/software.htm
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and hence 

 
2 2

n 2J ab
r

J 1 nn a n b

 
  

  
 (22) 

which is a relation as depicted in Fig. 4, for the first example (the asymmetric binary 

occurrence matrix case). 

 

 

Fig. 4. The relation between r and J for the binary asymmetric occurrence matrix 
 

The faster increase of this cloud of points, in comparison with the one in Fig. 2 is clear from 

the fact that (20) implies that J Cos  (since 0 Cos 1  ) if  Cos 0,1 : in fact J  is convexly 

increasing in Cos , below the first bissectrix: see Leydesdorff (2008) and Egghe (2008). 

 

As we showed in Egghe (2008) that, if 
2 2

X Y  we have that all the other similarity 

measures are equal to Cos , we evidently have graphs as in Figs. 2 and 3 of the relation 

between r  and the other measures. 

 

More data sets are needed to see if the given relations (Figs. 2 and 3) yield the same numbers 

for the asymmetric occurrence matrix (Fig. 2) and the symmetric co-citation matrix: are the 

slopes of the straight lines the same as well as their intercepts ? If so, we then are talking 

about absolute fixed relations but we leave this here as an open problem. 
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